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In the recently elaborated fully solvable mathematical problem, to be
concerned of a finding of an explicit form of the pion scalar form factor, the
inaccurate experimental information on the S-wave iso-scalar ππ-scattering
phase shift in the elastic region is replaced by the data with theoretical
errors to be generated by the Garcia-Martin–Kaminski–Pelaéz–Yndurain
Roy-like equations and, as a result, the correct values mσ = (472±10) MeV
and Γσ = (524 ± 22) MeV of the scalar meson f0(500) parameters are
determined.
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1. Introduction

In paper [1], fully solvable mathematical scheme for finding an explicit
form of the experimentally unmeasurable pion scalar form factor (FF) Γπ(t)
was elaborated and, as a result, an existence of the scalar meson f0(500)
(historically to be called the σ-particle) has been evidently demonstrated.

However, its mass and the width obtained in this way do not agree with
values to be determined by different methods in papers [2, 3], which are
considered to be the best determinations of the σ-meson parameters up to
now. A reason is that there are no data on the S-wave iso-scalar ππ-phase
shift with very high precision in the elastic region.
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Therefore, in this paper, more precise data on the S-wave iso-scalar
ππ-scattering phase shift, generated by the Garcia-Martin–Kaminski–Pelaéz–
Yndurain Roy-like equations in the elastic region, i.e. below 1 GeV2, are used
and one finally obtains in the framework of the fully solvable mathematical
scheme in [1] the correct values of the σ-meson parameters to be consistent
with mass and the width from [2,3].

2. Pion scalar form factor phase representation

The pion scalar FF Γπ(t) is defined by means of the matrix element of
the scalar quark density ūu+ d̄d〈

πi(p2) | m̂
(
ūu+ d̄d

)
| πj(p1)

〉
= δijΓπ(t) , (1)

where t = (p2−p1)2 is the momentum transfer squared and m̂ = 1
2(mu+md).

The pion scalar FF has similar properties to the pion electromagnetic FF [4].
The starting point of the fully solvable mathematical scheme in [1] is the

pion scalar FF phase representation, which is derived from the pion scalar FF
dispersion relation with a combination of the pion scalar FF elastic unitarity
condition.

Application of any dispersion relation is always more effective if as much
subtraction is used as possible. However, the pion scalar FF is not experi-
mentally measurable quantity and we know it only at the normalization point
from χPT [5] to be equal to the pion sigma term Γπ(0) = (0.99± 0.02)m2

π.
Just the latter value Γπ(0) = m2

π is used to derive dispersion relation with
one subtraction, which together with the pion scalar FF elastic unitarity
condition

ImΓπ(t) = Γπ(t)e−iδ
0
0 sin δ00 , (2)

with S-wave isoscalar ππ-scattering partial wave amplitude M0
0 (t) =

e+iδ
0
0 sin δ00 and valid for 4m2

π ≤ t ≤ 1 GeV2, provides the true pion scalar
FF phase representation with one subtraction

Γπ(t) = Pn(t) exp

 t
π

∞∫
4m2

π

δΓ (t′)

t′(t′ − t)
dt′

 , (3)

where Pn(t) is an arbitrary polynomial normalized at t = 0 Pn(0) = 1,
however, its degree must not violate the asymptotic behavior of Γπ(t).

3. Most general parametrization of tan δΓ (t) in q variable

The pion scalar FF Γπ(t) is analytic in the whole complex t-plane, except
for a cut along the positive real axis, from t = 4m2

π up to ∞.
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For real values t < 4m2
π, Γπ(t) is real. The latter implies the so-called

reality condition
Γ ∗π (t) = Γπ(t∗) , (4)

i.e. that the values of FF above and below the cut are complex conjugate of
each other.

Starting from the unitarity condition (2), one can do analytic continua-
tion of Γπ(t) through the upper and lower boundaries of the elastic unitary
cut and prove in this way the singularity at t = 4m2

π to be a square root
branch point, generating two-sheeted Riemann surface in t-variable on which
the pion scalar FF is defined.

So, by an application of the conformal mapping,

q = [(t− 4)/4]1/2 , mπ = 1 (5)

two-sheeted Riemann surface of Γπ(t) in t-variable is mapped into one ab-
solute valued pion c.m. three-momentum q-plane and the elastic cut disap-
pears. Neglecting all branch points beyond 1 GeV2, there are only poles and
zeros of Γπ(t) in q-plane. The latter together with the reality condition (4)
leads to the completely general parametrization of the tangens of the pion
scalar FF phase

tan δΓ (t) =
A1q +A3q

3 +A5q
5 +A7q

7 + . . .

