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We revisit the concept of chiral disorder in QCD in the presence of a
QED magnetic field |eH|. Weak magnetism corresponds to |eH| ≤ 1/ρ2

with ρ ≈ 1/3 fm the vacuum instanton size, while strong magnetism the
reverse. Asymptotics (ultra-strong magnetism) is in the realm of pertur-
bative QCD. We analyze weak magnetism using the concept of the quark
return probability in the diffusive regime of chiral disorder. The result is
in agreement with expectations from chiral perturbation theory. We ana-
lyze strong and ultra-strong magnetism in the ergodic regime using random
matrix theory including the effects of finite temperature. The strong mag-
netism results are in agreement with the currently reported lattice data in
the presence of a small shift of the Polyakov line. The ultra-strong mag-
netism results are consistent with expectations from the perturbative QCD.
We suggest a chiral random matrix effective action with matter and mag-
netism to analyze the QCD phase diagram near the critical points under
the influence of magnetism.
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1. Introduction

Chiral quarks in the QCD vacuum break spontaneously chiral symme-
try. Key contributors to this spontaneous breaking are instanton and anti-
instanton fluctuations with left-handed and right-handed zero modes at-
tached to them [1–3] (and references therein). The random nature of the
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instanton and anti-instanton fluctuations causes these zero modes to spread
near zero virtuality. This fundamental property of the QCD quark spectrum
is captured by the Banks–Casher relation [4]〈

Ψ †4Ψ 4

〉
≡ Σ4 = πρ4(0) (1)

that ties the quark condensate to the quark spectral density ρ4(λ) at zero
virtuality. Note the positive convention for the chiral condensate. In the
QCD vacuum with instanton density n4 and size ρ, the quark condensate
is expected to scale as Σ4 ≈

√
n4/ρ. Using the Gell-Mann–Oakes–Renner

relation m2
πF

2
π = 2mΣ4, (1) is just the analogue of the Kubo formula for the

DC conductivity in metals

σC = F 2
π/π = Dρ4(0) . (2)

The pion decay constant Fπ defines the chiral conductivity, with the chiral
diffusion constant D = F 2

π/Σ4 [3, 5]. Through (1)–(2) chiral quarks trapped
in an Euclidean 4-volume V4 = L4 behave much like electrons in disordered
metallic grains with λT = D/L2 playing the role of the Thouless energy
[5–8]. Quarks with virtualities λ < λT are in the ergodic regime and are well-
described by random matrix theory, while quarks with virtualities λ > λT
are in the diffusive regime which is amenable to chiral perturbation theory.
One may also say that in the ergodic regime, the wavelength of the pion is
substantially larger than the size of the box, so only the lowest mode (zero
mode) is relevant, whereas in the diffusive regime, all pionic modes have to
be taken into account, corresponding to chiral perturbation theory regime.
In the presence of a fixed external magnetic field H, the chiral disorder is
affected. In this paper, we address the details of these changes.

Weak magnetism is mainly affecting the diffusive properties of chiral
fermions through a renormalization of the low-energy parameters, e.g. Σ4,
Fπ, mπ. Although the chiral expansion in the massless limit relies on
|eH|/(4πFπ)2 < 1 and, therefore, suggests that weak magnetism operates
in the realm of |eH| ≤ 1 GeV2, the validity range is substantially smaller.
Indeed, since instantons may be at the origin of the spontaneous breaking
of chiral symmetry, we expect weak magnetism to break down when the
instanton size ρ is resolved. As a result, the range of weak magnetism is
|eH| ≤ 1/ρ2 ≈ 1/3 GeV2 and will be referred to as diffusive.

Strong magnetism corresponds to |eH| > 1/ρ2 ≈ 1/3 GeV2 with a mag-
netic field starting to dwarf the chromomagnetic field carried by the in-
stanton. This range will be referred to as ergodic. As a result, light and
chiral quarks in the QCD vacuum switch from locking their spin to the in-
stanton color to lining their spin with the external magnetic field. They
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form Landau orbits which are gapped by |eH| near zero virtuality. The ex-
ception is the lowest Landau level (or LLL for short), where the magnetic
contribution cancels the zero point motion. As a result, the LLL with its
huge degeneracy piles up at zero virtuality becoming a potential contribu-
tor to the spontaneous breaking of chiral symmetry. The LLL is inherently
2-dimensional. This phenomenon of dimensional reduction from 4 to 2 in
Euclidean space with accumulation near zero virtuality of the LLL favors
the spontaneous breaking of chiral symmetry through any residual interac-
tion. This phenomenon is known as magnetic catalysis [9] (and references
therein). For instance, residual longitudinal interactions in the LLL through
the instantons will cause the spontaneous breaking of chiral symmetry

Σ4 = |eH|Σ2 ≈ |eH|
√
n4ρ (3)

with typically n4 ≈ 1/fm4 the vacuum instanton density.
Ultra-strong magnetism is solely characterized by Landau levels with

huge degeneracy and small sizes. As a result, many Landau orbits can
fit in a single instanton making the concept of instanton zero modes not
particularly useful. In many ways, this picture resembles that of the initial
color glass condensate with many wee partons saturating the transverse size
of a colliding nucleus [10] (and references therein). Perturbation theory
becomes the rule and will cause the LLL to spread near zero virtuality.
The spontaneous breaking of chiral symmetry through perturbative gluons
follows with

