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A simple phenomenological formula for description of α-decay half-lives
Tα of heavy (above 208Pb) and superheavy nuclei is proposed. The formula,
expressing Tα as a function of the decay energy Qα, has five adjustable
parameters: three to describe even–even nuclei and two for accounting for
effects of an odd proton and an odd neutron. The formula allows one
to describe measured values of Tα of 61 even–even nuclei roughly within
a factor of 1.3, 45 odd–even nuclei within a factor of 2.1, 55 even–odd nuclei
within a factor of 3.2 and 40 odd–odd nuclei within a factor of 4.0, on the
average, when measured values of Qα are taken. Results of its use are
compared with those of other formulae. Effects of various changes in the
formula are discussed.

PACS numbers: 23.60.+e, 27.80.+w, 27.90.+b

1. Introduction

A rather large number of phenomenological formulae have been used for
description of α-decay half-lives Tα in a long history of studying this process
(e.g. [1–10]). Such formulae are of a practical value, for an easy prediction
of not yet measured values of Tα or to see a systematics of this quantity in
a large region of nuclei. They certainly cannot replace a deep theoretical
studies of α-decay, which aim at a microscopic description of the mechanism
of this process. The latter studies are being done parallely (see e.g. the
book [11] and the review [12]). There are also used models based on various
simplifying assumptions (e.g. [13]).

The interest in the description of α-decay is continuing and even in-
creasing, as a number of discovered and studied α emitters is continuously
increasing, especially among exotic nuclei, in particular the heaviest ones
(e.g. [14–20]).

(3095)
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In all phenomenological formulae used up to now, the dependence of Tα

on the observed kinetic energy of α particle (or decay energy Qα directly
connected with it), as deduced from the Geiger–Nuttall rule, is taken into
account. They differ, however, in the assumed dependence of Tα on the
proton, Z, and mass, A, numbers of a decaying nucleus. Most of the formulae
are rather simple. Some of them, however, are more complex (e.g. [7]),
introducing, for example, a direct dependence of Tα on the shell structure
of a nucleus, besides indirect one that comes via Qα.

The objective of the present paper is to see how good accuracy can be
reached in description of the present-day data for Tα of heaviest nuclei by
using simple phenomenological formulae existing presently. It is also aimed
to check, if the formulae cannot be still simplified without loosing their
accuracy. The intention is to use as few adjustable parameters as possible.

In our analysis, we concentrate on heaviest nuclei with proton num-
ber Z = 84–111 and neutron number N = 128–161. All kinds of nuclei:
even–even (e–e), odd–even (o–e), even–odd (e–o) and odd–odd (o–o) are
considered, where e.g. (o–e) means (odd-Z, even-N) nuclei.

2. Check of the quality of existing formulae

We take the following two formulae for such a check. One is the rather
old formula of Viola and Seaborg [4], which has been often used up to
the present day (see e.g. [21–28]), and the other is a recent formula by
Royer [10].

The check consists in testing how well are the measured half-lives T exp
α re-

produced by the values T ph
α (Qexp

α ) obtained by a phenomenological formula,
when measured decay energy Qexp

α is taken.

2.1. The Viola–Seaborg formula

This 7-parameter formula reads [4]

log10T
VS
α (Z,N) = (aZ + b)Q−1/2

α + (cZ + d) + hi , (1)

where Z is proton number, N is neutron number and Qα(Z,N) is the α-
decay energy of a parent nucleus. The quantities a, b, c, d and hi are ad-
justable parameters; hi (originally denoted by 〈logFi〉), i = p, n, pn, are the
average hindrance factors for o–e (i.e. odd-proton), e–o (i.e. odd-neutron)
and o–o (i.e. odd-proton and odd-neutron) nuclei, respectively. For e–e
nuclei, hi = 0.

Adjustment of the parameters to experimental values of the half-lives
Tα [29] (taken in seconds) with the use of experimental values of Qexp

α [30]
(taken in MeV) for 61 even–even nuclei with Z = 84–110 and N = 128–160,
for which both these data exist, leads to

a = 1.3892 , b = 13.862 , c = −0.1086 , d = −41.458 . (1a)
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With these four values of a, b, c, d kept fixed, adjustment of the three
parameters hp, hn, hpn to T exp

α [29] with the use of Qexp
α [30] for 45 o–e

(with Z = 85–107, N = 128–160), 55 e–o (with Z = 84–110, N = 129–161)
and 40 o–o (with Z = 85–111, N = 129–161) nuclei, respectively, leads to

hp = 0.437 , hn = 0.641 , hpn = 1.024 . (1b)

