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ON A CLASSICAL LIMIT OF THE DIRAC EQUATION WITH AN
) EXTERNAL ELECTROMAGNETIC FIELD.
PART I. PROPER-TIME EVOLUTION, LORENTZ COVARIANT
EXPECTATION VALUES AND CLASSICAL EQUATIONS OF
MOTION
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A framework is proposed for studying in a Lorentz covariant manner the Fhrenfest-
-type classical limit of the Dirac equation with an external electromagnetic field. We reformu-
late the Dirac equation using a Lorentz-invariant proper-time coordinate in Minkowski
space-time and we propose a new kind of expectation values which are Lorentz covariant.
Next, we give an example of a Lorentz- and gauge-covariant, bispinorial wave packet moving
along a given classical trajectory. Finally, we obtain Lorentz-covariant classical equations
of motion for a spin-% particle in an inhomogeneous electromagnetic field. The classical
equations of motion are a result of a consistency condition.

PACS numbers: 11.10.3j, 11.10.Qr

1. Introduction

Since its discovery in 1928 the Dirac equation has been one of the most important
equations in relativistic quantum physics. Nowadays this linear, first order partial differ-
ential equation is commonly regarded as something very simple. However, it is a fact that
solutions of this equation are known only in rather few cases of particularly symmetric
external electromagnetic fields. For more general external fields we can only find approxi-
mate solutions. There exist two important classes of approximate solutions of the Dirac
equation with an external electromagnetic field: WKB type solutions, {1}, and wave packet
solutions, {2, 3]. Investigations of the both types of approximate solutions lead to equations
which can be interpreted in the language of classical mechanics as classical equations of
motion. For this reason such investigations are usually referred to as classical limit of the
Dirac equation of the WKB type or Ehrenfest-type, respectively.

* On leave from the Jagelionian University, Cracow, Poland. Mailing address: Department of Field
Theory, Institute of Physics, Reymonta 4, 30-059 Cracow, Poland.
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In this paper we present the first part of our investigations of the Ehrenfest-type
classical limit of the Dirac equation. Below we develop a special formalism whose aim is to
preserve relativistic invariance in the classical limit of the Ehrenfest-type. The formalism
guarantees Lorentz covariance of expectation values, and it enables us to write explicitly
examples of Lorentz covariant wave packets moving along a given classical trajectory.
Moreover, it leads to a rather interesting derivation of classical equations of motion for
relativistic, spin § particle moving in an external electromagnetic field. In this paper we do
not consider the problem of actually finding an approximate, wave packet type solutions
for the Dirac equation. This will be the subject of a forthcoming paper.

Our considerations can be regarded as a continuation of the investigations of wave
packets for Dirac particle carried out in the papers [2, 3]. The considerations in [2] are
restricted to the free Dirac particle. In reference [3] in fact only a constant external electro-
magnetic field is considered, and covariance properties of expectation values are not
investigated in the most interesting case of nonzero external field.

Apart from the importance from a practical point of view our considerations about
wave-packet-type solutions of the Dirac equation have another interesting aspect. In
contradistinction to the nonrelativistic Schrodinger equation, the Dirac equation has been
invented without much emphasis on classical mechanics. Relativistic invariance was the
guiding principle. Therefore, it is not obvious what kind of classical mechanics underlies
the Dirac equation. The Pauli equation and the Foldy-Wouthuysen representation and
numerous subsequent investigations, see, e.g. [4-6] for results and further references, have
thrown some light on this problem Nevertheless, the problem still is far from being fully
clarified, and it is one of our goals to improve this situation by avoiding in our derivation
of the underlying classical equations of motion some of the shortcomings present in other
derivations of the classical equations of motion from the Dirac equation.

Thus, the contents of our paper is closely related to the topic of classical, spinning
particles. This topic has a rather long history, and it is abounding in the literature. The
derivations of classical equations of motion for a relativistic, spinning particle moving in
an external electromagnetic field presented in the literature can roughly be divided into
the following three groups:

— the purely classical approaches dealing with the so-called macroscopic spin, see, e.g.

4, 7%

— the derivations utilising anticommuting dynamical variables, see, e.g. [8];

— the derivations starting from the Dirac equation or another relativistic wave equation.
Obviously, our derivation belongs to the third group. Let us describe this group in more
detail. The main problem which the approaches belonging to the third group have to solve
is how to preserve Lorentz covariance while passing to classical mechanics. In order to
overcome this difficulty, many authors introduce so-called “proper time”, see, e.g. [4, 9],
which actually is a fifth dimension in space-time. Another “proper-time” is introduced

! The literature on classical, spinning particle counts over one hundred papers written during a period
of more than fifty years. Therefore, in the review of the literature given below we only quote sample papers
written relatively recently. References to many older papers can be found in the papers [4, 6].
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in [5]. Here it is not the fifth dimension, however its relation to the usual space and time
coordinates is not clear.

