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Basic properties of the quantum spinor field theory in the Riemannian space-time are
described. Both real and complex fields are considered.

PACS number: 04.20.Cv, 11.10.-z

The problem of field quantization in Riemannian space-time has been formulated
and basically solved in work [1] for the case of the scalar field. In the present paper the
problem is defined more exactly and solved for significantly more complicated case of the -
spinor field. We employ the results of Fock and Ivanenko who first formulated the Dirac
equation in the Riemannian space-time [2-3].

1. The Dirac eguation in the Cartan form
Following Cartan [4] we shall write the Dirac equation in the form

3

(ih Z H' a—a-; +mcH‘> p=0, 6))
¢ .

'

where x° = ¢f, x! = x, x> = y, x> = z are Cartesian coordinates in the Poincaré-Minkow-
ski space-time, m — the electron-positron mass, ¢ — the velocity of light, # — the Planck
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constant. The matrices H are

0O 00 -1 O 01 o0
0O 01 o© 0 00 -1
0 1
H 0 -1 0 o’H 1 00 o)
1 00 © 0 -1 0 O
0 0 i O 00 01 -1 00O
0 00 i 0010 0 -1 00
2 . 3= 4:
H——-iOOO’H 0100’H 0010'(2)
0 —i 00 1 000 0 0 01

To pass to the original form of the Dirac equation, it is necessary to perform the following
substitution of spinor components:

Y2 =¥ Yi—¥s vty ~Y3— Vs
%=—:7§"-, 1Pz='—\/§—: %=T, w4=—72—-——-
The matrices H generate the Clifford algebra since
H°H®+ H°H® = 2n™, 3
where % = 0 for a # b, n'! = 4?2 = n3* = —5°° = 1. By means of the tensor #* and

its inverse 5., = °® we shall raise and lower indices. For instance, H, = n,,H®, H* = n°°H,.
We shall reserve the Latin letters for indices ranging over the values 04 and the Greek
letters for those ranging over the values 0-3. We shall omit the summation sign correspond-
ing to any index which occurs twice in a single term. In all subsequent equations a repeated
index in any term therefore implies a summation over that index. For example:

3 4

0 0
HV = Hv v ? nabe = ”abe’
ox’ ox

v=0 b=0Q

The meaning of the tensors #,, and #® is clear: ds? = n,,dx"dx? is the metric form
of four-dimensional Poincaré-Minkowski space-time, and ds? = 1,,dx"dx" is that of five-
-dimensional Poincaré-Minkowski space-time. Setting ¥ = ye~ Tf;"‘ we may write Eq. (1)
in the form

rlv-o @
0x

In addition to (3), we have for the matrices H
H0H1H2H3H4 = I, (5)
Consequently

1
sabcqubHcH PHY = — iHa: (6)

1 arrbrrerpIre .
5 Corepe"HPHCHPH = —i,
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1 1
3' abcquchHq = i[Ha}Ib}a 2 abcqu PHY = ‘[H HbH]

abcqu = — l[H Hb.lI Hp] &

abcpq

= —i[H,HH H,H,],

where brackets denote the alternating product of matrices, &5, is a tensor skew symmetric
in all its indices, €p1234 = 1. In particular,

1
" EupuH*HPH'H" = —iH,, @)

3_! saﬂuvHﬁH”Hv = iH4Hau 2_‘ gaﬂvaﬂHv = iH4[HaHﬁ]a

eapuyH’ = —iHHHH,], ¢&,, = —iH,JH,HH,H ],

where ¢,,, is a skew symmetric tensor in all its indices, ;53 = 1.

2. Orthogonal basis in a Riemann space-time

The Riemannian space-time is characterized by the metric form ds? = g, dx"dx’,
where g,, are arbitrary functions of coordinates x”. By using some linear differential forms

f* = fzax? ®

the metric form can be diagonalized as ds® = 5, f*f?. Solving Eq. (8) with respect to dx* we
have that

dx* = f3f%, ©)

where f;‘]g = d3 and hence f';‘fg = 03 The basis dual to f* consists of-vector fields
<, 0
=fF—. 10

e, =f2 57 (10)
We also have that

0

e = fPo . 11

ox* f:leﬁ ( )

