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Fission fragment mass- and charge-distributions are among those ex-
perimental observables which could be directly compared to the theoreti-
cal predictions related to the Poincaré shape transitions accompanying an
increase of the nuclear angular momentum. We apply the macroscopic
nuclear liquid drop model to illustrate some characteristic features of the
Poincaré transitions focusing on the static and dynamical estimates of the
fission fragment mass-asymmetry. As an example, the results for 98Mo are
shown.
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1. Method

Shape transitions of gravitating objects such as stars and planets have
been the subject of interest for philosophers, mathematicians and physicists
over the centuries. An increase in the frequency of rotation of such astronom-
ical bodies is accompanied by a change in their form from the spherical one,
through oblate and tri-axial arriving at strongly elongated prolate shapes
before they possibly fission, as described for the first time by Jacobi [1].
Later on, Poincaré continuing the study of rotating masses, found out that
another form of the evolution may become possible: the rotating bodies may
loose their original left–right symmetry and undergo what is today referred
to as Poincaré transitions [2]. An experimental evidence of the Jacobi tran-
sition in rotating nuclei can be found in Refs. [3, 4], where the techniques
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similar to the ones employed in this article have been used to describe the
evolution of the strength function of the Giant Dipole Resonances (GDR)
with increasing spin, as a function of the changing most probable nuclear
shape.

Modeling of the high-temperature Poincaré shape transitions, possibly
competing with the Jacobi ones, can conveniently be performed using the
realistic modeling of the total nuclear energy — similar to the one in Ref. [5].
The first studies of this mechanism, cf. Refs. [6–8], allowed to choose the
optimal sets of deformation parameters necessary to describe such an exotic
phenomenon theoretically. A recent extension of the classical liquid drop
model approach to include the dynamical, in particular the large amplitude
motion effects in the context of the nuclear shape transitions can be found
in Ref. [9].

In the present article, we consider nuclei at the high temperature limit.
This allows us to employ the macroscopic liquid drop model alone to describe
the energies and, as a consequence, the equilibrium and/or the most probable
shapes of the rotating nuclei. Here, we use the so-called Lublin–Strasbourg
Drop (LSD) model, cf. Refs. [5,10,11]. The nuclear shapes are parameterized
in terms of the spherical harmonics Yλµ

R(ϑ, ϕ) = R0c(α)

1 +

λmax∑
λ=2

λ∑
µ=−λ

α?λµYλµ(ϑ, ϕ)

 , (1)

where R(ϑ, ϕ) represents the nuclear surface, and function c(α) assures the
constant volume condition. In the following, we use either the two-dimen-
sional axial-quadrupole axial-octupole projection-plane (α2 0, α3 0) or one-
dimensional projections on the α3 0-axis. The latter are obtained after mini-
mizing the total energy over 12 deformation parameters (α2 2, α4 0, α5 0, α6 0,
α7 0, α8 0, α9 0, α10 0, α11 0, α12 0). The algorithm assures that the center of
mass remains at the origin of the coordinate frame and does not change
when the odd-λ multipole-deformations vary.

The effects of the collective motion underlying the effects of the mass
asymmetry will be described approximately using the one-dimensional sec-
tions of the total nuclear potential energies along the octupole deformation-
axis. Indeed, this is α3 0-deformation which characterizes the nuclear left–
right asymmetry and describes, to a leading order, the nuclear Poincaré
transitions. The corresponding one-dimensional collective Hamiltonian will
be taken in the form of

Ĥ =
~2

2B

d2

dα2
3 0

+ V (α3 0) , (2)
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where B is the effective mass parameter characterizing the collective iner-
tia against the octupole type shape changes. It will be taken in the form
of a constant; to assure the correct order of magnitude estimate, this pa-
rameter will be adjusted in such a way that the energy of the zero-point
motion associated with the octupole collective motion and, in particular,
the octupole vibrations is, by convention, equal to 1 MeV. Function V (α3 0)
is the corresponding projection of the macroscopic potential energy onto the
octupole axis.

The solutions of the Schrödinger equation allow to obtain the most prob-
able dynamical deformation. We take as a measure of this quantity the
associated r.m.s. value ᾱ3 0, defined as follows:〈

α2
3 0

〉
=

∫
dαΨ∗

n(α)α2
3 0Ψn(α)→ ᾱ3 0 =

√〈
α2
3 0

〉
. (3)

The latter allows to obtain the associated dispersion of the form

σ3 0 ≡
√〈

α2
3 0

〉
− 〈α3 0〉2 . (4)

The discussion of the possible extension of the method to two-dimensional
Hamiltonian is presented in [9].

2. Results

The potential energy landscapes shown in Fig. 1 for rotating 98Mo nu-
cleus illustrates the evolution of the static energy minima with spin. The
static equilibrium shapes become more and more elongated with increas-
ing angular momentum. At spins of about 68 ~, the left–right symmetry
measured in terms of the static equilibrium deformations can be consid-
ered broken, even though at significantly lower spins there is a pronounced
softness in terms of the octupole deformation.

