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KRAMERS TURNOVER THEORYFOR A TRIPLE WELL POTENTIAL�Eli PollakChemi
al Physi
s Department, Weizmann Institute of S
ien
e76100, Rehovot, Israeland Peter TalknerPaul S
herrer Institute, CH 5232, Villigen, Switzerland(Re
eived November 27, 2000)Kramers turnover theory is solved for a parti
le in a symmetri
 triplewell potential for temperatures above the 
rossover temperature betweentunneling and a
tivated barrier 
rossing. Comparison with the turnovertheory for a double well potential shows that the presen
e of the interme-diate well always leads to a de
rease of the rea
tion rate. At most though,the rate is a fa
tor of two smaller than in the 
ase of a double well potential.PACS numbers: 03.65.Ge 1. Introdu
tionSixty years ago Kramers [1℄ 
onsidered the problem of the rate of es
apeof a thermal parti
le, intera
ting with a heat bath, trapped in a potentialwell, separated from a di�erent well by a barrier of height V z. When thedamping strength 
 was su�
iently small, Kramers showed that the ratein
reases linearly with 
. In the limit of strong fri
tion, the rate was foundto de
rease as 1=
. The rate as a fun
tion of the damping strength was thuspredi
ted to be a bell shaped fun
tion. Finding this bell shaped fun
tion forall values of the damping is known as the Kramers turnover problem, sin
eit was posed by Kramers but he did not present a solution.The full solution of the turnover problem in the presen
e of a single,double or periodi
 potential well was found through the seminal worksof Mel'nikov and Meshkov (MM) [2, 3℄ and Pollak, Grabert and Hänggi� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000. (361)



362 E. Pollak, P. Talkner(PGH) [4℄ during the late 1980's. Mel'nikov and Meshkov found a solutionin the presen
e of Ohmi
 fri
tion for the underdamped to the moderate fri
-tion regime. PGH generalized MM's result for arbitrary fri
tion strength aswell as for memory fri
tion. These works also led to a semi
lassi
al solutionfor the rate [5℄, valid provided that the temperature was not lower than the
rossover temperature between tunneling dominated es
ape and a
tivatedes
ape. Extension of PGH theory to temperatures below the 
rossover tem-perature may be found in Ref. [6℄. Extension of PGH theory to motion ona periodi
 potential may be found in Refs. [7�9℄. Moro and Polimeno [10℄extended the MM approa
h to a problem of an angular potential with foursymmetri
 wells, modeling the trans-gau
he isomerization of n-butane.Re
ent investigations of ele
tron transfer on mole
ular bridges [11�14℄have raised interest in solution of the Kramers turnover problem for a systemin whi
h two deep wells are 
onne
ted by a series of N shallow wells [15℄.In this paper, we present a solution of the turnover problem for the 
ase oftwo symmetri
 deep wells 
onne
ted through a single shallow well. We �ndthat in the underdamped region, the es
ape rate out of the left well may bein
reased by up to 40% relative to the es
ape rate in a symmetri
 doublewell potential. However, the net rate from the left well into the right wellis always redu
ed relative to the double well potential 
ase. This redu
tionbe
omes maximal in the spatial di�usion limited regime, where the redu
tionis by a fa
tor of two.In Se
tion 2 we present the solution of the turnover problem for the threewell system and apply it to a model system. We end in Se
tion 3 with aDis
ussion. 2. Turnover theory for a triple well potential2.1. PreliminariesThe 
lassi
al equation of motion governing the dynami
s of a parti
lewith unit mass and 
oordinate q is the Generalized Langevin Equation(GLE) �q + dw(q)dq + tZ dt0
(t� t0) _q(t0) = �(t) ; (2.1)where w(q) is the triple well potential whose shape is shown s
hemati
allyin Fig. 1, 
(t) is the time dependent fri
tion fun
tion, the Gaussian randomfor
e �(t) has zero mean and is related to the fri
tion fun
tion through the�u
tuation dissipation relation at temperature T , h�(t)�(t0)i = kBT
(t� t0).The quantum version of the dynami
s would involve repla
ing the 
oordi-nate and momentum of the parti
le by the respe
tive operators and the
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xFig. 1. Symmetri
 triple well potential. The arrows indi
ate the probability �uxesat the barriers out of the deep wells (thi
k arrows) and out of the shallow well (thinarrows).�u
tuating for
e by another operator whose symmetrized 
orrelation fun
-tion satis�es the quantum me
hani
al �u
tuation dissipation relation, asdes
ribed for example in Ref. [16℄. In the symmetri
 triple well problem one
an 
onsider two di�erent rates, the rate of es
ape from the deep well andfrom the middle shallow well. As shown by PGH, any of these rates willbe fa
torizable into three di�erent terms. The �rst is the Transition StateTheory (TST) rate: �TSTi = !i2� e��V zi ; (2.2)where !i is the frequen
y in the i-th well and V zi is the barrier height fores
ape from the i-th well. For the middle well (i = 0), the TST rate shouldbe multiplied by a fa
tor of 2 sin
e es
ape o