The results are summarized in Table I. The first column specifies the class
of nuclei, the second gives the number of nuclei N (with measured both T exp

α

and Qexp
α , which have been used for the adjustment of the parameters) in

each class (group), δ̄ is the average of absolute values of discrepancies,

δ̄ =
1

N

N
∑

k=1

∣

∣

∣
log10

(

T ph
αk /T exp

αk

)
∣

∣

∣
, (2)

rms is the root-mean-square value of these discrepancies, f̄ = 10δ̄ , h is the
value of hi in each group and np is the number of adjustable parameters for
each group. The difference between δ̄ and rms gives some information about
inhomogeneity of the distribution of the discrepancies.

TABLE I

Results obtained with the Viola–Seaborg formula (see text).

Nuclei N δ̄ rms f̄ h np

e–e 61 0.129 0.161 1.35 0 4

o–e 45 0.352 0.447 2.25 0.437 1

e–o 55 0.564 0.666 3.66 0.641 1

o–o 40 0.675 0.808 4.73 1.024 1

One can see in Table I that T exp
α are reproduced by the Viola–Seaborg

formula roughly within a factor of 1.4 for e–e, 2.3 for o–e, 3.7 for e–o and
4.7 for o–o nuclei, respectively, on the average.

It should be added that in the fitting procedure, nuclei with neutron
number close to shell closures at N = 152 and 162 have been omitted, as
we would not like to include direct shell effects (not contained in Qα) to the
smooth dependence of Tα on Qα described by a phenomenological formula.
These are 3 e–o nuclei with N = 151 (Z = 96, 98, 100), one with N = 153
(Z = 98) and one with N = 161 (Z = 110). Also 3 o–e nuclei: (Z = 97,
N = 146, 148) and (Z = 101, N = 154), with T exp

α especially much deviating
from the average behavior, have been omitted.
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2.2. The Royer formula

This 12-parameter formula reads [10]

log10T
R
α (Z,N) = aZQ−1/2

α + bZ1/2A1/6 + c , (3)

where Z and A are proton and mass numbers of a parent nucleus, respec-
tively, and a, b, c are adjustable parameters. All three parameters a, b, c are
adjusted separately for each class of nuclei: e–e, o–e, e–o and o–o. Thus,
this gives altogether 12 parameters.

Adjustment of the parameters to experimental values T exp
α with the use

of experimental values Qexp
α , both taken the same as in adjustment of the

Viola–Seaborg parameters, leads to

a = 1.5519, b = −0.9761, c = −28.688 for e–e nuclei , (3a)

a = 1.6070, b = −0.9467, c = −30.912 for o–e nuclei , (3b)

a = 1.6327, b = −1.1249, c = −27.287 for e–o nuclei , (3c)

a = 1.6789, b = −1.0409, c = −30.509 for o–o nuclei . (3d)

The results are summarized in Table II. One can see in this table that
T exp

α are better (except e–e nuclei) reproduced by TR
α , than by TVS

α

(Table I). This is not unexpected because of the larger number of adjustable
parameters in the case of TR

α .

TABLE II

Results obtained with the Royer formula.

Nuclei N δ̄ rms f̄ np

e–e 61 0.133 0.169 1.36 3

o–e 45 0.321 0.398 2.09 3

e–o 55 0.497 0.602 3.14 3

o–o 40 0.557 0.714 3.61 3

One should remark that the values of parameters of Eqs. (3a)–(3d) differ
from those given in [10] (see Eqs. (3e)–(3h) in Sec. 5). This is because the
difference in the range of nuclei, the data of which have been taken in the
adjusting procedure. If one takes the values of the parameters given in [10]
to describe T exp

α considered in the present paper, the discrepancies are larger,
as discussed in Sec. 5.
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3. Search for a new formula

Looking at the values of the Viola–Seaborg parameters, Eq. (1a), one
can see that the value of the parameter b is small in comparison to values of
aZ (Z = 84–110). This suggests that a 3-parameter formula

log10T
ph
α (Z,N) = aZQ−1/2

α + bZ + c , (4)

may be not much worse (for e–e nuclei) than the 4-parameter one of Eq. (1).
Really, adjustment of a, b, c to T exp

α with the use of Qexp
α for 61 e–e nuclei

(the same as used to obtain the values of Eq. (1a)) leads to

a = 1.5372 , b = −0.1607 , c = −36.573 , (4a)

with the average discrepancies δ̄ = 0.128 and rms = 0.165, i.e. with only rms
very little larger than the respective value obtained with the 4-parameter for-
mula of Eq. (1) (see Table I). Due to this, we will be using this 3-parameter
formula of Eq. (4) for e–e nuclei.