0
Any vector field can be defined both in the coordinate basis ™ and in the basis e: A%,
x

ke 4

0 ~ .
=g o ; therefore 4 = a"f}‘, a* = A°f;. The covector field (linear form) can be given

analogously in the coordinate basis dx and in the basis f: 4,/ = a,dx", hence 4, = aﬂ]’f,
aa = Aﬂf;ﬁ.
The covariant differential of the vector field is

DA = dA*+ 0% A" (12)



180

and the covariant differential of the covector field equals
DA, = dA,~wlA,, (13)

where o} are linear differential forms equal to o}, = wj,f*. The coefficients wj, of these
forms are called the components of the connection. Hence one gets the covariant derivatives

DpA® = e, A+ w5, A",

]

DA, = egA,— WA, (14)

which makes it possible to write the covariant derivative for any tensor. For instance, for
tensors of components A*, 45 and 4,, we have that

2,47 = e, 4" + 0}, 4" + f, 4, (15)
D,Ap = e, Ap+ 0y Ag— Wy,
DyAep = €, A5~ WA g — a)‘;,Aw.

The components of the connection are determined from two conditions. The first
one is absence of torsion. For the scalar function ¢ this means 2,e;,¢ = 2e,9. Hence
there follows the equation for the components of the connection

g = Wpa = Cop, (16)

where the coefficients ¢}, are given by the Lie operation

e.e5—ege, = Clge, a7
and consequently are equal to
~ [ OfF  of] ~ ~
cp =fafs (5;v iy cesfi—fief, (18)
Without torsion an important corollary follows from (15)
2.254,— DDA, = R, 144, (19)
where
R} .5 = egy,—e,Wp, + ChgOy, + 00, — 0,0, (20)

are the components of the Riemann-Christoffel tensor in the basis e, f.

The second condition for finding the components of the connection is the conservation
of the metric tensor under the parallel translation. This implies that the covariant derivative
D1g, equals zero. Since a,n,, = 0 then according to (15) we get one more equation for
the components of the connection, viz.

m:ﬁnu‘y +w:y”ﬁp =0. (21)
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Denoting
Oype = N> Capy = Cogllyus (22)
we obtain from (16) and (21) that
Oypa—Dyap = Cagyy  WDygat Dy = 0. (23)
Inserting (23) into the identity
Oyps = 5 (B g0+ Dpya) + 5 (Ogup + Oyap) — 5 (Qugy + Dpr) (24)
+3 (Wapy— D) + 5 (@ = Dypp) ~ 3 (@pye— Dpay)
we arrive at
WDypy = 3 (Cvpat Cupy = Cayp)-

Likewise the metric tensor, the matrices H do not alter under the parallel translation.
This means that their covariant derivatives are zero. For the matrix 4 = 4,H" we have that

DA = dA+w,A'H, = dA+QA—AQ, (25)
where
Q = 1o, /"HH" (26)
Since for the matrix 4 (up to higher-order infinitesimals)
DA-dA+A = (1+QAL+Q)7 1,
the;n for a spinor the relation should hold
Dy—dy+yp = (14+QDyp.
Consequently, the covariant differential of a spinor equals
Dy = dy+3 0y H'H"y @7
and the covariant derivative of a spinor is
D,y = e+ Oy, H*H" . (28)
The covariant derivative of the conjugate spinor y = yp*H, has the form
D% = e,P—P 3 O H*H". (29)

There occur objects both of the spinorial and tensorial nature. The rules (14), (28),
and (29) allow one to find their covariant derivatives. For example, the covariant derivative
of a spinor possesses both the spinorial and vectorial character. The second covariant
derivative of a spinor is equal to

2,9,y = ,9,9+% 0, HH'Dp—0'',D,p. (30)
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As for the vector case, the alternating second covariant derivative of a spinor does not
contain its derivatives and is expressed by the Riemann-Christoffel tensor

DDy — DD,y = 5 H'H'R,, 159, (€2))
where
Ryvap = MaRiap (32)
To prove the formula (31), one should use the following relation
3 {[H*H"] [H*H"] - [H*"H"] [H*H"]}
= n[HH ) = [HPH" )+ [ H] = [ H), (33)
3. The Dirac equation in the Riemannian space-time