Quite a different attempt is presented in [6]. It relies on the relativistic version of the
Foldy-Wouthuysen transformation and on a Lorentz covariant position operator. Both
are given only in an approximate form. In the approximation considered this approach
does not involve any notions which are exterior to the quantum mechanics of a Dirac
particle. Unfortunately, it is not clear whether the appropriate operators exist in the next
order approximation. The same remark applies also to the approach presented in [10].

Moreover, there is a shortcoming which all the above mentioned derivations based
on relativistic wave equations have in common. Namely, they do not specify the actual
state of the particle, i.e., the wave function. The classical equations of motion are deduced
from the Heisenberg equations of motion for operators by merely a formal dequantiza-
tion, consisting of the replacement of the operators by real-number-valued classical
variables. Therefore, it is not clear how to interpret these classical variables from the
quantum mechanical point of view.

The derivations of the classical equations of motion presented in the WKB papers
[1] also belong to the third group of approaches. The authors of these papers use only
those notions which are explicitly or implicitly present in the quantum mechanics of a Dirac
particle. Also, a relevant wave function of the particle is given. Thus, these classical
equations have rather sound quantum mechanical foundations. They certainly are the right
classical equations for the WK B-type classical limit of the Dirac equation. These classical
equations of motion were obtained only for the lowest order approximation with respect
to powers of h. Probably for this reason they do not contain derivatives of the external
electromagnetic field F,,. In fact, the classical equations coincide with the well-known
B-M-T equations, [11]. In our paper we show that the same equations appear within the
Ehrenfest approach, again in lowest order approximation (in an expansion with respect
to the inverse of the mass of the Dirac particle.) Also within the Ehrenfest approach we
calculate the next order contributions — containing terms with derivatives of F,,.

Now, let us briefly sketch the contents of the present paper. However, before doing
this we would like to recall that the main idea of the Ehrenfest approach to the classical
limit, [12], consists of assuming that the solution of a wave equation can approximately
be given in the form of a wave packet moving along a definite classical trajectory with
the corresponding world-line £#(t). Then, the classical variables are defined as expectation
values of quantum mechanical operators. The classical equations of motion are nothing
but equations of motion for expectation values of quantum observables. However, when
proceeding along these lines in the case of the Dirac equation, we have to solve the problem
already mentioned of preserving the Lorentz covariance. This means that we have to develop
a rather unusual formulation of quantum mechanics of a Dirac particle which explicitly
utilizes the classical trajectory followed by the wave packet.

First, in Section 2 we present the new formulation of quantum mechanics of a Dirac
particle. Here the evolution of the wave function is not parametrized by time but by the
proper time for the world-line £*(z). This proper-time formulation is valid for wave functions
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which do not vanish in a certain finite vicinity of the classical trajectory. The Dirac equation
acquires a new form such that the corresponding Hamiltonian is not Hermitean. In spite
of that the proper-time evolution of the wave function is unitary, The wave functions de-
pend on the proper time and also on three other variables which parametrize the hyper-
plane perpendicular, in the Lorentz covariant 4-dimensional sense, to the world-line of the
classical particle. We also find that this new form of the Dirac equation suggests a new
scalar product for Dirac bispinors which is different from the standard

Cylgy = [ dxyle.

The new scalar product implies a new formula for expectation values, Section 3. The
new formula guarantees that the expectation values (and therefore also the classical variabl-
es) have a clear transformation law with respect to Lorentz transformations. This is in
sharp contrast to the traditional formula for expectation values. Also in Section 3 we briefly
discuss the observables for the Dirac particle from the viewpoint of the new form of the
Dirac equation and of the new scalar product.

In Section 4 we apply the proper-time formulation in order to construct an example
of the relativistic wave packet moving along the given classical trajectory. This wave packet
is explicitly covariant with respect to Lorentz transformations and also with respect to
gauge transformations of the external potential A4,(x).

In Section 5 we exploit the fact that in the proper-time formulation of the Dirac
equation it is possible to introduce a rest-frame for the quantum mechanical system. We
show that the new scalar product reduces to the ordinary one in the rest-frame. The rest-
-frame form of the Hamiltonian is Hermitean. We also show that the Foldy-Wouthuysen
transformation performed on the rest-frame Hamiltonian is Lorentz invariant. Also the
resulting transformed Hamiltonian is Lorentz invariant. This we regard as one of the
more interesting advantages of our formalism. In the standard formulation of the Foldy-
~Wouthuysen transformation the Lorentz invariance is very obscure.

In Section 6 we present a definition of the classical trajectory £(t) on the basis of the
Dirac equation. We show that the adopted definition implies a number of relations which
we shall call consistency conditions. It turns out that these conditions require that £*(z)
obeys certain classical equations of motion. We obtain these classical equations of motion
in the approximation linear with respect to F,,, neglecting the second and higher derivatives
of F,,, and also neglecting terms which are proportional to m~2 or a higher power of m™,
where m is the mass of the Dirac particle. In the order m~! these classical equations coincide
with the B-M-T equations. We think that it is an interesting feature of our approach that
the classical equation for £*(z) appears on a rather general level, without actually assuming
any explicit form of the wave packet.