Σ4 = |eH|Σ2 ≈ |eH|3/2 (4)

as expected from dimensional arguments. We expect this scaling to take
place for |eH| ≥ 10/ρ2 ≈ 3 GeV2 or when about 10 Landau orbits can fit
within the instanton transverse size dwarfing thereby the zero modes. Both
strong and ultra-strong regimes belong to the realm of random matrix theory,
albeit they are described by different random matrix models. In Section 2,
we discuss weak magnetism in the diffusive regime of 4-dimensional chiral
quarks trapped in V4 using the concept of the quark return probability. The
result is in line with the one from chiral perturbation theory. In Sections 3
and 4, we discuss ultra-strong and strong magnetism in the ergodic regime
where the instanton size is resolved through the use of random matrix the-
ory. The results are in line with the expectations of dimensional reduction
from the LLL. In Section 5, we compare our results to current lattice sim-
ulations [11, 12]. In particular, we show that a small shift in the trivial
Polyakov holonomy is magnified by the chiral transition and may account
for the anti-catalysis observed on the lattice as recently suggested in [13].
In Section 6, we show how random matrix models for QCD with magnetism
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can be constructed to shed light on the comparison with widely used con-
stituent quark models of the NJL type, and help analyze a number of issues
in the QCD phase diagram with magnetism. Our conclusions and prospects
are in Section 7.

2. Diffusive regime with weak magnetism

The dynamics of QCD light quarks in a 4-dimensional Euclidean box is
chiral and diffusive in the long wavelength limit. The diffusive nature is best
captured by the quark return probability [5]

P (0, τ) =
〈∣∣u+(τ)u(0) + d+(τ)d(0)

∣∣2〉 (5)

for 2 light flavors. In the absence of magnetism, the vacuum is isospin
symmetric and (5) is dominated by the triplet of pions in an Euclidean box

P (0, τ) = 2 (P0(0, τ) + P±(0, τ)) (6)

with
P0,±(0, τ) ≈

∑
Q

e−DQ
2|τ | (7)

for a triplet of massless pions. The sum is over the isotriplet of charged
pions or diffuson modes with momenta Qµ = nµ2π/L in a periodic V4 = L4

Euclidean box. The quark return probability (5) in the chiral limit obeys a
sum rule

Σ4 = − lim
m→0

lim
V4→∞

1

V4

∞∫
0

P (0, τ) dτ . (8)

In the presence of magnetism, the vacuum is no longer isospin symmetric.
As a result, the free chargeless pion π0 remains gapless, while the free charged
pions π± are gapped in Landau levels (LL). For a constant magnetic field
with A1 = −Hx2, the LL are

λ2± = |eH|(2n+ 1) + p23 + p24 +m2
± (9)

with degeneracy φ = eHL2/2π. The change in the quark return probability
follows from the change in the diffuson propagator for the charged pion
modes

P±(H, τ) =
∑
n,m,k

eHL2

2π
e−Dτ [(n+1/2)2eH+(m2+k2)(2π/L)2+m2

±] . (10)
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The change in the quark return probability is the change in the charged
diffuson modes and is captured by the difference

I =

∞∫
0

[P±(H, τ)− P±(0, τ)] dτ . (11)

In the chiral limit, replacing the sums over free momenta by integrals and
summing explicitly over the Landau levels of the charged pions (i.e. the
diffusons), we obtain

I =
eHV

16π2D

∞∫
0

(
1

z sinh z
− 1

z2

)
dz = − eHV

16π2D
ln 2 . (12)

Using the value of the diffusion constant, we arrive at

Σ4(H) = Σ4(0)

(
1 +

eH ln 2

16π2F 2
π

)
(13)

which is the result of chiral perturbation theory in leading order [14]. As
expected, the diffusive regime is the regime of chiral perturbation theory
albeit in a finite Euclidean box [15]. Chiral perturbation theory in a finite
box was formulated systematically in [16].

3. Ergodic regime with ultra-strong magnetism

For strong magnetism, the chiral disorder in 4 dimensions with an iso-
triplet of pions transmute to a chiral disorder in quasi-2 dimensions with
a chargless pion, as the charged diffusons become gapped. The transmu-
tation takes place when the magnetic field resolves the instanton size or
|eH| > 1/ρ2 ≈ 1/3 GeV2. In this regime, magnetism dwarfs the instanton
chromo-magnetism with Landau levels becoming the lore. The LLL dom-
inates the infrared physics near zero virtuality triggering the catalysis of
chiral symmetry breaking by magnetism.

