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We discuss and illustrate a computer-designed algorithm allowing to
construct the nuclear potential energy surfaces generated by a mean field
Hamiltonian H(«) as functions of the ensemble of nuclear deformation vari-
ables a for multi-particle multi-hole excited configurations. The algorithm
in question serves to eliminating the undesired effect of the so-called avoided
crossing mechanism, a consequence of the well-known property referred to
as Landau—Zener non-crossing rule.
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1. Introduction

In this article, we discuss an algorithm of calculating nuclear poten-
tial energy surfaces for the multi-particle multi-hole excitations using the
mean-field approach. The underlying problem is related with the mecha-
nism known in many applications of quantum mechanics and, in particular,
in quantum chemistry under the name of avoided crossing, sometimes non-
crossing or intended crossing mechanisms, also Landau—Zener non-crossing
rule, ¢f. e.g. Ref. [1]. More precisely: Consider eigenvalues of an Hermitian
matrix depending on n continuous, real parameters. The eigenvalues can
be treated as functions of these parameters and as it turns out, in general
they cannot become equal for any choice of parameters in the considered
n-dimensional space. In the present context, the Hermitian matrix in ques-
tion will be identified with the nuclear mean-field Hamiltonian depending
on n real deformation parameters.

* Presented at the XXV Nuclear Physics Workshop “Structure and Dynamics of Atomic
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In order to describe the particle-hole excitation energies in the deforma-
tion space considered, special care needs to be taken of the single-particle
level crossings — which are numerous, when the evolution of the nuclear
shape in the deformation spaces is studied. More precisely, if Hamiltonian
of the studied system is symmetric under some symmetry group, then the
description of the level-crossings in the single-particle spectra usually follows
one of the two possible scenarios.

According to the first of those scenarios, when two given single-particle
states belong to the same irreducible representation of the symmetry group,
the corresponding energies may approach each other when the deformation
changes, but they do not cross as the result of the just mentioned Landau—
Zener non-crossing rule. Thus, the levels which at the increasing deformation
approach each other, and next evolve as if “repelling each other without
touching”, cf. full lines in the schematic illustration in Fig. 1, right panel,
represent the situation referred to as non-crossing or pseudo-crossing.

In contrast, the states belonging to the different irreducible representa-
tions “can simply cross” (Landau—Zener rule does not apply), as illustrated
by two straight dashed lines in Fig. 1, left panel.

Let us emphasise that in nuclear structure physics, the same rules apply
also to another case of strong interest, viz. description of nuclear rotation
in terms of the cranking approximation, where the role of the deformation
parameters is played by the rotation (cranking) frequencies, {wy,wy,w.}. In
this particular case, we may rather straightforwardly learn about the nuclear
system preferences as far as the way of transiting through the crossing zones
is concerned: Does the system evolve through the crossing by following al-
ways the lowest level (full line in Fig. 1, right) — or — does it “jump” by
continuing the evolution along the prolongation of the lower level as if cross-
ing never existed? To answer this question, it will be instructive to recall
that the derivative of the single-particle level with respect to the cranking
frequency gives, up to the sign, the single-particle angular momentum align-
ment, here denoted j¥. Indeed, consider rotation about the O,-cranking
axis. Omitting index z for simplicity, we have
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where ¥ and J“ are, respectively, the aligned angular momentum and
kinematical moment of inertia, both easily accessible via experiment. Com-
parison with numerous experimental results shows that the nuclear system
in the great majority of the known cases follows the scenario of a direct jump
“as if the crossing did not exist”.

Similar can be said about the energy dependence on deformation.
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2. Description of single-particle level crossing

In the considered nuclear context, the numerical algorithms begin with
solving the Schrédinger equation usually via diagonalisation of the nuclear
mean-field Hamiltonian employing the harmonic oscillator basis. The solu-
tions of the mean-field problem are the single-nucleonic orbitals {e,, 1, } and
the first problem which arises at this stage is the choice of labelling (more
generally: identification) of the corresponding solutions. A possible way out
is to apply the single-particle so-called Nilsson labelling, Ref. [2]. In this
case, the single-particle levels are labelled with a set of quantum numbers
characterising the harmonic oscillator basis-state leading in the expansion.
For example, the asymptotic quantum numbers such as the main harmonic
oscillator shell N, the number of quanta in the z-direction, n,, the projec-
tion of the orbital angular momentum on the symmetry axis, A, and the
corresponding projection of the total angular momentum, {2, define the set
denoted [Nn,A]f2 which can be used as a label.

