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We present an extension of the classical Kuramoto model, adjusted
for analysis of sets of asymmetrically coupled units. Results of numerical
simulations suggest that violating Newton’s Third Law by adding a strongly
dominating unit can lead to synchronization in systems previously unable
to synchronize.

DOI:10.5506/APhysPolB.45.1915
PACS numbers: 05.45.Xt

1. Introduction

Spontaneous synchronization of coupled oscillators is an enormously
common phenomenon in virtually all areas of science [1, 2]. The most com-
monly used model of synchronization, proposed by Kuramoto, describes the
mean field approximation [3–8]. However, this approximation does not cover
all oscillatory systems that exist in nature. Therefore, several other cases
have been investigated. One of the most widely discussed generalizations
of the Kuramoto model applies to systems of oscillators connected by var-
ious types of network [9, 10]. Many important aspects of synchronization
phenomena have also been thoroghly discussed by Callenbach et al. [11].

This article concentrates on situations when interactions in a set of oscil-
lators are not symmetrical: Newton’s Third Law is violated. This represents
systems in which information between units is transferred in one direction
(e.g. neurons connected through synapses) or units are not equal (ecological
systems, financial markets etc.).
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2. Model

2.1. Modified Kuramoto equation

We postulate a set of N differential equations (based on a modified Ku-
ramoto model [3]) describing the coupling of all N oscillators

dθi
dt

= ωi +K
N∑
j=1

cj
ci

sin (θj − θi) , i = 1, 2, 3, . . . , N , (1)

where: N — number of oscillators, θi — phase of oscillator i, ωi — natural
frequency of oscillator i (Gaussian-distributed), ci — ‘influence constant’ of
oscillator i, K — coupling constant. Obviously, if all influence constants ci
are equal, the equation reduces to its standard version.

2.2. Influence constants

A natural assumption is that influence constants should be described
by Gaussian distribution σ. However, avoidance of singularities requires
them to be positive. Therefore, we assume truncated normal distribution
with positive mean and standard deviation not exceeding half of the mean.
Thus, if a random ck constant happens to be zero or negative, it can be
removed and the distribution does not cease to be approximately Gaussian.

2.2.1. Order parameter

To describe the state of the system, we will use the complex order pa-
rameter [1]

r =
1

N

N∑
j=1

eiθj . (2)

Synchronization is full, when |r| = 1, and the less |r| is, the more desyn-
chronised the system becomes. At |r| −→ 0, there is complete desynchro-
nization. Obviously, |r|2 = 1 iff ∀ i, j θi = θj , which is exactly the state of
full synchronization.

3. Synchronization

This article focuses on two subjects: influence of asymmetry of oscillators
on their synchronization and the effect that a dominating unit gives on
the rest of population. Domination of kth oscillator (in this context) is
represented by its influence constant ck � ci ∀i 6= k.
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3.1. Parameters and assumptions

Due to the complexity of the discussed problem, the simplest way of ex-
amining it is numerical simulation based on idea of integrating equations (1)
using trapezoidal method. Therefore, there are three sets of random num-
bers required for every single simulation:

— Gaussian distribution of influence constants ci (with mean 1024.0 and
standard deviation σ);

— Gaussian distribution g(ω) of natural frequencies ωi (with fixed mean
0.0 and standard deviation 1.0);

— uniform distribution of initial values of phases θi ∈ [0, 2π].

In all simulations, standard deviation σ was limited to interval [0,512] so as
to avoid frequent generation of non-positive values of ci.

3.2. Critical coupling constant

As mentioned previously, at σ = 0 all influence constants are equal
and equation (1) reduces to the Kuramoto model in which synchronization
appears only when K exceeds its critical value given by expression

KTh
C =

2

πg(0)
≈ 1.60 , (3)

where g(ω) is the distribution of natural frequencies. The first step of re-
search was to calculate experimental value of critical coupling, which led to
the result

KC = 1.65(25) (4)

which proves correct when compared to theoretical value (4).

Fig. 1. Synchronization after long time for various values of coupling constant K.
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Figure 1 presents the character of critical coupling constant: after K
exceeds KC, the system quickly synchronizes, while for K < KC synchro-
nization drops nearly to zero.

3.3. Influence of σ on critical coupling constant

Next, the Kuramoto model was disturbed by increasing σ. In order to
investigate the influence of σ on final state of the population, dependence of
|r|2 (synchronization) on σ was calculated for various values of K, as shown
in figure 2.

The main observation is that σ chosen with respect to the above de-
scribed assumptions does not significantly change final state of the system.

Fig. 2. Dependence of synchronization after long time on coupling constant (K)
and standard deviation of influence constants (σ) in the case of no domination.

4. Domination

Another major question is what happens if one of the influence constants
is a lot larger than the mean of distribution of other influence constants. For

Fig. 3. Dependence of synchronization after long time on coupling constant (K)
and standard deviation of influence constants (σ) in presence of a dominating unit.
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presented simulations, we assumed the dominating unit to be 1024 times
larger than the mean. Figure 3 shows how synchronization depends on σ
and K when the system is supplemented by a dominating unit.

It is visible that range of synchronization expands (compared to the case
of no domination) — critical coupling KC lowers. The main conclusion is
that a dominating unit is capable of leading the population to synchroniza-
tion, even if the latter is not possible in the case of classical mean field
coupling.

5. Conclusions

Presented results indicate that, after sufficiently long time of interaction,
a strongly dominating unit in a set of coupled oscillators leads to phase syn-
chronization. This effect is irrespective of standard deviation of individual
influence constants, as long as they are approximately Gaussian-distributed
among positive numbers.
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