Indeed, for strong magnetism, the free quark spectrum in 4 dimensions
is given by Landau levels

λ±n,s(ω, kz) = ±
√
ω2 + k2z + |eH|(2n+ 1− s) +m2 (14)

with current quark masses. For simplicity, we will consider NF = 1 with
charge e unless specified otherwise. Each (ω, kz) branch is

φ = |eH|LxLy/2π ≡ |H|LxLy/(hc/e) (15)
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degenerate. (15) measures the magnetic flux in units of the quantum flux
hc/e and is integer valued on a 4-dimensional lattice with periodic (toroidal)
boundary conditions. The lowest Landau branches n = 0, s = 1

λ±0,1(ω, kz) = ±
√
ω2 + k2z +m2 (16)

are paired by chirality and dominate in the infrared limit. They are 2φ
degenerate. The higher Landau levels are gapped at zero virtuality. We
note that at finite temperature, the ω-spectrum in (16) is dominated by the
lowest Matsubara mode ω → ω0 = πT [17]. This approximation will be used
to probe critical points in phase diagrams with magnetism.

While the color interactions are involved within and between Landau lev-
els, a model-independent understanding can be achieved through the Banks–
Casher formula used earlier. In the presence of strong magnetism, the local-
ization of the quark spectrum in the transverse hyperplane to the magnetic
field suggests 〈

Ψ †4Ψ4

〉
= πρ4(0) =

π

V4

2φ

∆λ
=
|eH|
βLz∆λ

, (17)

where ∆λ is the typical level spacing near zero virtuality. In a spontaneously
broken QCD vacuum with no magnetism, ∆λ ≈ 1/V4. The last relation in
(17) reflects on the dimensional reduction of the quark spectral function near
zero virtuality from 4 to 2 dimensions

ρ4(0) = |eH|ρ2(0) (18)

and, therefore, the condensate relation〈
Ψ †4Ψ4

〉
= |eH|

〈
Ψ †2Ψ2

〉
. (19)

In the infrared regime, this suggests the field redefinition

Ψ4(x0, x, y, z))→
√
|eH|Ψ2(x0, z) (20)

with the pertinent canonical dimensions made explicit.
The breaking of chiral symmetry in terms of Ψ 2 is quasi-2-dimensional.

It does not upset the Mermin–Wagner theorem. Indeed, the random gluonic
interactions that cause the spontaneous breaking of chiral symmetry and,
therefore, the redistribution of the 2-dimensional quark spectrum near zero
virtuality are still blind to magnetism and fully 4-dimensional.

In quasi-2 dimensions, the free quark fields Ψ2 are dominated by the
branches (16) and any residual gluonic interaction will cause them to redis-
tribute. For ultra-strong magnetism with

|eH| ≥ 10/ρ2 ≈ 3 GeV2 ,
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the interactions among the quarks in the LLL are mainly perturbative as
the instanton quasi-zero modes become obsolete. Assuming the residual
interactions in the infrared for the lowest Landau level (LLL) and lowest
Matsubara frequency to be totally random but chiral, the partition function
for these modes is best captured by a new chiral RMM

ZLLL(m,T, φ) =

∫
dA e−(φ/|eH|)Tr(A

†A) det

∣∣∣∣ m iω0 + iA

iω0 + iA† m

∣∣∣∣ ,
(21)

where A is a φ×φ complex matrix with a Gaussian distribution. Recall that
we have set NF = 1. The novelty of (21) is in the scaling of the Gaussian
distribution of the matrix elements with magnetism. It captures the random
interactions induced by plain perturbative gluons between the φ degenerate
quarks Ψ 2 in the LLL and amounts to the 4-Fermi interaction

|eH|
(
Ψ †2Ψ 2

)2
as expected from dimensional reduction. The Gaussian weight enforces a
level spacing between the eigenvalues of the chiral matrix to be of the order
of

∆λ ∼
√
|eH|
φ

. (22)

By the Banks–Casher formula, we expect the chiral condensate in a sym-
metric box V4 = L4

〈
Ψ †4Ψ4

〉
= πρ4(0) =

π

V4

2φ

∆λ
∼ 1

2π
|eH|3/2 (23)

which is in agreement with the dimensional arguments presented in (4). This
result is born out by explicit calculations as we now show.

The quark condensate follows through (19) as〈
Ψ †4Ψ4

〉
= lim

m→0

|eH|
βLz

∂lnZLLL

∂m
. (24)

In the large φ limit, the partition function in (24) is analyzed through stan-
dard arguments by fermionizing the determinant in (21), performing the
Gaussian integral and then bosonizing the resulting 4-Fermi interaction us-
ing the Hubbard–Stratonovitch transform

ZLLL(m,T, φ) =

∫
db e

− φ
|eH|b

†b
detφ

∣∣∣∣b+m iω0

iω0 b† +m

∣∣∣∣ . (25)
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Inserting (25) into (24) yields

〈
Ψ †4Ψ 4

〉
= lim

m→0
lim

Lz→∞

|eH|
βLz

〈
Tr

∣∣∣∣b+m iω0

iω0 b† +m

∣∣∣∣−1
〉
. (26)

The averaging is carried using the measure in (25). In the saddle point
approximation, the result is〈

Ψ †4Ψ4

〉
=
|eH|
βLz

2φ√
|eH|

√
1− ω2

0/|eH| (27)

which can be re-written as〈
Ψ †4Ψ4

〉
=
LxLy
βLz

1

π
|eH|3/2

√
1− ω2

0/|eH| (28)

which is (23) for a symmetric box. The critical temperature is field-dependent

Tc =

√
|eH|
π

. (29)

Ultra-strong magnetism implies tightly paired chiral quarks in the vac-
uum. The RMM results (23) and (29) are consistent with dimensional ar-
guments for asymptotically strong magnetism, and the perturbative QCD
arguments presented in [14]. This analysis ignores the back-reaction of the
quarks on the gauge configurations in the saddle point approximation. The
back-reaction maybe important as we detail below.