In the case of the Nilsson model, the above scheme turned out to be very
useful since the dominating harmonic-oscillator-basis states appeared in the
expansion of the solutions with the very large amplitude (or probability).
This characteristic domination gave a strong justification for the use of this
labelling. As it turns out, the levels which have the same (very similar)
slope before and after the crossing keep the same Nilsson labelling. This
information could be conveniently used to treat the avoided level crossings
within numerical algorithms.

In the case of more realistic potentials, e.g. “Woods—Saxon universal”
model family, Ref. [3]|, the scheme described above is a much less evident
choice since the leading wave functions may appear in the expansion of the
solutions with the probabilities of the order of 10-to-15% and, as it turns
out, several harmonic oscillator wave functions may appear with the compa-
rable amplitudes. As one of the implications, more than one single-particle
solution may appear with the same label. Despite the above caution, it is
still common in the literature to use this labelling of the single-particle or-
bitals. Thus, the quantum numbers corresponding to the basis state with
the largest amplitude, even if the next important one differs from the pre-
ceding one in terms of the probability amplitudes only insignificantly, are
usually used as labels.

As we shall see, in the case of the realistic Hamiltonians (potentials), the
discussed labels of states are changing along with the deformation parame-
ters and are in the present context not very useful. Therefore, we intend to
employ the information about the whole intrinsic structure of the orbitals,
which remains robust when deformation varies. These properties will be
employed and discussed in the following.



530 A. BARrAN, J. DUDEK

3. The case of a two-level model

Let us first consider a simplified-model real-Hamiltonian H having only
two eigenstates. The matrix representation of H within a basis say, ¢1 and
@9, can be given as

—e v
Hk,é%[ v e] (2)
Figure 1 can be seen as a schematic illustration of two alternative situations:
— Non-mixed states (left panel): interaction v = 0;

— Mixed states (right panel): interaction v # 0.
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Fig.1. Schematic illustration of the two discussed variants of the level crossing.
Left: No mixing and no repulsion of levels, levels cross. Right, full lines: Mixing,
the levels repel each other.

The wave functions ¥; for ¢ = 1,2 can be represented as follows. For the
non-mixed states (v = 0), one may select ¥; = ¢1 and Wy = ¢3, whereas for
the case of v # 0, one has

U = +adr + B2, (3)
Uy = —fo1 + ags, (4)

where
o> + 8> =1. (5)

At the crossing point, the amplitudes are equal, i.e. |a| = |3] = 1/v/2.
Traversing the crossing point leads to the exchange of the structure of ¥
and ¥,. For instance, one has for ¥; on the left-hand side of the crossing
point |a| > ||, whereas on the right-hand side of the crossing point |3| > |«|.
The commonly used identification of the structure of states according to the
labels attached to ¥; and s becomes misleading. To respect the structure
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content of the wave functions, the label “1” of the lower level before the
pseudo-crossing should be used to label the upper level after the pseudo-
crossing point, with the similar manipulation for the other pair of levels.

The problem posed is the following: How to construct an automatic,
computer programmable algorithm, which in the realistic Hamiltonian case
connects the levels of the same structure before the crossing and after the
crossing, rather than connecting the levels according to the energy order:
“the first level connected always with the first level”, “the second level con-
nected always with the second level”, etc.

4. Identification of levels before avoided-crossing removal

Let us consider two successive deformation points, the one to the left of
the crossing point, labelled with the letter L and another one, to the right
of the crossing point, labelled with the letter R (see Fig. 2). Both points are
selected in such a way that in the present context L and R can be considered
“sufficiently close” to each other.