The Dirac equation in the Riemannian space-time is obtained from (1) by replacement

of

oy
o by D,y:
X

v ime __,

Just as in the plane case, this equation can be written in the conjugate form

— ime ___,
DpH" = — ——PH". (35

The so-called “square” of the Dirac equation is obtained in the following way. We
have

g ime 8 ime " mc?
(H P~ TH") (H 2p= T ') = HH'9.2,- 55

and, furthermore,

995+ 9P s De2y= 2,9,

H°H’92,9, = H°H*
2 2
The first term in the last expression equals

D95+ 259, H'H +H'H* 2,.9;+2,9,
2 B 2 2

H°H?

= 'Idﬂgagﬂ'

The second term according to (31) is

2,9 92,9,
2 -

H°H? = 1 H*"H*H"H'R

v,
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Since
H°HH* = [H*H’H"]+9"*H*+n/*"H" —n*H’ (36)
and the alternation of the Riemann-Christoffel tensor in three indices gives zero,
D, Dy— DD,
H*HP 8 TP L HHYWPR,, . = + H'H'R,, = + R.

2
Thereby we obtain the “squared” Dirac equation

B L mZCZ
n .@,@ﬂ'}':{ R- '—h—z— Y= 0. (37)

In the general case this system of equations of second order by no means breaks down
into four individual equations for each component of a spinor.

The Dirac equation is simplified significantly for the case of the orthogonal coordinates
(if those are available), when it is possible to construct the Lamé basis, i.e. to put f = A%55.
By using the formula (36) we obtain that

1 1 1
i w,uvH“H“H“ =z (D[a‘w]HvH“Hu-i--z— }'}av(l)a‘uHu.
Since

1
w[auv] = 7 Clapv) nwwauv = c:u’
7 ARV
PN L
TRt ox? P ox®

L. 1 8 [n
e =0 3= T e\

where h = H°h'h?h3, then in the Lamé basis

w,, A" H*H® =
4 any Z\/kk# ax“f

In the Lamé basis Eq. (34) has thus the following form

H* 0 \/Z imc |
e | J=y)=—H* 38
\/hh"k ox* ( h* V)) h ¥ 9

u=0

and Eq. (35) is written as

and, in the Lamé basis

and, consequently,

-
1 0 h imc
— — — §|H* = — — PH*. 39
z  hh* ax* <\/h" w‘) h v (39)
1=0
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4. Anticommutator of two spinor fields

In order to preserve the fundamental concepts of quantum field theory, we will consider
only those Riemannian space-times which admit the space-like hypersurfaces dividing
the space-time into two parts. One of these separated parts may be regarded as the Past,
another — the Future, and the dividing hypersurface itself — the Present. Such hyper-
surfaces will be called complete. We shall suppose that a solution of the Dirac equation
throughout the whole space-time is given uniquely by values of a spinor field on a complete
hypersurface. On the hypersurface itself, however, a spinor field may be given in an arbitrary
way.

Consider now the system which consists of the Dirac equation and its conjugate

v ime - ime ___,
H'Zu = W Hu, 924H = — TvH . (40)
Let u, b be the solution of the system. The divergence of the vector S* = — tH'u, which

is equal to 2.8" = —(2,0)H'u—vH(2 u), vanishes because of (40). Hence, it follows
that all the integrals

91 41 q;:

6
[1
e 1 2 3
Sdo,.u_: q> 42 4z in 41
.{“ ﬂg a 45 95 @)
z EISO st §? Ssi!

over complete hypersurfaces are equal to each other. In the integral (41) 43, 45, ¢35 are vectors

of elementary displacements along the hypersurface X. If e.g. the hypersurface is defined
u ‘
by the equations x* = T%(q', 2, ¢°) then ¢} = f; Fyey
q
(41) equals the integral of the exterior form [5]

dqt, ... . In other words, the integral

1
jS,,da“ = j‘§ EapS A FE AL, 42)
z

z

According to (7) the form integrated here is as follows
1 , i )
is,pws“f“ AfEAS = 3 OH HHHuf* A f* A f?