Finally, we note that a more general RMM for all Landau levels can be
written similarly by insisting on the free Landau level spectrum for A = 0.
Specifically,

ZLL(m,T, φ) =

∫
dA e−(φ/|eH|)Tr(A

†A)
∞∏
n=0

∏
s=±1

×det

∣∣∣∣ m iω0 + ε(n, s) + iA

iω0 − ε(n, s) + iA† m

∣∣∣∣ (30)

with the free Landau level eigenvalue-spectrum

ω2
0 + ε2(n, s) +m2 = ω2

0 + |eH|(2n+ 1− s) +m2 . (31)

(21) is (30) restricted to the LLL with n = 0, s = 1. Other matrix models
with cross LL interactions are also possible, although suppressed by the large
|eH| gap between LL.
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4. Ergodic regime with strong magnetism

For strong QED magnetic fields with a running coupling g(eH) that is
not so small, the semi-classical configurations such as instantons (vacuum)
or calorons (thermal) are not suppressed. Although 4-dimensional, these
configurations may considerably interact with the dimensionally reduced
quark fields Ψ 2 and localize them in near-zero modes. A recent discussion
of these near-zero modes for a single instanton configuration can be found
in [18]. Let N be the number of these near-zero modes in the transverse
hyperplane to the magnetic field. Since the chiralities in 4 dimensions are
commensurate with the chiralities in 2 dimensions, the pertinent chiral RMM
for these near-zero modes is then standard

ZLLL(m,T,Λ) =

∫
dA e−(N/Λ2)Tr(A†A) det

∣∣∣∣ m iω0 + iA

iω0 + iA† m

∣∣∣∣ (32)

with A an N × N matrix and Λ ≈ 1/ρ a typical QCD scale set by the
instanton size ρ for instance. The Gaussian weighting in (32) induces a
4-Fermi interaction

Λ2
(
Ψ †2Ψ 2

)2
for the dimensionally reduced quarks. Note that the level spacing of the
Ψ 2 is

∆λ ∼ Λ

N
(33)

instead of (22). Again, by the Banks–Casher formula, we expect the chiral
condensate in a symmetric box to scale as〈

Ψ †4Ψ4

〉
= πρ(0) =

π

V4

2φ

∆λ
∼ |eH|

Λ

N√
V4

(34)

with n4 = N2/V4 ≈ 1/fm4 as typically the instanton–anti-instanton density
in the QCD vacuum.

The chiral condensate follows through similar reasoning at the saddle
point for large N and at finite temperature〈

Ψ †4Ψ4

〉
=

2N

βLz

|eH|
Λ

√
1− ω2

0/Λ
2 . (35)

N/βLz is about the number of instantons and anti-instantons in βLz re-
garded as a slice of V4 = βLxLyLz. This is roughly

√
n4 since the instan-

ton density n4 varies slowly with temperature except for T ≈ Tc, where a
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re-arrangement into pairs is expected. Thus, the spacing (33) between the
eigenvalues is about ∆λ ≈ 1/

√
V4 in the presence of a strong magnetic field

instead of ∆λ ≈ 1/V4 in the vacuum.
The chiral condensate is seen to grow linearly with the magnetic field.

Unlike the precedent matrix model, the transition temperature is indepen-
dent of the magnetic field

Tc = Λ/π . (36)

Therefore, the slope of the chiral condensate for strong magnetism is〈
Ψ †4Ψ4

〉
≈ 2
√
n4

πTc
|eH|

√
1− (T/Tc)2 . (37)

In the RMM, the chiral condensate at zero temperature is fixed by similar
arguments. As a result, the relative change of the chiral condensate with
magnetism is

∆Σ =

〈
Ψ †4Ψ4

〉
〈
Ψ †4Ψ4

〉
0

≈ |eH|√
n4

√
1− (T/Tc)2 (38)

with n4 ≈ 1/ fm4 and Tc about the critical temperature for chiral symmetry
restoration without magnetism.

