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A modified Kuramoto model of synchronization in a finite discrete sys-
tem of locally coupled oscillators is studied. The model consists of N
oscillators with random natural frequencies arranged on a ring. It is shown
analytically and numerically that finite-size systems may have many dif-
ferent synchronized stable solutions which are characterised by different
values of the winding number. The lower bound for the critical coupling kc

is given, as well as an algorithm for its exact calculation. It is shown that
in general phase-locking does not lead to phase coherence in 1D.

PACS numbers: 05.45.Xt

1. Introduction

The phenomenon of collective synchronization, in which a large popu-
lation of elements oscillating with different frequencies spontaneously locks
to a common frequency, is the subject of extensive research in physics, biol-
ogy, chemistry, and social sciences. Biological examples at various levels of
complexity contain pacemaker cells in the heart [1, 2], metabolic synchrony
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in yeast cell suspensions [3, 4] or a synchronously flashing swarm of fire-
flies [5, 6]. The studies of synchronizing man-made systems include arrays
of lasers [7, 8] or superconducting Josephson junctions [9, 10].

The Kuramoto model [11], which renders the system as an ensemble of
limit-cycle oscillators that are described only by their phases, proved to be
a very successful approach to the problem of synchronization. Although
the natural frequencies of the elements of the population are drawn from
some prescribed distribution, it has been shown analytically that the system
with a mean-field coupling exhibits a phase transition in the thermodynamic
limit: if the coupling exceeds a certain threshold, a macroscopic set of the
oscillators spontaneously synchronize.

On the other hand, as shown by Strogatz and Mirollo [12], an infinite 1D
system does not synchronize. However, in real-life applications only finite
systems appear. It is, therefore, interesting to see whether finite 1D Ku-
ramoto systems may synchronize. There have been very recent approaches
to local one-dimensional Kuramoto models due to Cerdeira et al. [13, 14],
Arenas and Diaz-Guilera [15] or Strogatz and Wiley [16], which involve an-
alytical calculation of the synchronized states, as well as considerations on
their stability and their basins of attraction.

2. A local one-dimensional Kuramoto model

The topology of interactions of the studied system forms a ring, i.e. we
assume the lattice to be one-dimensional with nearest-neighbour coupling,
and periodic boundary conditions. The local Kuramoto model of synchro-
nizing limit-cycle oscillators is given by the equations of motion (first-order,
nonlinear ODEs)

θ̇i(t) = ωi −
k

2
[sin(θi(t)− θi−1(t)) + sin(θi(t)− θi+1(t))] , (1)

for i = 1, . . . , N , where θi are the phases of the oscillators, ωi are the natural
frequencies taken from a certain distribution, and k is the coupling constant.

3. The form of stable synchronized solutions

We look for stationary synchronized solutions given by

θi(t) = Ωt+ φi , i = 1, . . . , N , (2)

where Ω is the common frequency, and the set of N constant phases
{φi}i=1,...,N characterises a given solution. The insertion of this condition
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into the equations of motion (1) yields a linear system of equations for sines
of constant phase differences:

As =
2
k
( ω − Ω e) ≡ 2

k
∆ , (3)

where e = [1, 1, . . . , 1]T , s = [sin(φ1−φN ), sin(φ2−φ1), . . . , sin(φN−φN−1)],
ω = [ω1, ω2, . . . , ωN ]T , and ∆ = [δ1, δ2, . . . , δN ]T ≡ [ω1 − Ω , ω2 − Ω , . . . ,
ωN −Ω ]T are the deviations of natural frequencies from the mean frequency,
and the matrix A is given by

A =


1 −1

1 −1
. . . . . .

1 −1
−1 1

 . (4)

Since the vector e = [1, 1, . . . , 1]T is an eigenvector of A to the zero
eigenvalue, the determinant of the matrix vanishes. Consequently, the linear
equation (3) has one free parameter p ∈ [−1, 1] (it behaves as en element of
the vector s, hence the constraint), which allows the solutions to appear, as
shown below.