1 +A2q2 +A4q4 +A6q6 + . . .
(6)

with all Ai real coefficients.
There is no knowledge about a behavior of δΓ to describe it optimally

by finite number of the coefficients Ai in (6). Nevertheless, from the elastic
unitarity condition (2), it follows that the phase δΓ of Γπ(t) coincides with
the S-wave iso-scalar ππ phase shift δ00 for which data exist (though very
inaccurate and, in some region, even contradicting) and just the latter en-
abled us to obtain in [1] an explicit form for the pion scalar FF Γπ(t) to be
valid below 1 GeV2 and subsequently to specify the f0(500) meson pole on
the second Riemann sheet in t-variable.

4. Analysis of new S0
0 ππ phase shift data

The inaccurate experimental information on the S-wave iso-scalar ππ
phase shift below 1 GeV2 has been sufficient in [1] to confirm the existence
of the σ-particle, however, with no world-wide values of mass and the decay
width.

In order to demonstrate obtaining the correct values of the f0(500)-meson
parameters, here we use instead of the existing inaccurate experimental infor-
mation in Fig. 1 the data below 1 GeV2 with theoretical errors in Fig. 2 to be
generated by the Garcia-Martin–Kaminski–Pelaéz–Yndurain Roy-like equa-
tions. Their best description (see full line in Fig. 2) by the parametrization
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Fig. 1. Experimental information on S-wave iso-scalar ππ phase shift ex-
ploited in [1].

Fig. 2. New S-wave iso-scalar ππ phase shift data with theoretical errors.

δ00(t) = arctan
A1q +A3q

3 +A5q
5 +A7q

7 + . . .

1 +A2q2 +A4q4 +A6q6 + . . .
(7)

is achieved again with first 5 nonzero real coefficients, however, acquiring
the following numerical values:

A1 = 0.23456± 0.00778 ; A3 = 0.11595± 0.00296 ;

A5 = −.01180± 0.00031 ; A2 = −.10376± 0.00373 ;

A4 = −.00288± 0.00046

to be different from those in [1].
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5. Calculation of the integral leading to explicit form of Γπ(t)

The substitution of δ00(t) (7) with 5 nonzero above-mentioned coefficients
into the pion scalar FF phase representation (3) does not lead to the way of
an explicit calculation of the corresponding integral.

Therefore, the equivalent form to arctan (well known in the theory of
functions of complex variables) the logarithmic representation

δ00(t) =
1

2i
ln

(
1 +A2q

2 +A4q
4
)

+ i
(
A1q +A3q

3 +A5q
5
)

(1 +A2q2 +A4q4)− i (A1q +A3q3 +A5q5)

is utilized, which gives the expression

Γπ(t) = Pn(t) exp

(
q2+1

)
πi

∞∫
0

q′ ln
(1+A2q′2+A4q′4)+i(A1q′+A3q′3+A5q′5)
(1+A2q′2+A4q′4)−i(A1q′+A3q′3+A5q′5)

(q′2 + 1) (q′2 − q2)
dq′ (8)

already leading to our intention.
Really, taking into account the fact that the integrand is even function

of its argument, i.e. it is invariant under the transformation q′ → −q′, the
previous expression takes the form

Γπ(t) = Pn(t) exp

(
q2+1

)
2πi

∞∫
−∞

q′ ln
(1+A2q′2+A4q′4)+i(A1q′+A3q′3+A5q′5)
(1+A2q′2+A4q′4)−i(A1q′+A3q′3+A5q′5)

(q′2 + 1) (q′2 − q2)
dq′ (9)

in which the integral is explicitly calculable by means of the theory of residua.
The corresponding integral, considering the case q2 < 0, i.e.

q = i
√

4−t
4 ≡ ib, is transformed into the final form

I =

∞∫
−∞

q′ ln (q′−q1)(q′−q2)(q′−q3)(q′−q4)(q′−q5)
(q′−q∗1)(q′−q∗2)(q′−q∗3)(q′−q∗4)(q′−q∗5)

(q′ + i) (q′ − i) (q′ + ib) (q′ − ib)
dq′ (10)

with all singularities of its integrand presented in Fig. 3.
Further, it is convenient to split the integral into sum of two integrals

I =

∞∫
−∞

q′ ln (q′−q2)(q′−q3)(q′−q4)(q′−q5)
(q′−q∗1)

(q′ + i) (q′ − i) (q′ + ib) (q′ − ib)
dq′ (11)

+

∞∫
−∞

q′ ln (q′−q1)
(q′−q∗2)(q′−q∗3)(q′−q∗4)(q′−q∗5)

(q′ + i) (q′ − i) (q′ + ib) (q′ − ib)
dq′ = I1 + I2 (12)

according to singularities to be placed in the upper half-plane or in the lower
half-plane, respectively.
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Fig. 3. Poles (×) and branch points (•) of the integrands φ1(q′, q) and φ2(q′, q)

with contours of integrations in the upper and the lower half-planes, respectively.