We note that the effects of the higher LL on the quark condensate can be
readily assessed in the generalized random matrix model (30) in the large φ
(ultra-strong magnetism) and large N (strong magnetism) limit using the
saddle point approximation. Indeed, in the latter limit and retaining the
LLL, n = 0, s = 1 along with the next to lowest LLL n = 0, s = −1 and
n = 1, s = 1 yield〈
Ψ †4Ψ4

〉
=

N

βLz

2|eH|
Λ

(√
1− ω2

0/Λ
2 + 2

√
1− 2|eH|/Λ2 − ω2

0/Λ
2

)
. (39)

The next to LLL contribution drops for strong fields or |eH| > Λ2/2 as its
corresponding saddle point moves off the real axis. Typically, Λ ≈ 0.5GeV
(see below) so that the decoupling takes place for |eH| ≥ 1/3 GeV2 which is
the onset of the ergodic regime. Thus our reduction to the LLL.

5. Comparison with lattice simulations

For intermediate values of |eH| ≤ 1 GeV2, our results for strong mag-
netism using random matrix theory and zero temperature are overall consis-
tent with those reported by the recent lattice simulations in [11] and in [19].
The deviations at low values of |eH| < 1/3 GeV2 occur in the diffusive
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regime and are determined by the pion modes as we detailed earlier through
the quark return probability. At finite temperature, our results for strong
magnetism using random matrix theory show a field-independent critical
temperature (36). The lattice results reported in [11] show a critical tem-
perature weakly dependent on the magnetic field. The critical temperature
appears to decrease by about 10% across the critical temperature. An anti-
catalysis with a substantial decrease of the chiral condensate was reported
to take place close to the critical temperature.

In a recent investigation [13], the breaking of ZNC symmetry at high tem-
perature with the appearance of a finite Polyakov holonomy was suggested
as the mechanism for the appearance of the anti-catalysis phenomenon in the
lattice data. The argument is that the finite temporal holonomy A4 = πϕ4 T
with ϕ4 = (0,±2/3) (mod 2) for NC = 3 or ϕ4 = 0, 1 (mod 2) for NC = 2
gets shifted by the magnetic field through sea effects. The result is a de-
crease of the chiral condensate around the critical temperature. In other
words, while the valence contribution is diamagnetic, the sea contribution
through the Polyakov holonomy appears to be paramagnetic.

Indeed, a small shift in the trivial Polyakov holonomy by the applied
magnetic field can cause the chiral condensate to decrease substantially near
the critical temperature. The effect of the Polyakov holonomy is to alter the
twisting of the temporal fermionic boundary condition and, therefore, an
up or down shift in the Matsubara frequencies. In the LLL, the Polyakov
holonomy is readily inserted through

ZLLL(m,T,A4) =

∫
dA e−(N/Λ2)Tr(A†A)

×det

∣∣∣∣ m i(ω0 +A4) + iA

i(ω0 +A4) + iA† m

∣∣∣∣
(40)

instead of (32). The immediate effect of the Polyakov holonomy is to change
the onset of the critical temperature to Tc = (Λ/π)/|1 + ϕ4| (mod 2) in
agreement with the result in [25].

The magnetic shift of the effective potential for the trivial Polyakov
holonomy maybe estimated. At high temperature and for massless quarks,
the shift in the pressure due to magnetism is [23, 24] (see also Section 6)

∆ΩH ≈
χ

2
|eH|2ln

(
ω2
0

|eH|

)
(41)

with χ = NC/12π2. In the presence of a finite holonomy, the shift is more
subtle to analyze in general. However, for the arguments to follow, it suffices
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to assume that generically the holonomy ϕ ≡ A4/ω0 shifts away from zero in
the presence of magnetism with ϕ4(H) ≈ O(e2) as also suggested by current
lattice data [13]. Typically,

ϕ4(H) ≈ 0− C |eH|
2

ω4
0

(42)

with C a parameter to be fixed below. While such a shift is small, it can
dramatically affect the chiral condensate near the critical temperature. In-
deed, inserting (42) into the random matrix model yields a chiral condensate〈

Ψ †4Ψ4

〉
→ N

βLz

2|eH|
Λ

1

2

∑
s=±1

√
1− (T/Tc)2(s+ ϕ4(H))2 . (43)

The sum over s = ± signs in (43) is important to understand in our simplified
random matrix theory. The chiral condensate in the saddle point approxima-
tion receives contribution from all Matsubara frequencies ωn = (2n+ 1)πT
requiring, in principle, a matrix model with all frequencies [3, 25]. Such a
matrix model can be written and is explicitly periodic in ϕ4 of period 2.
However, near the critical points, only the 2 lowest Matubara frequencies
are dominant, i.e. ω0 = −ω−1 (high temperature reduction). In the absence
of holonomies, the random matrix model does not distinguish between these
2 frequencies near the critical points, thus the simplification to ω0. For a
finite Polyakov holonomy, the 2 Matsubara frequencies are distinguishable,
thus the sum over the signs.