urs to the left and right deepwells, as follows from the steady state equations (see Eqs. (2.7)�(2.10) andEq. (2.14) below).The se
ond term is the spatial di�usion fa
tor. Sin
e we are dealing witha symmetri
 potential, the paraboli
 barrier frequen
ies (!z) of both barriersare identi
al. Using the `hat' notation for the Lapla
e transform:
̂(s) = 1Z0 dte�st
(t) (2.3)and letting ~!n = 2�n~� denote the Matsubara frequen
ies, the spatial di�usionfa
tor in the paraboli
 barrier limit is [17℄:�i = �z!z 1Yn=1 !2i + ~!2n + ~!n
̂(~!n)�!z2 + ~!2n + ~!n
̂(~!n) : (2.4)



364 E. Pollak, P. TalknerThe unstable mode paraboli
 barrier frequen
y �z is the positive solution ofthe Kramers�Grote�Hynes equation�z2 + �z
̂(�z) = !z2 : (2.5)The third term is the `depopulation fa
tor' for the i-th well �i so thatthe overall rate from the i-th well is given by the expression�i = �TSTi�i�i : (2.6)The 
entral purpose of this paper is to provide an expression for the depop-ulation fa
tors for the triple well system.2.2. The triple well depopulation fa
torsAs shown in Fig. 1, there are four �uxes to be 
onsidered. F�1(") (F1("))is the �ux of parti
les approa
hing the left (right) barrier from the left (right)well, at the (redu
ed) energy " = EkBT , and we take the zero of energy tobe at the barrier tops. f+(") (f�(")) is the �ux of parti
les approa
hingthe right (left) barrier from the middle well. There are also two energytransfer kernels that play a role in the dynami
s. P�1("j"0) (P1("j"0)) is theprobability that the parti
le leaving the left (right) barrier with energy "0towards the left (right), returns to the barrier with energy ". By symmetryP�1("j"0) = P1("j"0) so we need only to refer to one of them, whi
h we denoteas P . The se
ond kernel p("j"0) is the 
onditional probability that a parti
leleaving the left (right) barrier with energy "0, rea
hes the right (left) barrierwith energy ".We assume that a parti
le hitting a barrier at energy " is transmittedwith probability T (") or re�e
ted with the probability R(") = 1� T ("). Weare now in a position to write down the following steady state equations forthe �uxes:F�1(") = 1Z�1 d"0P ("j"0) �R("0)F�1("0) + T ("0)f�("0)� ; (2.7)f�(") = 1Z�1 d"0p("j"0) �R("0)f+("0) + T ("0)F1("0)� ; (2.8)f+(") = 1Z�1 d"0p("j"0) �R("0)f�("0) + T ("0)F�1("0)� ; (2.9)F1(") = 1Z�1 d"0P ("j"0) �R("0)F1("0) + T ("0)f+("0)� : (2.10)



Kramers Turnover Theory for a Triple Well Potential 365To solve these equations one must de�ne the boundary 
onditions for thevarious �uxes, this will be done below. Here we sket
h how these equationsmay be solved. Following the appendix of Ref. [5℄ we de�ne two sided Lapla
etransforms as: Ni(s) = 1Z�1 d"e�s"R(")Fi(") (2.11)and similarly for the middle well �uxes, we de�ne n�(s) and n+(s). Thetwo sided Lapla
e transforms of the energy transfer kernels are denoted as:~P (s) = 1Z�1 d"e�s("�"0)P ("j"0) : (2.12)We also assume that the transmission probability is that of the paraboli
barrier, that is: T (") = e�"1 + e�" ; (2.13)where � = 2�~��z .With these notations and some algebra, one may redu
e the four steadystate equations (2.7)�(2.10) to two equations:N(s� �) � N�1(s� �)� n�(s� �) +N1(s� �)� n+(s� �)= (1� ~P (s))(1 � ~p(s))~P (s)~p(s)� 1 N(s) ; (2.14)�N(s� �) � N�1(s� �)� n�(s� �)�N1(s� �) + n+(s� �)= �(1� ~P (s))(1 + ~p(s))~P (s)~p(s) + 1 �N(s) : (2.15)These equations may be now solved as detailed in the Appendix of Ref. [5℄,the only elements missing are the boundary 
onditions.We distinguish between two situations. One, the parti
le is initiatedthermally into the left well, su
h that F�1(") � e�" for energies that aresu�
iently below the barrier, while all other populations are zero. The netrate out of the left well is then:��1 = 1Z�1 d"T (") �F�1(") � f�(")� = 12 (N(��) +�N(��)) : (2.16)