The system is easily solvable but leads to some constraints on what sys-
tems (e.g. having certain distributions of natural frequencies) can synchro-
nize, which comes from the fact that |si| ≤ 1. The condition of solvability of
the linear equation leads to the observation that the synchronized frequency
is equal to the mean of the distribution of natural frequencies (the mean
always exists in a finite population)

Ω =
1
N

N∑
i=1

ωi . (5)

The synchronized solutions take the form of a set of phase differences
between the neighbouring oscillators

φi − φi−1 = arcsin

p+
2
k

N−i∑
j=1

∆j

 , i = 1, . . . , N , (6)

where p ∈ [−1, 1] is a parameter of the solution of the linear equation (3).
For i = N we assume that the sum equals 0, i.e. φN − φN−1 = arcsin p.

Above, it is assumed that all inverse functions of sines si = sin (φi − φi−1)
should be taken as φi − φi−1 = arcsin si ∈ (−π/2, π/2] for the sake of sta-
bility of the solution (as discussed in Sec. 8 in more detail). For any of



456 J. Ochab, P.F. Góra

N − 1 independent phase differences it is possible to take another inverse,
π − arcsin si ∈ (π/2, 3π/2], therefore in total one can obtain 2N−1 possibili-
ties of how the solution can look like.

4. The number of stable solutions

For a given coupling k and frequency distribution one finds stable solu-
tions by solving for p ∈ [−1, 1] the equation obtained from summing up the
N phase differences (6)

N−1∑
i=0

arcsin

p+
2
k

i∑
j=1

∆j

 = 2mπ , (7)

where m = −bN/4c,−bN/4c+ 1, . . . ,−1, 0, 1, . . . , bN/4c, which we call the
“winding number” (b . c denotes “ ‘floor” ’, i.e. the largest integer number
which is lower than or equal to the given number). Thus, there can ex-
ist more than one stable solution. Indeed, there can be at most 1 + 2 bN/4c
synchronized solutions differing in winding numbers (similar phenomenon
has been spotted in [16]).

Fig. 1. The illustration of the equation (7) for N = 6. Intersection of the curves
(left-hand side of the equation) with the 0,±2π lines means that 0, 1, 2 or 3
solutions appear. The broken lines indicate limiting values reached by the left-
hand side. The parameters are chosen to be ∆ = [0, 0, 0, 1/10, 9/10, −1]/2k.
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Fig. 2. The idea of the winding number: the circle represents phase differences
φi − φi−1 ∈ [0, 2π) and the digits are indices of the oscillators. The left-hand
solution has m = 1, all the phase differences are positive and sum up to 2π. The
right-hand one has m = 0, one of the differences is negative and the sum is zero.

5. Restrictions on synchronizing systems

The sinusoidal form of interactions results in the fact that for synchro-
nization to appear, all sums of deviations from the mean frequency must
obey the inequality ∣∣∣∣∣∣2k

i∑
j=1

∆j

∣∣∣∣∣∣ < 1 , (8)

which binds the coupling to the natural frequency distribution. In the limit
N →∞, independently of the frequency distribution, as shown by Strogatz
and Mirollo [12], the behaviour of the sums is given by

max
1≤i≤N

∣∣∣∣∣∣
i∑

j=1

∆j

∣∣∣∣∣∣ ∼ N1/2 . (9)

It comes from the fact that we can think of subsequent random ∆i as the
steps of a one-dimensional random walk. This result was first obtained
for Gaussian distribution but holds for any distribution of independently
distributed natural frequencies.

It follows that if the critical coupling constant kc obeys the inequality
(8), it is infinite in the limit N →∞. Consequently, infinite systems cannot
synchronize, and so we restrict ourselves to the study of finite systems. The
conclusion is compatible with the calculation of lower critical dimension by
Daido [17].