In the case of odd-A and o–o nuclei, structure of the ground states (g.s.)
of a parent and the daughter nuclei are, in general, different. This causes
a hindrance of the transition between these states. A parent nucleus prefers
to decay from its g.s. to such an excited state of its daughter which has the
same (or similar) structure. When we do not know the excitation energy
of such a state, it is natural to treat it as an adjustable parameter. Thus,
the formula (4), generalized to describe also odd-A and o–o nuclei, takes the
form

log10T
ph
α (Z,N) = aZ(Qα − Ēi)

−1/2 + bZ + c , (5)

where Ēi = 0 for e–e nuclei, Ēi = Ēp (average excitation energy of proton
one-quasiparticle state to which α decay goes) for o–e nuclei, Ēi = Ēn (av-
erage excitation energy of neutron one-quasiparticle state to which α decay
goes) for e–o nuclei and Ēi = Ēpn (average excitation energy of one-proton
and one-neutron quasiparticle state) for o–o nuclei. To minimize the number
of adjustable parameters, we put the average excitation energy Ēpn of o–o
nuclei as equal to the sum of the average energies of o–e (Ēp) and e–o (Ēn)
nuclei, i.e.

Ēpn = Ēp + Ēn . (5a)

This way, we get only 5 adjustable parameters to describe all four classes of
nuclei by the formula (5).

With the 3-parameters a, b, c (fitted to data for e–e nuclei) kept fixed,
adjustment of the two parameters Ēp and Ēn to T exp

α [29] with the use of
Qexp

α [30] for 45 o–e and 55 e–o nuclei, respectively, leads to Ēp = 0.113MeV
and Ēn = 0.171 MeV.
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Thus, the new phenomenological formula (5), with the 5 parameters

a = 1.5372 , b = −0.1607 , c = −36.573 ,

Ēp = 0.113 MeV , Ēn = 0.171 MeV , (5b)

and with the value of Ēpn calculated by Eq. (5a) for o–o nuclei, is used to
describe Tα of all four classes of heavy and superheavy nuclei.

To test the assumption of Eq. (5a), we treated Ēpn as the additional (6th)
adjustable parameter, fitted to data of 40 o–o nuclei of the investigated
region. We have obtained Ēpn = 0.277 MeV, i.e. very close to the value
0.284 MeV obtained from Eq. (5a) with Ēp and Ēn taken from Eq. (5b). This
is a pleasant result, showing that the assumption of Eq. (5a) is reasonable.

4. Results

Table III shows the results obtained with the new formula of Eq. (5).
By comparing it with Table I, one can see that although a smaller number
of adjustable parameters (five) used by the new formula, it better describes
measured half-lives T exp

α than the Viola–Seaborg formula using 7 adjustable
parameters. Comparing Table III with Table II, one can observe that the
quality of description of T exp

α by the new formula is quite similar to that of
the Royer formula which uses 12 fitted parameters.

TABLE III

Results obtained with the formula of the present paper (Eq. (5)).

Nuclei N δ̄ rms f̄ np Ē [MeV]

e–e 61 0.128 0.165 1.34 3 0

o–e 45 0.318 0.407 2.08 1 0.113

e–o 55 0.508 0.602 3.22 1 0.171

o–o 40 0.603 0.724 4.01 0 0.284

Let us illustrate now the quality of the results in a more detailed way
than by the average values of discrepancies shown in Table III. Fig. 1 gives

logarithm of the ratio of the phenomenological half-live T ph
α , calculated ac-

cording to the new formula of Eq. (5), to experimental one T exp
α for e–e nuclei

with Z = 84–116. One can see that generally the values are within the range

of about ±0.25 (which corresponds to the values of the ratio T ph
α /T exp

α within
the range of about 0.56–1.78). Only for the nuclei 212Po and 264Hs, they are
visibly outside this range.
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Fig. 1. Logarithm of the ratio T ph
α /T exp

α calculated as a function of neutron number
N for even–even nuclei with proton number Z = 84–116.