The simplest way of a calculation of both integrals is the following.
In the first integral I1,∮ q′ ln (q′−q2)(q′−q3)(q′−q4)(q′−q5)

(q′−q∗1)

(q′ + i) (q′ − i) (q′ + ib) (q′ − ib)
dq′ = 2πi

2∑
n=1

Resn , (13)

the contour of integration is closed in the lower half-plane and in the second
integral I2,∮ q′ ln (q′−q1)

(q′−q∗2)(q′−q∗3)(q′−q∗4)(q′−q∗5)

(q′ + i) (q′ − i) (q′ + ib) (q′ − ib)
dq′ = 2πi

2∑
n=1

Resn , (14)

the contour of integration is closed in the upper half-plane.
In a such way, one avoids complicated calculations of the cut contribu-

tions (see [1]) to be generated by branch points under logarithms.
Then for I1, one gets

−I1 =

−∞∫
+∞

φ1(q
′)dq′ = 2πi

2∑
n=1

Resn (15)

with residua at the poles

Resφ1(−i, q) = − 1

2 (q2 + 1)
ln

(i+ q2) (i+ q3) (i+ q4) (i+ q5)

− (i+ q∗1)
,

Resφ1(−ib, q) =
1

2 (q2 + 1)
ln

(q + q2) (q + q3) (q + q4) (q + q5)

− (q + q∗1)
,
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and for I2 as follows

I2 =

∞∫
−∞

φ2(q
′)dq′ = −2πi

2∑
n=1

Resn (16)

with residua at the poles

Resφ2(i, q) = − 1

2 (q2 + 1)
ln

(i+ q∗1)

(i+ q2) (i+ q3) (i+ q4) (i+ q5)
,

Resφ2(ib, q) =
1

2 (q2 + 1)
ln

(q + q∗1)

(q + q2) (q + q3) (q + q4) (q + q5)
.

Then

I1 =
1

2

2πi

(q2 + 1)
ln

(q + q∗1)

(q + q2) (q + q3) (q + q4) (q + q5)

×(i+ q2) (i+ q3) (i+ q4) (i+ q5)

(i+ q∗1)

and

I2 =
1

2

2πi

(q2 + 1)
ln

(q + q∗1)

(q + q2) (q + q3) (q + q4) (q + q5)

×(i+ q2) (i+ q3) (i+ q4) (i+ q5)

(i+ q∗1)
.

The sum I1 + I2 represents the total integral

I =
2πi

(q2 + 1)
ln

(q − q1)
(q + q2) (q + q3) (q + q4) (q + q5)

×(i+ q2) (i+ q3) (i+ q4) (i+ q5)

(i− q1)
and its substitution into the pion scalar FF integral representation (9) gives

Γπ(t) = Pn(t)
(q − q1)

(q + q2) (q + q3) (q + q4) (q + q5)

×(i+ q2) (i+ q3) (i+ q4) (i+ q5)

(i− q1)
,

just the explicit form of the pion scalar FF, the graphical behavior of which
is presented in Fig. 4.

The −q3 pole of Γπ(t) on the second Riemann sheet in t-variable corre-
sponds to f0(500)-meson resonance with the mass and the width mf0(500) =
(472±10) MeV, Γf0(500) = (524±22) MeV to be compatible with world-wide
values in [2, 3].
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Fig. 4. Behavior of the pion scalar form factor in the region −1 GeV2 < t < 1 GeV2.

6. Conclusions

An original method for a prediction of the pion scalar FF behavior has
been elaborated by utilization of its phase representation, the δ00 parametriza-
tion obtained from general considerations and precise data on it in elas-
tic region with theoretical errors to be generated by the Garcia-Martin–
Kaminski–Pelaéz–Yndurain Roy-like equations. As a result, the existence
of f0(500) scalar meson is confirmed again in a completely model indepen-
dent way, however, with world-wide parameters mf0(500) = (472± 10) MeV,
Γf0(500) = (524 ± 22) MeV to be compatible with those in [2, 3] and deter-
mined in different ways.
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