The behaviour resembles that of the Ising model, which does not exhibit
phase transition in one dimension, either (a brief discussion on the Ising
model’s solution on a ring as well as a commentary on the lack of phase
transition in 1D can be found in [18]). However, in the Ising model the
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phase transition occurs neither in infinite nor finite systems, while the one-
dimensional Kuramoto model exhibits synchronization for a finite number
of oscillators.

6. Phase vs. frequency synchronization

The order parameter for the original Kuramoto model,

r(t)eiψ(t) =
1
N

N∑
j=1

eiθj(t) , (10)

indicates how well synchronized the oscillators are: if r = 0, the system
is totally incoherent, and if r = 1, it is fully synchronized. The parame-
ter defines the critical coupling constant kc for which the continuous phase
transition occurs: r = 0 only for k < kc, otherwise r > 0.

In the local model the given definition does not serve its purpose, since
r(k) provides the information on phase coherence, which is a stronger con-
dition than just frequency synchronization. Only the solution having a zero
winding number can take values r > 0 in the limit of large k. It results from
the phase differences taking uniform values when k increases (which can be
seen already in the Eq. (6)).

Fig. 3. The order parameter r(k). The synchronized solutions can be phase inco-
herent, hence r ≈ 0 for m = ±1.

7. The critical coupling

It is interesting to find the critical coupling where the phase transitions
takes place for a given distribution of frequencies. Here, as we restrict
ourselves to finite-size systems, kc just indicates the strength of interac-
tions for which the first synchronized solution appears. To obtain kc for
a given system (i.e. size N and frequencies) one needs to calculate min ≡
2
k mini=0,...,N−1

(∑i
j=1 ∆j

)
+ 1, max ≡ 2

k maxi=0,...,N−1

(∑i
j=1 ∆j

)
− 1 and

next determine the interval of the values that can be assumed by the left-
hand side of the Eq. (7) under change of p ∈ [−1, 1]
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N−1∑
i=0

arcsin

2
k

i∑
j=1

∆j −min

,N−1∑
i=0

arcsin

2
k

i∑
j=1

∆j −max

 . (11)

The smallest value of k for which one of the ends of the above interval equals
2mπ is the kc. This is tantamount to finding when (in terms of k) solutions
appear, and choosing the first one.

8. The stability of solutions

We analyse the linear perturbation of the stationary solutions. Let
{θi(t)}Ni=1 = {Ωt + φi}Ni=1 be a synchronized solution of the system (1).
We perturb it ∀i : θi(t)→ θi(t) + ui(t), where |ui(t)| � 1, and substitute it
into the equations of motion (1). Having linearised the right-hand side with
respect to ui we obtain the evolution equation of the perturbation

u̇ ' −k
2



c1 + c2 −c2 −c1
−c2 c2 + c3 −c3

−c3 c3 + c4 −c4
. . . . . . . . .

−cN−1 cN−1 + cN −cN
−c1 −cN cN + c1

 u , (12)

where u = [u1(t), u2(t), . . . , uN (t)]T , ci = cos(φi − φi−1).
We consider the phase differences from the interval φi − φi−1 ∈ [−π, π]

(mod 2π). Due to its cyclic structure, the matrix in (12) always has a zero
eigenvalue, so that every solution is neutrally stable with respect to the
homogeneous translations (“rigid rotations” of the system): ∀i : φi → φi+ φ̃.
All the other eigenvalues depend on the values of ci.

We use the Gershgorin theorem (which can be found in [19, 20]), which
states that for a matrix [aij ]i,j=1,...,N all the eigenvalues lie in at least one of
the circles (so-called Gershgorin discs) given by {z : |z − aii| ≤ Ri}, where
Ri =

∑N
j=1j 6=i |aij |, i = 1, . . . , N .