- 3-‘-'51141«“ A F A Fu, (43)

where F = H_ f° Thus, the integral (41) can be written in the form

xjsnd"" = isj TH,[Q,0:03]u, (44)
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where
Ql = Haq:’ QZ = Haq;’ QS = Haqg'

This integral defines the scalar product in the space of solutions of the system (40).

The spinor field is quantized using the Fermi statistics. That is to say, a pair of spinor
fields v, p are required to generate the (infinite-dimensional) Clifford algebra. The algebra
generators y, v along the complete hypersurface are linearly independent. Now consider
the following vectors from the linear envelope of algebra generators

U= izj 1ﬁH4[Q1Q2Q3]u7 v = ixj 5H4[Q1Q2Q3]TP- 45)

The integrals (45) as well as the integral (44) do not depend on the complete hypersurface
chosen, because u, y and y, 7 obey the equations (40). The sum U+ V* represents the
common element of the envelope. It should be stressed here that the spinor fields u, # keep
on being nonquantized. Setting

(U+VH =i £ 0H,[Q105Q3]u, (46)

we introduce the symmetric scalar product in the generator envelope which exactly expresses
the quantization principle by the Fermi statistics.
Since the pairs u, 0 and 0, 7 satisfy Eqs (40) then from (46), it follows that

U2=0, VvV*=0 47)
and, consequently, the anticommutator {UV*} is

{UV*} = UV*+V*U = iE_" TH4[Q10,03]u. (48)

Substituting (45) for V* into (48), we obtain (because of the arbitrariness of & on ) that
on X

{p(x)U} = u(x). (49)
Inserting (45) for U into (48) we get that
{V*p(x)} = (x). (50)

Since the pair y, y obeys the system (40), then the pair {yU}, {V*y) obeys the same system
(40), as well. However, this system is also satisfied by the pair u, . So far as the two latter
pairs coincide on Z, then due to the supposed uniqueness of the Cauchy problem solution
for (40), the equalities (49) and (50) prove to be correct not only on X but also throughout
the whole space-time. Similarly, one can deduce from (47), that for any space-time point
the following equalities hold:

{p)v*} =0, {Up(x)} = 0. (1)
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Because of the arbitrariness of u, & on 2, we obtain from (51) for any point y from 2.

{'Pp(x)%(y)} =0, {i[)q(y)’ q_)p(x)} =0, (52)

where p and g numerate components of the spinors y and . In virtue of the uniqueness
of the solution for the Cauchy problem for (40), the equalities (52) prove to be valid for
any world point y too.

Let us denote through {w(x)y(y)} the matrix with components {w,(xX)p(»}. This
matrix satisfies the following algebraic condition

{w(X)POIH® = Ho{y(»)P(x)}T, (53)

where “”” means the hermitian conjugation of the matrix. From (45) and (48) it follows,
that {y(x)y(y)} provided it is possible to draw a complete hypersurface through two (differ-
ent) world points x and y. On writting (49) and (50) in the developed form

u(x) = i£{'/’(x)lp(J’)}H4[Q1Q2Q3]“(J’),
(x) = ixj B(HA[Q10:05] (w(»)P(X)}, (54)

we see fhat the anticommutator {y(x)y(»)} gives a solution of the Cauchy problem for the
system (40). Since the anticommutator {y(x)p(y)} satisfies the same system itself, then in
accordance with (54) we arrive at

{p®P()} = ixf {v()P(2)}H4[Q:10:05] {w(2)P(y)}- (35)

Now, let for any complete hypersurface X and the system (40) the Cauchy problem be solved
by some method

u(x) = iiS(x, VHL[Q:10,Q3]u(y), (56)
o(x) = iiﬁ(.V)H4[Q1Q2Q3]S()’e x).

