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The time-dependent energy density functional with pairing allows to
describe a large variety of phenomena from small to large amplitude collec-
tive motion. Here, we briefly summarize the recent progresses made in the
field using the TD-BCS approach. A focus is made on the mapping of the
microscopic mean-field dynamics to the macroscopic dynamics in collective
space. A method is developed to extract the collective mass parameter
from TD-EDF. Illustration is made on the fission of 258Fm. The collective
mass and collective momentum associated to quadrupole deformation in-
cluding non-adiabatic effects is estimated along the TD-EDF path. With
these information, the onset of dissipation during fission is discussed.
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1. Introduction

Recently, an effort has been made to give a unified description of small
and large amplitude collective motion within the microscopic time-dependent
energy density functional (TD-EDF) theory. The inclusion of pairing effects
in nuclear dynamics has opened new perspectives for the description of giant
resonances [1, 2] or direct reactions like nucleon transfer [3]. Quite recently,
the possibility to get physical insight on the fission process using microscopic
transport models has been revisited including pairing [4, 5] or not [6–8].

In the present article, some aspects of fission are discussed using the
recently developed TD-BCS model.
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2. Fission dynamics with TD-BCS

The TD-BCS approach is a microscopic method that solves the evolu-
tion of quasi-particle states in their self-consistent mean-field and pairing
field. Technical aspects related to the TD-BCS we are using are extensively
described in Refs. [3,9,10]. Some great advantages of this approach is that:

(i) It allows to treat nuclear dynamics from small to large amplitude col-
lective motion.

(ii) It does not pre-select a priori specific collective degrees of freedom
(DOFs). As a matter of fact, any collective DOF can play an important
role as soon as it can acquire non-zero value consistently with the
symmetries of the initial condition.

(iii) It does not presuppose that the collective motion is adiabatic or not.
In the context of fission, it is still quite useful to first consider the
adiabatic energy landscape as a function of some collective DOFs, like
elongation, multipole moments, etc.

An illustration is given in Fig. 1 for the case of 258Fm fission. This curve
is obtained here using the static version of TD-EDF with various constraint
on the quadrupole moment. In the limit of very slow fission, it is expected
that the dynamics directly reflects the motion along the adiabatic path.
However, starting from one of the point in the curve, there is no reason that
the TD-EDF evolution follows this energy landscape. Indeed, the motion
can eventually be rather fast especially close to the scission point where the
slope of the energy landscape change abruptly. The motion can be more

Fig. 1. (Color on-line) Left: Adiabatic potential energy curve obtained for the case
of compact symmetric fission in 258Fm. The corresponding neutron and proton
single-particle energies are shown in the right part. See Refs. [4,5] for details. The
two extreme cases of adiabatic and diabatic motions are illustrated close to level
crossing.
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complex than a collective motion in one dimension due to the possibility
to excite other DOFs. The departure from adiabatic motion can directly be
observed in the evolution of the nucleus density in TD-EDF (see Fig. 2). We
see in this figure that the two nuclei after scission can exhibit large octupole
deformation. Such deformations are not observed along the adiabatic path.

Fig. 2. (Color on-line) Illustration of the density profiles obtained with TD-EDF
at different time of the fission process.

3. Collective aspects of mean-field dynamics

To further study some aspects of fission with TD-EDF and make con-
nection with macroscopic models, it is highly desirable to be able to define
collective masses and momenta associated with a set of degrees of freedom.
A method has been proposed in Ref. [5]. In general, the collective variable
under interest Q̂ is known explicitly (multipole moments, relative distance,
mass asymmetry, neck, etc). Less easy is the knowledge of the associated
collective momentum P̂ and associated mass M . Several methods based
on adiabatic approximation are usually used to construct these quantities.
Here, we directly deduce them from TD-EDF evolutions.