Fig. 2 illustrates the same quantity as in Fig. 1 for o–e nuclei. One can
see that here the values of discrepancy are generally within the range of

about ±0.50 (which corresponds to the values of the ratio T ph
α /T exp

α within
the range of about 0.32–3.16). Only for the nuclei 257Md and 261Bh, they
appear significantly outside this range.

Fig. 3 shows the discrepancies for e–o nuclei. One can see that they are
larger than those for o–e nuclei. For more nuclei, the discrepancies appear
outside the range of ±0.50. Especially large discrepancy is obtained for the
nucleus 237Pu.

Finally, Fig. 4 presents the discrepancies for o–o nuclei. They are largest
among all four classes of nuclei, but not much larger than the discrepancies
obtained for e–o nuclei. As for nuclei, for which no adjustable parameters
are used, the description of their half-lives is relatively good. The worst case

is for 244Bk, where log(Tph
α /Texp

α ) ≈ −2.
Concerning the results presented in Figs. 1–4, one should add that the

parameters of the formula of Eq. (5) for T ph
α have been fitted only to the

data for nuclei with Z = 84–111. Thus, the data for nuclei with Z = 112–
116, obtained more recently, may be treated as a test of a predictive power of
the formula. One can see in the figures that this test appears to be positive.

The values T ph
α reproduce T exp

α rather well for these nuclei.
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Fig. 2. Same as in Fig. 1, but for odd–even nuclei with Z = 85–107.
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Fig. 3. Same as in Fig. 1, but for even–odd nuclei with Z = 84–114.
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Fig. 4. Same as in Fig. 1, but for odd–odd nuclei with Z = 85–111.

5. Discussion of various effects

5.1. Effect of electron screening

This effect consists in a smaller kinetic energy of α particle outside an
atom (which is measured) than its energy when it penetrates the Coulomb
barrier, due to the orbital electron screening. The screening energy is [31]

Escr =
(

65.3Z7/5 − 80Z2/5
)

eV . (6)

The energy is rather small. For nuclei from 212Po to 292116, considered in
Fig. 1, it changes (smoothly) from 32 keV to 50 keV.

Due to this, its effect on Tα is also not large, but still significant. The

ratio T ph
α (Qeff

α )/T ph
α (Qexp

α ), where

Qeff
α = Qexp

α + Escr , (7)

and T ph
α is calculated according to Eq. (5), changes within the range from

0.51 to 0.84 for 64 nuclei considered in Fig. 1. Thus, the half-life T ph
α is

reduced by this effect from 16% to 49 % for these nuclei. The magnitude
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of this relative reduction is correlated with the value of Qexp
α . It is lowest

for the nucleus 216Ra with largest Qexp
α (9.53 MeV) and is highest for the

nucleus 232Th with smallest Qexp
α (4.08MeV).

It is interesting to see how are the values of the parameters of the new
formula, Eq. (5b), modified by the inclusion of this effect and if the quality
of description of Tα is improved by it.

The results for the parameters are

a = 1.5394 , b = −0.1610 , c = −36.596 ,

Ēp = 0.112 MeV , Ēn = 0.171 MeV . (5c)

To get them, we put Qeff
α instead of Qexp

α in the fitting procedure, i.e. we
minimized sum of squares of the differences

log10 T exp
α (Z,N) −

{

aZ
[

Qeff
α (Z,N) − Ēi

]

−1/2

+ bZ + c

}

. (8)

One can see that the obtained values of the parameters, Eq. (5c), are
almost the same as in the case when the effect is not taken into account,
Eq. (5b). The results for the quality of description of Tα are shown in
Table IV.

Comparison of Table IV with Table III shows that inclusion of the screen-
ing effect to the formula of Eq. (5) does not improve description of Tα of
considered nuclei.

TABLE IV

Results obtained with the formula of Eq. (5) in the case, when the screening effect
is taken into account.

Nuclei N δ̄ rms f̄ np Ē[MeV]

e–e 61 0.128 0.165 1.34 3 0

o–e 45 0.318 0.408 2.08 1 0.112

e–o 55 0.507 0.602 3.21 1 0.171

o–o 40 0.603 0.724 4.01 0 0.283

5.2. Effect of using Ēi instead of h̄i as adjustable parameters

To see this effect, we look at the results obtained with the formula

log10 T ph
α (Z,N) =

(

aZQ−1/2
α + bZ + c

)

+ h̄i , (9)
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similar to that of Viola and Seaborg, Eq. (1), and compare them with the
results obtained with the formula of Eq. (5). Naturally, the results will be
different only for o–e, e–o and o–o nuclei, i.e. for nuclei with one or two odd
nucleons. The results are shown in Table V.