In the random matrix model, the reduction of the chiral condensate takes
place when

Tc(H)

Tc(0)
=

1

|s+ ϕ4(H)|
≈ 1− sϕ4(H) , (44)

where the subscript refers to the critical point. The ω−1 contribution in (43)
drops first for a critical temperature Tc(H)/Tc(0) ≈ 1 − |ϕ4(H)|. Lattice
results suggest that the change in the critical temperature Tc(H) with the
magnetic field present is about 10% lower than without [11, 12]. Comparison
with the lattice data from [12] fixes C ≈ 0.017 in (42) (see Fig. 1). As a
result, (43) reduces at the critical point to〈

Ψ †4Ψ4

〉
→ N

βLz

|eH|
Λ

√
|ϕ4(H)| (1− |ϕ4(H)|) (45)

which is small and vanishes continuously with the increase of magnetism.
We note that (44) implies a critical Hc(T )

eHc(T ) ≈ ω2
0√
C

(
1− T

Tc

)1/2

(46)
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Fig. 1. Tc(H)/Tc(0) as a function of eH. The solid curve describes the fit to the
lattice data [12, Eq. (3.1)]. The dashed curve is given by formula (44) with the
parameter C = 0.017 at T = Tc(0) = 0.16 GeV [12].

for the restoration of chiral symmetry at fixed magnetism and finite temper-
ature for Nc = 3. This is in qualitative agreement with the reported lattice
data. The case of Nc = 2 will be adressed in a sequel.

As a final note, we would like to indicate that there is yet another way
to test the nature of magnetism on the lattice and that is by twisting the
fermionic boundary condition along Lz with a Bohm–Aharonov flux Az.
Specifically,

Ψ2(x0, z + Lz) = −ei2πϕzΨ2(x0, z) . (47)
This amounts to a bulk Abelian potential [21, 22, 25]

(iγ · ∇E +Azγz)Ψ4 = λ[Az]Ψ4 (48)

with a constant Az = 2πϕz/Lz. Recall that a constant Az is physical on a
torus. Note that for (48), the quark virtualities λ[Az] are periodic in ϕz of
period 1. The twisted boundary condition (47) on the LLL in the random
matrix model is achieved by using

det

∣∣∣∣ m i(ω0 +A4) +Az + iA

iA† + i(ω0 +A4)−Az m

∣∣∣∣ (49)

in (40). The chiral condensate follows through similar reasoning at the
saddle point for large N with〈

Ψ †4Ψ4

〉
=

N

βLz

2|eH|
Λ

√
1−A2

z/Λ
2 − (ω0 +A4)2/Λ2 (50)

instead of (35). At zero temperature, the change in the chiral condensate is

∆Σ =

〈
Ψ †4Ψ4

〉
〈
Ψ †4Ψ4

〉
0

=
|eH|√
n4

√
1−A2

z/Λ
2 . (51)
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It would be interesting to carry numerical simulations of spectra and
derive the chiral condensate from the pertinent spectral fluctuations using
directly the finite size random matrix construction with magnetism. Sea
effects can also be analyzed in this way through relevant rescaling limits [20],
although the random matrix model is totally dominated by the LLL with or
without the Polyakov holonomy in the ergodic regime, as we have discussed.
The effects of light quark masses and NF > 1 will be addressed elsewhere.

6. RMM effective action with magnetism

The random matrix effective action with magnetism follows from (30)
through standard fermionization of the determinant and then bosonization
by the use of the Hubbard–Stratonovitch transformation. The result for the
partition function (30) is

ZLL(m,T, φ) =

∫
dB e−

N
Λ2TrB

†B detN
∣∣∣∣B +m iL

iL† B† +m

∣∣∣∣ (52)

with
L ≡ ((ω0 +A4)− iε(n, s))1ns

a diagonal matrix labeling the Landau levels shifted by the lowest Matsub-
ara. The dominant contribution stems from the restriction to the LLL with
101 and corresponds to the reduction Ψ 4 to Ψ 2. The addition of the spatial
twist is straightforward. The corresponding effective action for the LLL in
2 dimensions is

ΩLL =
N

Λ2
TrB†B −N ln det

∣∣∣∣B +m iL

iL† B† +m

∣∣∣∣ . (53)

(53) restricted to the LLL describes the dimensionally reduced effective ac-
tion that describes the quark spectrum near zero virtuality for strong fields
in the ergodic regime. For instance,

〈
Ψ †2Ψ 2

〉
= lim

m→0
lim

Lz→∞

N

βLz

〈
Tr

∣∣∣∣ B +miL

iL†B† +m

∣∣∣∣−1
〉
. (54)

The averaging is carried using the measure in (52). The content of this
dimensionally reduced effective action along with the role of a spatial twist
and a real quark chemical potential will be discussed elsewhere.

In what follows, we will develop a more phenomenologically inspired
random matrix effective action that interpolates between the diffusive and
ergodic regime through a reduction of the NJL model to constant modes [3]
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(and references therein). The results are inspired chiral RMM effective ac-
tions with magnetism. The purpose of this construction is to show the
potential relationship between the random matrix theory discussed above as
suggested by the mesoscopic analysis and the body of work on magnetism
using NJL inspired models.