Assuming that the collective variable is local, and that the conjugated
variables should fulfill the two conditions〈

[Q̂, P̂ ]
〉
= i~ (1)

and
d〈Q̂〉
dt

= − i

2~m
Tr
([
Q, p2

]
ρ(t)

)
≡ 〈P̂ 〉

M
, (2)

it was possible to prove that the collective momentum can be written as

P ≡ −i~M
m

(
∇2Q

2
+∇Q · ∇

)
. (3)
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Here, the collective mass M is given by

1

M(t)
=

1

m
Tr [ρ(t)∇Q · ∇Q] . (4)

This expression of the mass is sometimes also obtained in other approaches
that specifically assume adiabatic or diabatic motion. The great differ-
ence stems from the fact that here the density ρ(t) entering in it is the
TD-EDF one.

For instance, a similar mass formula is found in the context of giant
resonances using a scaling assumption (see, for instance, [11]), then the one-
body density identifies with the ground state density. This expression is also
obtained in the context of di-nuclear system [12] where small amplitude limit
is not assumed. In the latter case, it was shown that the above formula can
eventually lead to the standard adiabatic Cranking approximation if a slow
motion in collective space is assumed. It is finally interesting to mention
that the present expression for the mass and the present method differ from
the other ones due to the nature of the density entering in Eq. (4). The
density is directly the TD-EDF one and can contain non-adiabatic effects as
well as possible influence of other collective and non-collective DOFs. The
method we used to define collective mass and momentum is very general. As
far as the mass and collective momentum are concerned, we do not assume,
for instance, a decoupling of the single-particle and collective states as it is
sometimes assumed in microscopic models [13,14], we just use the fact that
the collective operator Q is a one-body operator. Such assumption of at least

Fig. 3. (Color on-line) Top: Evolution of the collective quadrupole mass along the
adiabatic path (solid black/red) and along the TD-EDF path (solid gray/green).
Bottom: The corresponding position in the PES is recalled.
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partial decoupling would be, however, necessary to obtain the non-adiabatic
potential energy landscape associated to the TD-EDF method as was tried
in Ref. [5, 15].

An illustration of the quadrupole collective mass obtained with the TD-
EDF method is shown in Fig. 3. For comparison, the mass obtained as-
suming that the density identifies with the density along the adiabatic path
is shown. While at initial instants, the system follows the adiabatic limit,
when it approaches the scission, the collective motion accelerates and clear
deviation from adiabaticity is observed.

4. Dissipated energy along the fission path

The possibility to access collective momentum is useful to get information
on the energy balance during fission. In particular, it can give access to
some dissipative aspects. We show in Fig. 4 examples of evolution of the
quadrupole momentum for different initial conditions taken for initial values
of Q2 lower or greater than the scission point Qsc

2 . The most important
feature is that, for Q2 ≤ Qsc

2 , all curves seem to become identical before
reaching scission. This could only be understood assuming that the system
is strongly damped at the early instant of its dynamical evolution and rapidly
ends up along the same dynamical path. It is worth mentioning that this
path does not necessarily match the one displayed in Fig. 1.
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Fig. 4. (Color on-line) Left: Evolution of the collective quadrupole momentum as a
function of the Q2 for different initial conditions. Right: Energy balance between
the kinetic energy associated to the relative motion of fissioning fragments and
Coulomb energy. The sum of the two quantities is shown to saturate to the final
total kinetic energy after scission point.

Starting from this finding and from the knowledge of the collective mo-
mentum, it was possible to extract the total energy dissipated along the
fission path [5]. It was shown that this dissipated energy is quite large and
can approach 10% of the final total kinetic energy TKE of the daughter
nuclei after fission. The TKE obtained in the symmetric compact fission of
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258Fm is shown in right panel of Fig. 1 and is close to 200 MeV. Therefore,
about 20 MeV of the initial energy is dissipated during the fission. In the
present calculation, this energy is transferred to other internal DOFs of the
two fissioning nuclei and can eventually lead to particle evaporation.

5. Summary

In the present article, we have illustrated the fission of a superfluid nu-
cleus using the TD-BCS approach. A method is used to get macroscopic
information, like collective momentum and mass from the microscopic evo-
lution. In particular, it is shown that the collective mass deviates from the
adiabatic limit, especially close to the scission point where the evolution is
faster. The sharing of the initial energy between total kinetic energy of final
fragments and internal excitations is also studied. It is seen that almost 10%
of the TKE was dissipated. This dissipation occurs at the very first instants
of the dynamical evolution.
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