QUASI-2D FERMI SURFACES OF THE MAGNETIC COMPOUND CeAgSb₂*

Y. INADA, A. TAMIZABEL, Y. SAWAI, S. IKEDA, H. SHISHIDO T. OKUBO, M. YAMADA, Y. ŌNUKI

Graduate School of Science, Osaka University Toyonaka Osaka, 560-0043, Japan

and T. Ebihara

Department of Physics, Faculty of Science, Shizuoka University 836 Ohya, Shizuoka 422-8529, Japan

(Received July 10, 2002)

We have succeeded in growing high-quality single crystals of CeAgSb₂, and carried out the de Haas-van Alphen (dHvA) experiment. Cylindrical Fermi surfaces were observed, together with closed Fermi suraces. The effective cyclotron mass is in the range from 0.9 to 32 m_0 . Large cylindrical Fermi surfaces occupying half of the Brillouin zone were detected, which are highly different from small Fermi surfaces in the reference compounds LaAgSb₂ and YAgSb₂ with a semimetalic character. CeAgSb₂ is the first example in which the 4f electron becomes itinerant and possesses the magnetic moment.

PACS numbers: 71.18.+y, 71.27.+a

1. Introduction

RTX₂(R:rare earth, T:transition metal) crystallizes in the tetragonal ZrCuSi₂ type structure (space group P4/nmm) [1,2]. The crystal structure of CeAgSb₂ can be understood from the stacking arrangement of Sb-CeSb-Ag-CeSb layers [1]. It shows the magnetic ordering below 9.7 K. The magnetic structure is reported to be ferromagnetic with a small ordered morment of $0.33 \mu_{\rm B}$ [3], although the magnetization curve is highly anisotropic and cannot be understood from the simple ferromagnetic structure [2].

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

The dHvA and Shubnikov-de Haas (SdH) experiments on CeAgSb₂ as well as on reference compounds YAgSb₂ and LaAgSb₂ were reported by Meyers *et al.* [4]. A small Fermi surface was observed for CeAgSb₂. On the other hand, the Fermi surface in YAgSb₂ and LaAgSb₂ was found to consist of a cylindrical Fermi surface and a few kinds of closed (ellipsoidal) ones. The reason why larger Fermi surfaces were not observed in CeAgSb₂ was mainly due to the fact that the measurement was carried out at a high temperature of 2.1 K and the specific heat coefficient γ is reported to be 75 mJ/K²·mol for the polycrystalline sample of CeAgSb₂ [5], which is larger than that of LaAgSb₂ ($\gamma = 2.62 \text{ mJ/K}^2 \cdot \text{mol}$) [6].

We have thus done the dHvA experiment by standard field-modulation method at low temperatures down to 30 mK and in high magnetic fields up to 170 kOe to clarify the electronic state.

2. Experimental and discussion

Single crystals were grown by the self-flux method, as described in ref [2]. The starting materials were 3N(99.9% pure)-Ce, 5N-Ag and 5N-Sb. The typical size was $8 \times 5 \times 3 \text{ mm}^3$, being flat in the (001) plane.

Fig. 1. Temperature dependence of (a) electrical resistivities and (b) anisotropic ratio, ρ_{001}/ρ_{100} , in CeAgSb₂

Figure 1(a) shows the temperature dependence of the electrical resistivity in the current J along [100] and [001]. The residual resistivity ρ_0 and residual resistivity ratio $\rho_{\rm RT}/\rho_0$ were $1.25 \,\mu\Omega$ ·cm and 522 for the current $J \parallel [001]$ and $0.37 \,\mu\Omega$ ·cm and 210 for the current $J \parallel [100]$, respectively, indicating a high-quality sample. The temperature dependence of the resistivity ratio between $J \parallel [001]$ and [100] is shown in Fig. 1(b). Anisotropy of the resistivity is large: the ratio is 8.3 at room temperature and 17 around 10 K, reflecting the quasi-two dimensional electronic state. The electrical resistivity in both directions decreases steeply below $T_{\rm ord} = 9.7 \,\mathrm{K}$. The temperature dependence of the electrical resistivity below 3 K follows:

$$\rho = \rho_0 + AT^2 + BT(1 + 2T/\Delta) \exp(-\Delta/T).$$
(1)

The third term in Eq. (1) is applicable to the magnetic compound with a spin gap of Δ . The value of Δ are 7.6 K for $J \parallel [001]$ and 9.7 K for $J \parallel [100]$, respectively.

Fig. 2. (a) Typical dHvA oscillation and (b) the corresponding FFT spectrum in $CeAgSb_2$

Figure 2 shows a typical dHvA oscillation and its fast Fourie transform (FFT) spectrum for $H \parallel [001]$. Here, the dHvA frequency $F(=\hbar c S_{\rm F}/2\pi e)$ is proportional to the extremal (maximum or minimum) cross-sectional area $S_{\rm F}$ of the Fermi surface. Three groups of branches, $c_{1,2,3}$, were observed at high magnetic fields ranging 100 to 169 kOe. The frequencies of these branches increase approximately as a function of $1/\cos\theta$, where θ is a tilted field angle from [001] to [100]. These branches correspond to cylindrical Fermi surfaces. The presence of these branches indicates the quasi-two dimensional electronic state as expected from the anisotropy of the electrical resistivities shown in Fig. 1.

These branches possess rather heavy cyclotron masses, $32 m_0$ for branch c_1 , $20 m_0$ for branch c_2 and $10 m_0$ for branch c_3 . The cross-section of branch c_1 in CeAgSb₂ ($F = 1.12 \times 10^8$ Oe) occupies approximately half of the Brillouin zone because the cross-sectional area of the Brillouin zone corresponds to 2.2×10^8 Oe in the (001) plane.

In the localized *f*-electron systems, the Fermi surfaces of a cerium compounds is similar to those of corresponding reference La or Y compounds. The main dHvA frequencies in CeAgSb₂ are, however, an order of magnitude larger than those in LaAgSb₂ or YAgSb₂. Namely, the largest cylindrical Fermi surface in LaAgSb₂ or YAgSb₂ corresponds to 1.7×10^7 Oe, which means a small Fermisurface. LaAgSb₂ or YAgSb₂ are a semimetalic with a small electronic specific heat coefficient $\gamma \simeq 1 \text{ mJ/K}^2 \cdot \text{mol.}$ It is concluded that one 4f-electron per cerium in CeAgSb₂ contributes the volume of the Fermi surface, indicating a band electron in CeAgSb₂. CeAgSb₂ is the first example in which the 4f electron becomes itinerant and possesses the magnetic ordered moment.

This work was supported by the Grant-in-Aid for COE Research (10CE2004) of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

- [1] M. Brylak et al., J. Solid State Chem. 115, 305 (1995).
- [2] K. D. Myers et al., J. Magn. & Magn Mater. 205, 27 (1999).
- [3] G. André et al., Physica B 292, 176 (2000).
- [4] K. D. Myers et al., Phys. Rev. B60, 13371 (1999).
- [5] Y. Muro et al., J. Alloy. Compd. 257, 23 (1997).
- [6] M. Houshiar et al., J. Magn. Magn. Mater. 140-144, 1231 (1995).