We say that a single-particle state g(k| at R is of a similar structure
compared to the state |m)y, at L, if and only if the absolute value of the
scalar product of corresponding eigenvectors at L and R is close to 1, i.e.

I (klm)r| ~ 1. (6)

Otherwise, they are considered being of dissimilar structure and satisfy
|L(klm)r| = 0. The above property can be considered as an extension of the
notion of the orthonormality of eigenvectors for some neighbouring points L
and R.

The above scheme is directly applicable to the realistic nuclear mean-field
Hamiltonians, e.g. for the case of the Woods—Saxon potential:

— After calculating all the eigenvectors of interest, {1, (k|} and {|m)r},
at deformation points L. and R, respectively, one calculates the cor-
responding overlaps. These overlaps are used to identify the pairs of
levels {k, m} for which the scalar product | (k|m)r| ~ 1.

— For the appropriately chosen deformation-distance between L and R,
all but one pair of considered vectors are approximately orthogonal.
This information completes the necessary criterion for connecting the
levels which pass through the avoided crossing zones.

One may formulate this property alternatively as follows. Inspired by
illustration in Fig. 2, we consider two states arbitrarily called lower, (ki
and upper, (ky|, both at L and similarly lower, |my), and upper, |m,), both
at R. One expects two following situations:
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— If there is no crossing, the following approximate relations hold:

[(kafmu)| =~ 1, (7)
[(ku|mu)| =~ 1, (8)
[(kilma)| ~ 0, (9)
[(ku|mu)| =~ 0. (10)

— In the case of the crossing of levels k and m, the following relations
are approximately valid:

[(kilm)| ~ 0, (11)
| (kulmu)| =~ 0, (12)
[(kilmu)| =~ 1, (13)
[(Fulr)| ~ 1 (14)

The above system of conditions allows to identify the levels which go straight
from L to R without crossing and thus for constructing of the particle-hole
excitation energies and the corresponding total potential energy surfaces.

Energy
=
/

Deformation

Fig. 2. Schematic illustration. Full dots represent energies of single-particle states
at the selected deformation points labelled L and R, which have to be joined ac-
cording to some identification rule. In the present article, we select the size of the
absolute value of the scalar product of the corresponding eigenstates.
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5. An illustrative example

In this article, we employ the nuclear mean-field approach with the stan-
dard phenomenological “universal” Woods-Saxon Hamiltonian of Ref. [3].
Figure 3 shows the spectrum of the single-particle proton levels in 36Kr.
The spectrum was generated using Woods—Saxon potential.
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Fig.3. Proton single-particle energy levels obtained using the deformed Woods—
Saxon potential (with the so-called “universal parameters”) for §¢Krso. We use the
asymptotic-type Nilsson labels [Nn,|A|]{2.

In the following figures, we illustrate the potential energies of the
2-quasiparticle excited configurations for neutrons and protons obtained by
employing the above algorithm. As expected, the minima of excited states
generally differ, sometimes considerably, as compared to the minimum of
the ground state of the nucleus.
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2qp excitations. Neutrons. Z=40, N=70
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Fig.4. The lowest 2-quasi-particles neutron energy levels (upper part of the figure)
and proton ones (lower part of the figure) in Woods—Saxon potential for 110Zrq.
The lowest black curve represents the energy of the ground state of the nucleus.

6. Conclusions

In the present note, we discuss a proposition of an automatic algo-
rithm serving to connect the nuclear mean-field single-particle energy levels
through the avoided-crossing zones by employing the criteria of structural
similitude of the orbitals before and after the crossing zone. The algorithm
uses the criterion of the maximum overlap of eigenfunctions associated with
the connected energy levels. With the help of this algorithm, potential
energy surfaces corresponding to multi-particle multi-hole excited configu-
rations as well as many quasiparticle-excitations treated as functions of the
deformation can be constructed.

The same algorithm can be straightforwardly used for calculating the
nuclear energies of the rotational states treated as functions of the cranking
frequencies before conveniently transforming them into energy wversus spin
representation for easier comparison with experiment.
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