To analyze the chiral Euclidean effective action or pressure, we recall
that the Gibbs energy for finite T and µ of chiral RMM is that of a two-level
system for a particle and anti-particle for a single Matsubara frequency and
NF = 1 [3, 17]

ΩM (T, µ) =
1

2
Σ2σ2 − n4

2
ln
((

(σ − µ)2 + (πT )2
) (

(σ + µ)2 + (πT )2
))

(55)

with σ playing the role of the constituent quark mass and Σ2 the strength
of the chiral Gaussian noise. It ties to the chiral condensate in the vacuum
through 〈

Ψ+
4 Ψ4

〉
= Σ2σ∗ (56)

at the extremum. Again, the density n4 = N/V4 refers, in general, to the
number N of zero modes in the 4-volume which is commensurate with the
density of instantons plus anti-instantons in the vacuum.

AB fluxes act as Abelian U(1) vector potentials and are readily imple-
mented in (55) through the substitution

(iµ)2 → (iµ+A4)
2 +A2

z . (57)

We recall that on a torus, constant gauge fields are gauge invariant. For
µ = A4 = T = 0, (55) simplifies to

ΩM (Az) =
1

2
Σ2σ2 − n4

2
ln
(
σ2 +A2

z

)2 (58)

with a chiral condensate at the minimum〈
Ψ †4Ψ 4

〉
≡ Σ2σ∗ = Σ

√
2n4 − (AzΣ)2 (59)

that decreases with the twisting of the boundary condition as we noted
earlier.

The virtuality levels of constituent quarks in a fixed external magnetic
field along the z-direction are fixed by (14). The vacuum energy follows
by summing over the negative energy states through standard procedure.
Specifically, the negative of the energy per unit V4 or pressure reads

ΩH(0, 0) =
H2

2
+
|eH|
(2π)2

∞∑
n=0

∫
dkz(2− δn0)λ−n,1(0, kz) , (60)
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where we have added the external magnetic field energy density contribution.
The sum is UV divergent and requires renormalization. Most importantly,
we note that in the vacuum state, all the states are paired in spin with the
exception of the state n = 0 and s = 1. The disordered smearing of this
near-threshold state is responsible for the spontaneous breaking of chiral
symmetry by strong magnetism as we showed above.

The leading order in 1/Nc effects to the free constituent quark loop is
the dominant contribution whereby the constituent quark mass is generated
through weaker residual and attractive interactions say of the instanton type.
For a fixed external magnetic field, the constituent quark loop contributes
to the magnetic permittivity µ(H). For a fixed cut-off ΛUV and a strong
magnetic field or ΛUV >

√
|eH| > (σ +m) [23]

ΩH(0, 0) ≡ H2

2µ(H)
≈ H2

2

(
1 + χe2 ln

(
Λ2
UV

eH

))
(61)

for NF = 1. For several quark flavors, e2 →
∑NF

q e2q with NF = 3,
eu = 2e/3, ed = −e/3, es = e/3. Since the loop contribution stems from
the UV sector, the constituent quarks are for all purpose massless, making
the logarithmic contribution unique. The plus sign of the vacuum contri-
bution reflects on the diamagnetism and hence the stability of the vacuum
state under the switching of a constant H. All the remaining contributions
from the loop are analytic in O((eH)2) and go into the charge and H renor-
malization. The combination eH is renormalization group invariant. We set
the renormalization so that for Λ2

UV = |eH| (61) is canonical [23].
The result (61) is readily understood from the fermion loop diagram

of Fig. 2 with the fermionic lines corresponding to a constitutive fermion
moving in the external magnetic field. The free loop with 2 H-insertions is
of the form of H2/p4 with p a typical loop momentum. Clearly, the integral
diverges both in the ultraviolet and infrared. The cutoff in the ultraviolet is
ΛUV, while in the infrared, it is σ +m for free constitutive fermions and

(σ +m)2 → |eH|+ (σ +m)2 (62)

for constitutive fermions in a magnetic field. For ΛUV >
√
|eH| > (σ +m)

(61) follows, while for ΛUV > (σ +m) >
√
|eH|, we have

ΩH(0, 0) ≈ H2

2

(
1 + χe2 ln

(
Λ2
UV

(σ +m)2

))
. (63)

For
√
|eH| > (σ + m), we note that the higher H-insertions in Fig. 2 are

increasingly infrared-sensitive making them all of the order of |eH|2. They
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renormalize the classical field contribution [23]. In dense matter near the
critical points, the UV cutoff in (63) is traded through

Λ2
UV → |ω0 + iµ|2 (64)

with ω0 = πT , leading to

ΩH(T, µ) ≈ H2

2

(
1 + χe2 ln

(
|ω0 + iµ|2

|eH|+ (σ +m)2

))
(65)

in agreement with detailed limits derived in [23]. (65) permeates all consti-
tutive quark calculations in the context of the magnetic catalysis of chiral
symmetry breaking in QCD both in vacuum and matter [9] (and references
therein).

Fig. 2. Magnetic contributions to the constitutive quark loop. See the text.