Comparing (56) with (54), we find {p(x)p(»)} = S(x, »), {v(P)p(x)} = S(y, x) on the direct
product M x Z, where M is the whole space-time. In virtue of (53) the functions S and S are
related via the condition S(x, y))H® = H,St(p, x). Following (55) we find that

{v(x)P()} = ig S(x, 2)H,[2,0,0515(z, ¥) (57

on Mx M.,

It should be noted that if the pair (u, 7) is a solution of (40), then the pair (v, D)* = (v, 0)
is a solution of (40) as well. The solution is called real, if (u, 0)* = (u, 0) i.e. u = v. The
element U+ U* of the generator envelope which corresponds to the real solution, is called
real or hermitian.
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5. Commutator of two scalar fields

It is of interest to compare the spinor case with the scalar one. Probably, the require-
ment of the uniqueness of a solution of the Cauchy problem for the system (40) coincides
with that for the scalar equation

B o R <mc>2
2,29+ — & =) &, (58)
6 h

considered in the work [1]. Let u, v be two solutions of this equation. Then the divergence
of the vector S, = (uD,v—vP ,u) is equal to zero, and hence it follows that all the integrals
(42) over complete hypersurfaces are mutually equal. Their common value defines anti-
symmetric scalar product in a space of solutions of Eq. (58). A scalar field ¢ is quantized
using the Bose statistics. This means that the values of @ on the complete hypersurface
2 and the values of its normal derivative are both regarded as generators of an algebra which
is an infinite-dimensional analogue of the algebra of quantum mechanics. The common
element of the linear envelope of generators has the following form

U = [ (ud,— du,)ds", (59)
I

where &, = 9,0, u, = 2,u. The integral (59) does not depend on the choice of the complete
hypersurface, since « and & both satisfy Eq. (58). The scalar field u keeps on to be regarded
as nonquantized. Putting

(UVY = UV=VU = ih | (uv,—vu,)do" (60)
z
for any two elements U, V of the type (59), we introduce the antisymmetric scalar product
in the envelope of generators which is the exact expression of the quantization principle
for the Bose statistics.
If one inserts into (60) an expression of the type (59) for V, then one can notice without

difficulty the following. Since the functions v and v, = v,n", where n” is a normal to Z,
may take arbitrary values on X, we get that on X

(YUY = ihu(x), <(Pe)(XIU> = ihugy(x).

However, the commutator {#(x)U) obeys Eq. (58) together with @(x). From the uniqueness
of the solution of the Cauchy problem for Eq. (58) it follows that

(P = ihu(x) (61)
for any world point x. On Writing this equation in the developed form

u(x) = i [Ax, Y)u(y) — 4u(x, y)u(y)]de” (62)

we see that the commutator

A, y) = <ORB()> = —A(y, %) (63)
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provides a solution of the Cauchy problem for Eq. (58). 4,(x, y) means the covariant deriva-
tive of A(x, y) with respect to the second argument. Because the commutator A(x, y)
itself satisfies Eq. (58), we have by (62) that

A(x9 y) = g[Ap(ys Z)A(Z, x)_Au(x’ Z)A(Z’ y)]da.ll (64)

Now let for any complete hypersurface X the Cauchy problem for Eq. (58) be solved by
some method:

u(x) = | [T(x, u,(y)— T(x, y)u(y)]de*. (65)

z

Then comparing (65) with (62), we notice that A(x, y) = T(x, y), 4,(x, y) n* = T, (x, y)n*
on MxZX. Following (64) and (63) we obtain that

7;— (P(x)2(y)) = J [T, 2T(y, 2)— T(y, 2)T(x, z)]do" (66)
z

on M x M. The hermiticity condition for the case of the real field @ under consideration

is formulated very simply: an element of the type (59) is called real or hermitian if u is a real
solution of Egq. (58).

In the case of the complex scalar field ¢, we should consider the system of equations

””9.@u+—R—u— rE;u
n a“g 6 h ’

R mc\?
n“".@,fd,,v*+ —é—v* = (—h—> v¥ 67 7

and the pair (¢, ¢*) is to obey this system. The common element of the envelope of genera-
tors has the form U+ V* where

U = | (ugp) — p*u,)dc*, (68)
z

V* = | (v*@,— pvy)de*.

z

The antisymmetric scalar product in the envelope is introduced by the condition
<U1 + Vl*’ U2 + V2*> = lh j (ulv:‘,’—vju“‘— usz"'{'UTuz")dU“- (69)
b

Hence it follows that
UU =0, Vv =0 (70)
and

KUV*y = ih | (uoy —v*u,)dc*. (71)
z
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From (70) we obtain
(pX)p(y)> =0, <e*(x)g*()> = 0. 72

From (71) we obtain
{p(X)U) = ihu(x), {@*(x)V*) = ihv*(x). (73)

By writing the two latter equalities in the developed form, we derive the solution of
the Cauchy problem for the system (67). But as this system is twice repeated Eq. (58), we
infer, by comparing with (62), that

— (PR = 5 (PRI = = D) = Ax, ). 74

If the pair (u, v¥) satisfies the system (67), then the pair (¥, v¥)* = (v, u*), obviously, obeys
the same system. A solution of the system (67) is called real if (u, v*)* = (4, v*)ie., u = v.
The element U4 U* of the generator envelope corresponding to the real solution, is called
real or hermitian.