366 E. Pollak, P. TalknerThis rate may be further subdivided as the exit rate into the middle welland into the right well. The former is:�0 �1 = N(��) (2.17)and the latter is �1 �1 = 12 (�N(��) +�N(��)) : (2.18)One now �nds that the depopulation fa
tor for the total rate out of theleft well is given by the expression:��1 = 12 0B�exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln ( ~P (�i(�+ 12 ))�1)(~p(�i(�+ 12 ))�1)1� ~P (�i(�+ 12 ))~p(�i(�+ 12 ))
osh(�~��z)� 
os(~��z=2) 1CA+ exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln (1� ~P (�i(�+ 12 )))(~p(�i(�+ 12 ))+1)1+ ~P (�i(�+ 12 ))~p(�i(�+ 12 ))
osh(�~��z)� 
os(~��z=2) 1CA1CA : (2.19)Similarly, the depopulation fa
tor for the partial rate into the middle wellis:�0 �1 = exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln ( ~P (�i(�+ 12 ))�1)(~p(�i(�+ 12 ))�1)1� ~P (�i(�+ 12 ))~p(�i(�+ 12 ))
osh(�~��z)� 
os(~��z=2) 1CA :(2.20)Finally the depopulation fa
tor for the partial rate into the right well is:�1 �1 = 12 0B�� exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln ( ~P (�i(�+ 12 ))�1)(~p(�i(�+ 12 ))�1)1� ~P (�i(�+ 12 ))~p(�i(�+ 12 ))
osh(�~��z)� 
os(~��z=2) 1CA+exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln (1� ~P (�i(�+ 12 )))(~p(�i(�+ 12 ))+1)1+ ~P (�i(�+ 12 ))~p(�i(�+ 12 ))
osh(�~��z)� 
os(~��z=2) 1CA1CA : (2.21)The se
ond possibility is that the parti
le is initiated in the middle wellsu
h that f+;� � e�". The net rate out of the middle well is:�0 = �N(��) (2.22)and the depopulation fa
tor is identi
al to the one given in Eq. (2.20).



Kramers Turnover Theory for a Triple Well Potential 367To 
omplete the solution for the turnover theory, one must spe
ify theprobability kernels. In the quantum limit, these are not Gaussian, however,as shown in Refs. [16,18℄ use of a Gaussian kernel leads to only small errors.We will restri
t ourselves to the Gaussian kernels, whose two sided Lapla
etransforms have the form: ~P (s) = e��(s2+ 14 ) ; (2.23)~p(s) = e�Æ(s2+ 14 ) ; (2.24)where � is the (redu
ed) energy loss of the parti
le as it traverses for oneperiod over the big well at 0 energy, and Æ is the energy loss of the parti
leas it traverses from the left barrier to the right barrier over the middle well.2.3. A numeri
al exampleThe depopulation fa
tors of the symmetri
 triple well system depend onthree dimensionless parameters � = ~��z, Æ and �. In the semi
lassi
al the-ory used here, the e�e
tive a
tion quantum � is restri
ted to values betweenzero and 2� where � = 0 des
ribes the 
lassi
al limit. The temperature 
or-responding to � = 2� is known as the 
rossover temperature below whi
htunneling dominates the transitions between states of lo
al potential energyminima [16℄.Panel (a) of Fig. 2 shows the total depopulation fa
tor ��1 in the 
lassi
allimit, i.e. for � = 0 as a fun
tion of the energy loss Æ in the smaller well andof the ratio of energy losses �=Æ. The depopulation fa
tor is a monotoni
allyin
reasing fun
tion of both variables Æ and �=Æ. It approa
hes unity wheneither argument goes to in�nity. Panel (b) shows how the depopulation
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Fig. 2. In panel (a) the depopulation fa
tor ��1 is displayed in the 
lassi
al limit asa fun
tion of the energy loss Æ in the middle well and the ratio of energy losses �=Æ.Panel (b) shows ��1 as a fun
tion of the dimensionless quantum a
tion � = ~��zand Æ for �=Æ = 4.