Using the theorem to localise the eigenvalues of the perturbation matrix
we classify the solutions according to their phase differences as follows:

(i) ∀i = 1, . . . , N : |φi − φi−1| < π/2 ⇒ stable solutions (the eigenvalues
λi obey Reλi ≤ 0);

(ii) ∀i = 1, . . . , N : |φi−φi−1| > π/2 (mod 2π)⇒ unstable solutions (the
eigenvalues λi obey Reλi ≥ 0);

(iii) ∃i : |φi−φi−1| < π/2∧∃j : |φj −φj−1| > π/2⇒ we cannot determine
the stability of the solution.
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The third condition describes the situation where at least one of Ger-
shgorin discs intersects both the right and the left imaginary half-planes.
The theorem does not tell us in which part of the disc the eigenvalues are
localised, and whether any eigenvalue lies in it at all. In other words, there
can exist stable solutions outside of (i) and there can exist unstable solutions
outside of (ii).

It should be noted that the conditions derived here can easily be gen-
eralised to any network topology thanks to the properties of the sine and
cosine functions. In the general case, one has to check against those condi-
tions phase differences for any coupled pair of oscillators.

9. The size of basins of attraction

The numerical evidence indicates that the stable solutions depend on
initial conditions. The basin of attraction is a connected set containing
the given solution. If it were otherwise, i.e. if the system reached a given
stationary solution starting from a set of initial conditions which did not
contain the solution, its trajectory would must have intersected a basin of
attraction of another solution. As every point of the trajectory is identical to
some initial condition, the system should have reached the other attractor,
which is a contradiction.

We assume correspondence between the volume of the basins of attrac-
tion and the stability of solutions, which means the solutions having the
maximal negative eigenvalue of the perturbation matrix closer to zero (i.e.
they are “less stable”) should have smaller basin of attraction than the “more
stable” solutions whose all eigenvalues are strongly negative. It arises from
the fact that for the system of first-order ODEs setting any initial condition
non-identical to a given stationary solution is in fact perturbation of the
solution. Since the negative eigenvalues indicate the speed of return to the
solution, they also tell us which initial condition leads to which attractor.
Of course, in the stability analysis we assume the perturbation to be small
|ui(t)| � 1, so the given argument should be treated as an assumption.

The simulations suggest that the value of winding number strongly cor-
relates with both the eigenvalues and the volume of basins of attraction. The
only analytical result states that the solutions with largem are marginalised,
because of the behaviour of eigenvalues

λi ∼ −k cos
(

2π
N
m

)
, (13)

where m = −bN/4c,−bN/4c+ 1, . . . ,−1, 0, 1, . . . , bN/4c. It is derived from
the assumption that all the phase differences are equal, which is approxi-
mately the case for large m or in the limit of large k for any m.
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Fig. 4. The basins of attraction and the eigenvalues of the perturbation matrix for
solutions differing in winding number. Around k = 0.3 the m = 1 solution appears,
then the one with m = 0 takes over most of its basin of attraction, and at last,
near k = 2.5 the solution m = −1 appears building up its own basin with volume
comparable to m = 1.

10. Conclusions

As has been shown here, the one-dimensional model exhibits synchro-
nization only for finite sizes of the system. The stationary synchronized so-
lutions can be found explicitly, they depend on initial conditions, and their
number is proportional to N . The size of the basins of attraction depends
on the stability of the attracting solutions and, as we have shown, there is a
connection between the winding number m and the volume of the basin of
attraction, according to which solutions with high m are marginalised.

The order parameter for the Kuramoto model is not very useful here,
as it indicates only phase coherence, while frequency synchronization may
occur here without it. The critical coupling constant kc (which in finite
systems considered here is understood as the smallest coupling for which
any synchronized solution appears) can easily be computed.

We hope that the analytically investigated behaviour of the one-dimen-
sional model may give a clue, what to expect in the higher-dimensional local
models of synchronizing oscillators.

It was only after submitting the paper that we became aware of the paper
by Rogge and Ayeles [21], whose results are similar to what you can find in
Sec. 3, 4, and 8.
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