6. Current vector and charge operator

The complex field is well adjusted to describe charged particles. In the scalar case,
the current vector is defined by (71) and equals

ie
Jo = 5 (9" = 9i9) (75)

For the real field ¢ = ¢* and the current vector vanishes. In the spinor case, the current
vector is given by (46) and is equal to

J, = ePH,yp. (76)
In both cases, the charge operator is defined via the integral

¢ = |J,ds" an
i

over the complete hypersurface £ and does not depend upon the choice of Z, since 2,J* = 0.
In the spinor case, the integral (77) can be written as

¢ = —ie ; PH[Q:0,03]y. (78)

In the formulae (76) and (78) —e is the electric charge of an electron, in (75) e is the electric
charge of a meson.
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7. Angular momentum operators
The Killing vector field K* obeys the equation
2,K,+2,K, =0 (79)

Because of the identity (19), 2,2 K, - 2,2.K, = R? K, and by differentiating the Killing

v,ap
equation we obtain that 9,92 ,K,+ 2,2 K, = 0. Hence, as a result of the trick applied to
both Eqs (23), it follows that

2,2,K, =5 (RE,,+R:,,~RE VK, = RE K. (80)

Eq. (79) possesses a nontrivial solution if and only if there is an isometry group in the space-
-time. Therefore the equality f,,’f(x’) = f4 (x) holds. In this equality, prime marks the result
of an operation from the group. For the infinitesimal transformation x* = x*+ K"fit
this implics that K“e, fy = 0. Consider the corresponding transformation of the basis

I =f,,’.'(x')dxﬂ' =f;[dx”+¢fK”fft+K"dﬁ’}-

Since ¢}, = flefi—fle.f7, K ct, = K*fle f7. However, fidf} = —fldf;. Consequently
ST = +dK - KA = 1 +(2,K* - K¥w,,)f"t. Thus the basis undergoes an infinites-
imal rotation given by the antisymmetric matrix 2,K,+K"w,,,. Hence it follows, that the
increment of spinor field under the infinitesimal transformation considered is equal to

v'(x)—yp(x) = t[K"¢,+ 1 K'o,, ,H H*
+3H (@ KIH'H Ty = ([K'D,+5 (2K)HH Ty.

To each Killing field K* there corresponds the angular momentum operator of the
spinor field, which equals

K = —~ih[K*2,+1 (2,K,)H H?]. (81)

. . mc . .
Let us now prove that it commutes with the operator H'Z,— e H,. It is evident that
h

KH* = H*K and we have to prove only the equality KH'2, = H'®,K. We have
ii [H'2,K— RH'2,]
1

= K*HY(9,2,~2,9,)+}+ (2,2,K,)H H*H*
+(2,K"H'D,+ % (2,K;) (H'H*H® — H'H’H")2,.
Since
H'H*H’ —H*H’H” = 2™ H’ —24""H",
then
(2, K"H'D,+1 (2,K,) (H'H*H* — H*H*H")9, = 0.



191

Next, taking into account Eq. (31), we find that
% [H'D,R— RH’D,] = } {K"Ryp 1 +(2,9,K,)} H'HH’.