368 E. Pollak, P. Talknerfa
tor ��1 typi
ally in
reases when quantum tunneling 
omes into play. Forlarger energy loss ratios �=Æ than shown here and su�
iently large Æ, thedepopulation fa
tor has a shallow minimum as a fun
tion of � if Æ is kept�xed at a su�
iently large value.Fig. 3 shows the ratio of the dire
t rate from the left well to the rightwell to the total rate out of the left well: Z = �1 �1=��1, in the 
lassi
allimit. For a �xed value of Æ this ratio rea
hes a plateau for su�
iently large�=Æ. The height of the plateau in
reases to unity with de
reasing Æ, sin
ein this limit, the parti
le hardly gets trapped in the middle well.
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Fig. 3. The ratio Z = �1 �1=��1 of the partial rates from one to the other deepwell and from a deep to the middle well as a fun
tion of Æ and �=Æ in the 
lassi
allimit.One may also 
ompare the rates in the triple well system with the ratein a symmetri
 double well system with the same energy loss in ea
h wellas in the left and right wells of the triple well system. The 
orrespondingdepopulation fa
tor for a double well system is given by [5℄:�dw = exp0B�~��z sin(~��z=2)2� 1Z�1 d� ln 1� ~P (�i(�+ 12 ))1+ ~P (�i(�+ 12 ))
osh(�~��z)� 
os(~��z=2)1CA :(2.25)In Fig. 4 the total rate out of the left well relative to the double well rate isshown as a fun
tion of Æ and �=Æ in the 
lassi
al limit. If the energy lossesin the left and right wells and the middle well are 
omparable, this ratio islarger than unity by up to 40%. Otherwise it is 
lose to unity with a shallowtren
h at small Æ where the ratio of the rates is even less than unity.Only a part of the parti
les es
aping from the left well will �nally enterthe right well. If the rate out of the middle well is su�
iently fast half ofthose parti
les whi
h enter the middle well will 
ontinue to the right well but
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Fig. 4. The ratio � = ��1=�dw of the total rate out of a deep well in a symmetri
triple well system and in a double well system as a fun
tion of Æ and �=Æ in the
lassi
al limit.the other half will go ba
k to the left well. So the e�e
tive rate populatingthe right well is given by�!1 = �1 �1 + 12�0 �1 : (2.26)Panel (a) of Fig. 5 displays the ratio �!1=�dw in the 
lassi
al limit. One�nds that it is a de
reasing fun
tion in both arguments Æ and �=Æ whi
h isalways less than unity and goes to a half if either argument be
omes large.If tunneling 
omes into play the e�e
tive rate is further de
reased relativeto the double well rate. In any 
ase, the e�e
tive rea
tion rate is alwayssuppressed by the presen
e of a third well.
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Fig. 5. Panel (a) displays the ratio � = �!1=�dw of the e�e
tive rate into the �naldeep well in the triple well system and of the double well rate in the 
lassi
al limitas fun
tion of Æ and �=Æ. In panel (b) � is shown as a fun
tion of the dimensionlessa
tion quantum � and Æ at the �xed value �=Æ = 4.



370 E. Pollak, P. Talkner3. Dis
ussionA semi
lassi
al solution for the rates in a symmetri
 triple well potentialhas been presented. The main result is that the presen
e of a middle wellredu
es the rate from left to right, relative to the double well 
ase. At most,this redu
tion is by a fa
tor of two. This o

urs in the spatial di�usionlimited regime, where the �ux out of the left well �rst gets trapped in themiddle well and only then has a probability of 1/2 of rea
hing the rightwell. In the underdamped limit, if the energy loss in the middle well is smalland su�
iently smaller than the energy loss in the left and right wells, thenmost of the es
aping �ux goes dire
tly from left to right and the middlewell be
omes unimportant. The double hops lead to a larger rate then inthe spatial di�usion limited regime where only single hops between adja
entwells 
an o

ur.Quantum e�e
ts tend to always push one towards the spatial di�usionlimited regime. Quantum tunneling redu
es the energy needed for es
apeand thus the energy transfer pro
ess needed for a
tivating the es
aping par-ti
le be
omes less important. As a result, the redu
tion of the rate due tothe middle well grows in the presen
e of quantum tunneling.The 
ase studied here sheds light on what would happen in the 
aseof a bridged system with N wells between the left and right deep wells.In the spatial di�usion limited regime, the rate is redu
ed by a fa
tor of1=(N + 1) relative to the double well 
ase [15℄. In the underdamped limit,multiple hops over the bridge wells would ultimately bring the rate ba
k tothat expe
ted for a double well potential. A solution of the general bridgepotential problem is though mu
h tougher and is left as an open problemfor future resear
h.This work was supported by the Meitner�Humboldt fellowship of theAlexander von Humboldt Foundation.REFERENCES[1℄ H.A. Kramers, Physi
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