TABLE V

Results obtained with the formula of Eq. (9).

Nuclei N δ̄ rms f̄ np h̄i

e–e 61 0.128 0.165 1.34 3 0

o–e 45 0.356 0.456 2.27 1 0.433

e–o 55 0.564 0.645 3.66 1 0.643

o–o 40 0.689 0.810 4.89 0 1.076

A comparison between the results of Table III and those of Table V
shows that the former are better than the latter ones. This is probably
because the assumption of about the same excitation energy Ēi of a state of
a daughter nucleus, which has the same structure as the g.s. of the parent
nucleus, is more realistic than the assumption of about the same hindrance
factor h̄i. This may be argued in the following way. The state with the same
characteristics as the g.s. of a parent nucleus should not be far in energy from
the g.s. of the daughter nucleus, independently where the nucleus is located
in the studied region, especially if the region is not too large. Thus, the
assumption of constant Ēi inside the region seems to be realistic. But, effect
of this constant Ēi on Tα may be quite different for nuclei with different Qα,
resulting in different hindrances hi. Due to this, the assumption of constant
hi for a large region of nuclei seems to be less realistic.

5.3. Effect of level density

As density of single-particle levels increases with increasing mass number
A of a nucleus, one might think about modifying, in Eq. (5), the expression
for the excitation energy of the state to which α decay goes. As the density
increases (within a simple model of harmonic oscillator) proportionally to
A1/3, one could propose the formula

log10 T ph
α (Z,N) = aZ

(

Qα − ĒiA
−1/3

)

−1/2

+ bZ + c . (10)

A direct check shows, however, that this does not improve the description
of Tα of heaviest nuclei considered in the present paper.
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5.4. Dependence on the range of described nuclei

Quality of description and values of parameters obviously depend on
the range of nuclei, to data of which the parameters are adjusted. Let us
directly illustrate this on the example of the Royer formula. The parame-
ters of it, fitted to data of 373 nuclei which include also light (below 208Pb)
α emitters, are [10]

a = 1.5864, b = −1.1629, c = −25.31 for e–e nuclei , (3e)

a = 1.592, b = −1.1423, c = −25.68 for o–e nuclei , (3f)

a = 1.5848, b = −1.0859, c = −26.65 for e–o nuclei , (3g)

a = 1.6971, b = −1.113, c = −29.48 for o–o nuclei . (3h)

The use of these values to description of Tα of 201 heaviest nuclei, on
the data of which we base in the present paper, leads to the results given in
Table VI.

TABLE VI

Results obtained with the Royer formula with the values of parameters taken from
[10].

Nuclei N δ̄ rms f̄ np

e–e 61 0.247 0.296 1.77 3

o–e 45 0.340 0.461 2.19 3

e–o 55 0.515 0.632 3.27 3

o–o 40 0.561 0.723 3.64 3

In this table N is the number of nuclei for which T ph
α is calculated (and

not to which they are fitted) with the parameters of Eqs. (3e)–(3h). Com-
paring these results with those of Table II, one can see that they are worse,
especially for e–e nuclei. They are even worse than the results of the 5-
parameter formula of Eq. (5), for all classes of nuclei, except only the o–o
one, as can be seen by comparison of Table VI with Table III. This does
not certainly mean that one should adjust the parameters to small regions.
The regions should be large enough to ensure formulae a generality and
a predictive power.

6. Conclusion

A new, simple phenomenological formula for description of α-decay half-
lives Tα of heaviest e–e, o–e, e–o and o–o nuclei is proposed. It uses only
5 adjustable parameters: 3 to describe e–e nuclei and 2 for description of
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nuclei with odd proton and odd neutron, one for each. (As the role of an
odd nucleon in Tα is important, we consider such a separation of the roles
of adjustable parameters as also significant.) The formula allows one to
describe T exp

α of 61 e–e nuclei roughly within a factor of 1.3, 45 o–e nuclei
within a factor of 2.1, 55 e–o nuclei within a factor of 3.2 and 40 o–o nuclei
within a factor of 4.0, on the average, when Qexp

α is taken. These are the
nuclei with Z = 84–111, for which both values of Qα and Tα have been
measured. A few still heaviest nuclei with Z = 112–116, discovered recently,
for which both these values are also known, have not been included into
the fitting procedure. The values of T exp

α for them are used as a test of
the predictive power of the formula. The test appears to be positive, as
illustrated in Figs. 1–4.
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