Because of (80), the sum in braces equals zero. Our assertion is thus proven. One has also
the important corollary: If y obeys the Dirac equation (34), then Ky also satisfies the same
equation. To any operator K with this property, there corresponds secondary quantized
operator

b= ipm[QleQs]kw (82)

which does not depend on X,

8. Energy-momentum tensor

Components of the energy-momentum tensor in an arbitrary orthogonal basis are
of the same form as in the plane space-time in Cartesian coordinates:

ih _ - _
T/,w = _Z' [lpHu%“wvaf/"*'va% "IPqu‘P], (83)

where v, = 2,9, P, = D,P.
Let us prove that both divergences of the tensor yH,y,— v, H,p are zero. We have
@vlﬁH“’wv = V_JVHMPv'*”Q’-Hu@v%-
By (37) we obtain that

J‘?‘IZCZ

2"pH,y, = §'H,p,+ (-h—; - R) PH,yp.
Consequently
2'(pH,p,—¥,H,p) = 0. (84)
Next, we have that
2"pH,y, = P, H"y, +PH"'D, Dy
= P, H"y,+92,H"y, + PH" (2,9, ~ 2,9,)y.
By (34) and (35) we get that
P"9H,y, = PHND,9,~ D,D,)y.
From (31) and (36) we find that

@"‘EHM% = —%' 'I_’HﬁV’va-
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Consequently
2'(pH,p,— P, H,p) = 0. (85)
From (84) and (85), it follows that the divergence of the energy-momentum tensor is zero
P*T,, = 0. (86)

For the Killing vector field, because of Eq. (79), we obtain that 2,(T"K,) = 0. There-
fore the integral

b= j;T,,vK“da* (87)

does not depend on a choice of the complete hypersurface X. This integral will be called
secondary quantized operator of the angular momentum. Now let us prove that this opera-
tor can be represented in the form (82), where K is the operator (81).

For the proof, the equality

gaﬁ[HquHr_]w = ﬁvau—q’pva_ﬁHpWV+¢anw (88)

should be noted. This equality follows immediately from the identity (36) and Eqs (34)
and (35). Owing to (88), the energy-momentum tensor may be written in the form

ih ih
T;w = ? [ﬁHnwv"wvHuw}+ 'Z ga*P[HquHﬂ’P- (89)
Hence,

. err B ih o
T,K"+pH, Ky = 7 K2, 5[H,H,H 1y

i ih _ i
- 'ZprHaHv'P(gqu)- '2—' (wanw'*"PHn'Pv)K .

Next, we have that
K2, p[H,HH ]y = 2,[H KH )y~ p[H H'H|p(2.K.),
where X = K'H,, and in virtue of (36) and the Killing equation (79), we obtain that

, i
T, K'+pH,Ry = — 2,9[H KH ]y
ih -rye @ o & =

+5 {pH WD K ,)— K*P.H, v— K"$H, y,}.

Finally, from Egs. (34), (35) and (79) we find
gaﬁ.’(KpHc—KcHu)w = @HSV’@GK;:—K“—«H“V’ ‘-Kctf-’Hu'Pa
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and then
U I
TuvK +wHqu = Z galp[HllKH ]’I’+ —5 gu(P(KuH -K H[-l)w (90)

Since the right of this equality is a divergence of a skew-symmetric tensor, the integral of
this divergence over the complete hypersurface is zero. Thus,

§ T,,K'de" = — | §H Kopdd*
z z

=i £¢H4[Q1Q2Q3]Ifw, ©n

g.e.d.

9. Transformations of orthogonal basis

The metric form ds? defines an orthogonal basis with an accuracy up to an orthogonal
transformation only. Let ds? = 1,5 ff* = n,en"n'%, f* = L3 f'* and, inversely, f'* = L} f?,
where L and I are some matrices depending on coordinates x. Then rg,,,ig = ngsly. We also
have that

T

e; = Lpzeﬂ’ €y = L%e;’ f; =f ;L):Ba f;ﬂ =.f«‘;yLﬂy'

Substituting the two latter formulae into (20), we find that

czﬂ = c;l:L’w?rf‘vth, + L~‘;e pL":, - Zﬂﬁea L):’ (92)
Consequently,
Wepy = w;waﬂ:z;z: +n uviﬁey f,; (93)

From these, there follow directly the formulae 2,4° = [AL:D, 4", Dpd, = LLLID,A,
and analogous formulae for other tensors.