In this article, we discuss, in particular, the mass and the charge distri-
butions of the fission fragments produced in the process of fission of excited
compound nuclei. Here, the results are illustrated on the example of the
98Mo compound system, but similar procedure can be employed for any
other nucleus of interest. The nuclear densities are obtained microscopically
after diagonalisation of the deformed Woods–Saxon mean-field Hamiltonian,
for protons and neutrons separately. Figure 2 shows the density of protons
as a function of variable z (according to the shape parameterization used,
the Oz-axis is the nuclear symmetry axis).
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Fig. 1. The potential energy surfaces over the axial quadrupole and octupole
deformation-plane for 98Mo. The energy has been minimized over α2 2, α4 0, α5 0,
α6 0, α7 0, α8 0, α9 0, α10 0, α11 0, α12 0 deformations. The energies at the minima
are expressed relative to the spherical energy minimum at zero spin; they are given
in the boxes.
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Fig. 2. Examples of the nuclear matter density profiles obtained with the help of the
Woods–Saxon single particle Hamiltonian for a few sets of deformation parameters
given in the field of the figure.

The nuclear density profiles follow the shape of the nucleus and are sim-
ilar for protons and neutrons. The first and the second derivatives over z of
the nuclear density profiles are shown for completeness (Fig. 3). Even though
they may contain certain fluctuations which are of no particular significance
for the present discussion, they are useful in the numerical algorithm.
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Fig. 3. Proton density profile and its derivatives for the shape of 98Mo at spin
60 ~. The corresponding elongation is principally characterized by the quadrupole
deformation, here α2 0 = 1.5.

The calculated charge partition between the two fission fragments and
the neck is presented in Fig. 4 (a) as a function of the elongation of the
nucleus. The shapes for which the proton numbers displayed have been
obtained were taken along the path to fission at the spin of 60 ~ for 98Mo
compound system. With an increasing elongation, the octupole deformation
begins to play an important role, as it can be seen from Fig. 1. This is
visible from Fig. 4 (a), in which the difference between the charges of the
light and of the heavy fragments increases significantly for elongations in
excess of α2 0 = 1.2. The transition from symmetric and asymmetric shape
is manifested by the temporary increasing number of nucleons in the neck.

 0

 10

 20

 30

 40

 50

 1  1.5  2  2.5

P
ro

to
n
 N

u
m

b
e
r

α
20

 

98
Mo

a)

L=60  h/

light

heavy

neck

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.2  0.4  0.6  0.8  1

A
1
/A

α30

98
Mo

b)

α20 = 2.0
2.5
3.0

Fig. 4. (a) Evolution of the charge number in fission fragments and the nuclear neck
along the path to fission. (b) Mass asymmetry of the light fission fragment (A1/A)
for three nuclear elongations: α2 0 = 2.0, 2.5 and 3.0 for 98Mo. (Minimization over
αλ 0 for λ ≤ 12.)
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The minimum of energy for this system, at spin 60 ~, corresponds to
α2 0 = 0.6. The saddle point corresponds to α2 0 = 2.5, the deformation
very close to the scission deformation. Figure 4 (b) shows that the ratio
A1/A decreases almost linearly with the octupole deformation; this decrease
is almost independent of the quadrupole α2 0 deformation.

The above discussion addresses the static nuclear deformation. It allows
to connect the values of the octupole deformation with the number of protons
and neutrons in the nascent fragments. In the present calculations, the
deformations of protons and neutrons are kept the same, thus the shapes of
the corresponding density functions are similar.

The effects of the dynamical deformation of the nucleus can be estimated
using Eqs. (3)–(4). In particular, we may calculate in this way the most
probable (expected) values of some measures of the nuclear shapes as e.g.
the r.m.s. ᾱ3 0-values.

As it can be deduced from Eq. (3) and can be seen from the example in
Fig. 5, the dynamical octupole deformation of the nucleus is always different
from zero. In the illustrated case, the dynamical octupole deformation in-
creases significantly at the spins of about 60 ~ and the associated dispersion
increases as well. This effect is related to the flattening of the potential
energy landscapes visible in Fig. 1.
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Fig. 5. (Color on-line) Left: The static octupole deformations (green circles) by
definition correspond to the minima of the potential energy landscapes. The dy-
namical ones (red squares), ᾱ3 0, are defined according to Eq. (3). Right: The
probability density functions of the octupole shapes for spins displayed for the
lowest energy (zero phonon) collective solutions.

Figures 5 (right) and 6 (right) show the probability density functions
obtained with the help of the solutions of the collective Schrödinger equa-
tion, cf. Eq. (2). Since the mass asymmetry is directly associated with the
octupole deformation the probability densities shown relate to this quantity.
This information is essential in order to analyze correctly, i.e. in accordance
with the quantum mechanical solutions of the Schrödinger equation of the
collective motion, the experimental data which could confirm the presence
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of the Poincaré transition. Changing of the nuclear shape from prolate to
octupole-deformed with increasing angular momentum would be manifested
in the experiment as a widening of the mass distribution of the fission frag-
ments.
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Fig. 6. (Color on-line) Similar to Fig. 5 but at elongations corresponding to scission.

3. Summary

The nuclear Poincaré transitions take place during the shape evolution
of the nucleus with increasing spin, if the originally present left–right sym-
metry is lost at certain critical spin value. This breaking of the left–right
symmetry results in an increase of the charge and mass asymmetry of the
fission fragments.

The corresponding observables, such as predicted evolution of the charge
of the light and heavy fission fragments and the probability of the mass
asymmetry for chosen spins, have been calculated in this article and illus-
trated at an example of the nucleus 98Mo. The experimental evidence of the
Poincaré transition is expected to be manifested first of all by the widening
of the fission fragment mass/charge distributions with increasing spin. The
experimental data concerning the mass distribution of the fission fragments
of hot medium mass nuclei as a function of increasing/decreasing spin are
necessary for further advancements in this field.
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