Our starting point for an RMM analysis of the phase diagram at finite
H in matter with twisted boundary conditions is Ω = ΩM +ΩH . With only
H present, the minimum ∂Ω/∂σ∗ = 0 using (55) and (65) yields

σ∗ = Σ
√

2n4 + χH2 (66)

which is to be compared with (59). This yields a change in the chiral con-
densate

∆Σ =

〈
Ψ †4Ψ4

〉
〈
Ψ †4Ψ4

〉
0

=

√
1 +

χ |eH|2
2n4

− 1 (67)

which is quadratic for low |eH| and linear for intermediately large |eH|.
We recall that for ultra-strong magnetism at zero temperature, the ratio
asymptotes |eH|3/2 as both suggested by RMM and perturbative QCD.
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The asymptotic of (67)

∆Σ ≈

√
(χ/2)

n4
|eH| (68)

is smaller than (38) by the factor of√
χ/2 ≈

√
NC/24/π ≈ 1/10 . (69)

The random matrix model is not restricted by the 1-loop result as it involves
the delocalization of the dimensionally reduced chiral quarks through quasi-
2-dimensional zero modes and is more in line with the currently reported
lattice results. The results of the random matrix analysis are reproduced by
setting χ→ 2 in ΩH . This effective action analysis without boundary twists
whether temporal (Polyakov) or spatial (BA), emphasizes the underlying
diamagnetic character of the random matrix analysis above when restricted
to the LLL.

7. Conclusions and prospects

We have presented a chiral RMM for the analysis of the recent lat-
tice QCD simulations in the presence of a strong QED magnetic field.
The results for intermediate values of |eH| > 1/ρ2 ≈ 0.3 GeV2 are read-
ily understood through the infrared branch of the LLL which causes the
quarks to dimensionally reduce from 4 to 2 dimensions. Quarks trapped in
4-dimensional LLL are more prone to break spontaneously chiral symmetry
through random disorder by gluonic configurations whether perturbative or
non-perturbative. This is the essence of the magnetic catalysis discussed
in [9] (and references therein). Note that our reduction of the spectrum is
in quark virtualities not quark energies and, therefore, from 4+1 to 2+1
rather than 3+1 to 1+1.

In 2 dimensions, the interactions due to the semiclassical vacuum con-
figurations, i.e. instantons or calorons cause them to accumulate at zero
virtuality. The accumulation is characterized by a level spacing of the order
of 1/

√
V4 which is intermediate between 1/V4 in the vacuum and 1/4

√
V4

in a free box. The change in the chiral condensate is shown to increase
linearly with |eH| (catalysis) with a slope 1/

√
n4 ≈ 1 fm2 with n4 the

instanton vacuum density. These results are consistent with the current
lattice data at zero temperature. For very weak |eH|, the gapped charged
pions dominate the contribution in the diffusive regime in line with the
leading result from chiral perturbation theory. At ultra-strong magnetic
fields |eH| ≥ 10/ρ2 ≈ 3 GeV2, the RMM suggests an increase in the chiral
condensate as |eH|3/2 in agreement with perturbative QCD estimates for
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ultra-strong fields using a Bethe–Salpeter analysis [14]. We note that our
estimation of the divide between the strong and ultra-strong regime is only
qualitative — we have assumed that about 10 Landau levels fit within the
instanton transverse size (see above), which provides only an order of mag-
nitude estimate. If we were to assume that about 20 Landau levels fit the
instanton transverse size, the ultrastrong regime will correspond to the value
of 6GeV2. The largest magnetic fields probed in the lattice simulation corre-
sponds to 3GeV2 [12]. At this value, the critical temperature is only weakly
dependent on the magnetic field, in agreement with our prediction for (36).
This fact may suggest that the ultra-strong regime is not yet accessible by
current lattice simulations.

At finite but high temperature, the emergence of a Polyakov holonomy
does not affect the decoupling of the LLL. We have shown that a small shift
in the trivial part of this holonomy allows for a rapid decrease (anti-catalysis)
of the chiral condensate near the critical temperature as suggested recently
by lattice simulations [13]. This small change in the Polyakov holonomy
is quadratic in the magnetic field. It reflects on the back-reaction of the
quarks on the effective potential of the temporal holonomies near the trivial
solution.

We have explicitly shown how the random matrix effective action emerges
from our analysis in the dimensionally reduced limit. Also, we have provided
a specific construction of a number of random matrix inspired models to
allow for a simple comparison with current constituent quark models with
magnetism such as the NJL models. A more detailed analysis of the phase
diagrams emerging from these effective actions will be detailed elsewhere.

In random matrix theory, the spectral distributions in the microscopic
limit capture more information on the subtleties of chiral symmetry breaking
such as the role of quark representations, quark masses and magnetism and
twists.

Of particular interest is NC = 2 with an external magnetic field which
upsets time-reversal symmetry, a big deal for this representation. Indeed,
for NC = 2 the chiral disorder involves not only the pions (diffusons) but
also the baryons (cooperons) both of which are degenerate following the
extra Pauli–Gursey symmetry. The cooperon is sensitive to the breaking of
time-reversal symmetry because of its charge [21].

Finally, it would be interesting to revisit the role of the number of flavors,
quark masses and the spatial and temporal twists on the results we have
derived for a more critical comparison with current lattice data. The effect
of the chemical potential on the LLL analysis should also shed more light
on the role of magnetism on the QCD phase diagram. Some of these issues
will be addressed next.
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