Consider now in what way the covariant differential of a spinor transforms. Any
Lorentz transformation f'* = Z; ff can be expanded in a product of some number p of
symmetries'. And the symmetry with respect to the plane orthogonal to the unit vector
a® is expressed via the formula f'* = f*—24%,f?. Since —AH®A = H"—2a"4, where
A = a H", then under any Lorentz transformation

(-1)’S7'H'S = [3H", (-1PSH'S™' = L3H",
(~1PSHS™" = L{H,, (~1°S™'H.S = LH,, 94)

where S = A,... 4;, S-' = A4, ... 4,
Therefore, because of (93), the matrix (26) transforms in the following way

Q= S"'Q'S+3 S 'H,Sd(S” H"S).

! The number p is even, if det |L;l =1, and is odd if det IL;I = ~1 ie (—1)? = det IL;!.
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Now let us prove that
1S™'H,Sd(S”'H"S) = S7'dS. (95)
For p = 1 this equality can be easily verified. Indeed,
+ AH, Ad(AH"A) = ; 2a,A—H )d(2a"A— H")
= 3 (2a,A—H,)(Ada" +a"dA) = AdA. (96)

Here we take into account that 2a,dd" = d(a,a*) = 0 and A-dA+dA -4 =dA*> =0
for A> = g,a" = 1. We next prove that if Eq. (95) holds for some p, then it holds, as well,
for p+1. Thus, we must prove that from (95), there follows the formula

1 S'AH,ASA(S™'AH*AS) = S™'A4d(AS). 97
For brevity the index p+1 of the matrix 4 is omitted. We have
1 S7'AH,ASA(S"'AH*AS) = } ST'AH,AS(dS™")AH"AS
+1 S AH, A(d(AH"A))S+% S™'AH H"AdS.

Because H,H" is equal to the number which represents a dimension of the space-time, the
third term is

1S '4H, H"AdS = L S”'H H"dS.

The second term, by (96) is equal to

1 S7'AH, A(d(AH"A))S = S™1A(dA)S.
And the first term is

157Y2a,4-H,)S(dS™ ) (2a"4—H")S = 4 ST'H,S(dS™ )H"S.
Consequently,
1 ST'AH, ASd(S™'AH*AS)
=+ S™'H,Sd(S”*H,S)+ S A(dA4)S.

So, from (95), the formula (97) follows. By induction the equality (95) has been proved
and then
Q=S"'0'S+S"ds. 98)
Hence we find that
Dy = dy+Qyp = S™(dy' +Q'y) = S7T'9'y’ 99)
where
v =Sy, (100)
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i.e.,, v and 2y transform by the same law. Since
S*Hy = (—1)PH,S™ %, (101)
the conjugate spinor transforms by the law
P = (=1)fpsh (102)
In the same way its covariant differential transforms:
PP = dp—PQ = (-1)’(dy' -$'Q)S
= (—-1D)(2'y)S. (103)

Now it is not difficult to prove that Egs. (34) and (35) are covariant under transforma-
tions of orthogonal basis. Indeed, the transformation rules for the covariant derivative
of a spinor follow from (39) and (103)

9y = LiST'Dy,
2,9 = (=1’LY2,¥)S. (104)
By (94) we obtain that
H'9yp = (=1'ST'H'D,y, 2,5H" = D,p'H"S.
Besides, we get that

(=1PSH*S™! = H*. (105)
Consequently,
v imc 4 -1 Vet f imc 4 ¢
., ime vy BRC
@JPH-F—;{*!PH = @vlpH-{-'—h_IPH S,

and Egs. (34) and (35) are seen to be covariant. )
Finally one can easily show that the current vector and the energy-momentum tensor
transform in the expected way:

J=LJ* T, = LT,

Editorial note. This article was proofread by the editors only, not by the authors.

REFERENCES

[1] N. A. Chernikov, E. A, Tagirov, Ann. Inst. Henri Poincaré, Vol. IX, No 2, Sect. A, Paris 1968,
p. 109.

[2] A. P. Kotel’nikov, V. A, Fock, Some Applications of the Ideas of Lobatchevsky to Mechanics and
Physics, Moscow 1950 (in Russian).

(3] A. Sokolov, D. Ivanenko, Quantum Field Theory, Moscow 1952, p. 641 (in Russian).

[4] E. Cartan, Legons sur la théorie des spineurs, Paris 1938 (Russian translation, Moskva 1947).

[5] G. de Rham, Variétés differentiables, Paris 1955 (Russian translation, Moskva 1956).