In Section 7 we compare our classical equations of motion with some other classical
equations presented in the literature. We also point out that within the Ehrenfest approach
to the classical limit the length of the classical spin in general is not constant. Finally, we
present a restriction on the applicability of the proper-time formulation of the Dirac
equation.
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2. The proper-time formulation of the Dirac equation

We shall consider a well-localised wave packet moving in the ordinary R? space, along
a given trajectory &(¢). The trajectory &(¢) gives rise to the world-line £*(z). The wave function
does not vanish in a certain finite vicinity of this world-line.

In this vicinity of the world-line we shall introduce new coordinates (z, z'). They are
defined by the following formulae.

xt = )+ 2, 2.1)
E(n)z* =0, .2)
where the dot denotes the differentiation with respect to . From (2.2) it follows that
2% = ¥(7)z, (2.3)
where v(7) = E(r)/(x).

Because we would like to interpret £%(r) as the world-line of a classical particlc, we
assume that

EE >0, & >0. 2.4

In the following the Cartesian coordinates x* will be referred to as the lab-frame coordinates.
Let us present an explicit example. For a constant electric field £ = (£, 0, 0) the world-
-line corresponding to the motion along the x-axis has the form (c = I)

T
£%0) = 14 sinh —,
To

E(r) = 1, (cosh L 1) ,

To /

&) = E(1) =0, (2.5)

where 1, = _mE . Solving the Egs. (2.1), (2.2) with respect to 7, z we obtain the following
€.

formulae

1(x*) = 14 arc tgh

1 b
x4,

xo \V\ %
ooy .1

x") = 1+x —15| 1— — s
26 ° 0( ("1‘{”70))

It is clear that the 7, z coordinates are defined by these formulae only when

x° < x'41,
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(for x° > 0, x! > 0). The boundary hyperplane is x° = x'+1,. From (2.5) it follows that
in the (x° x') plane the trajectory is given by the equation

To+x' = (15+x))".

It is easy to see that for large x, the distance parallel to the x* axis between the boundary
line and the trajectory decreases like éré/xo. The width 4 of the wave packet (in the x!
direction) seen from the lab-frame should be smaller than this distance. It is easy to check
that this condition is equivalent to the following condition for the rest-frame width dg = dy,
where 7 = (1 -2,

dg < 1 ro(1415x5 HL.

Thus, the rest-frame width of the wave packet (in the x! direction) has to be smaller than

>

h
7’:-5 . On the other hand, di has to be greater than the Compton wave length A¢ = —
m

otherwise the quantum mechanical description has to be replaced by a quantum field theore-
tical one. Therefore, the electric field cannot be too large,

2
eE<eEC~—f-l-.

The field E. is by several orders of magnitude stronger than typical electric fields.

In the above example the velocity 7 and the acceleration 505 are parallel. In the general
case, discussed in Section 7, we obtain a more restrictive bound on the strength of the exter-
nal electromagnetic field.

The coordinate 1 is, by assumption, a scalar with respect to Lorentz transformations.
In particular, we may choose 7 to be the proper-time. z* is a four-vector with respect to
Lorentz transformations. z' are the coordinates in the directions transverse to the world-
-line £#(z) in the 4-dimensional sense defined by the formula (2.2).

Let us state explicitly that we regard Lorentz transformations in a passive way, i.e.
as describing a change of Cartesian coordinates in Minkowski space-time. This implies
that the Lorentz transformations act simultaneously on x*, &*(1) and z*.

The fact that 7 is a Lorentz-scalar constitutes the main advantage of the new coordinate
system.

The coordinates 7, z are closely related to the so-called Fermi coordinates parametrizing
a vicinity of a line in space-time [13].

In general, the coordinates 7, z are local, i.e. the formulae (2.1), (2.2) define the functions
7 = 7(x*), z' = z/(x*) uniquely only in certain finite vicinity of the world-line &*(z). Only
in the trivial case of £*(t) being a straight-line are 7, z* well-defined on the whole Minkowski
space. We shall assume that the wave function essentially vanishes outside of that vicinity
of the world-line. We shall discuss this assumption in more detail at the end of this paper.

Let us introduce the notation

=1, s=z, (%)= (2.6)



Of course, (s*) is not a four-vector.

Then,
ox™.
dx* = ds’,
Os* s
where
ox* . A ax“ .
i &'+ ogvz, = of +a50'.

Thus, we have

Nwdx"dx’ = g,.ds*ds*,
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Q2.7

(2.8)

where (1,,) = diag (1, —1, —1, —1) is the metric tensor in Minkowski space time, and

oxt ox’

B = T 5 ot

(2.9)

is the metric tensor written in the coordinates s*. From (2.9) and (2.7) we see that the coordi-

nates s* are not Cartesian. In the following we shall need

g = |det (gqp)l

_ <é2+50$2>2
& A

The contravariant metric tensor g** is given by the formula

It is not difficult to show that

@ AB
¢ = % _j;scT 7.
From (2.1), (2.2) it follows that
ot é,,
where
eobin -7
Also,

)

o Bk

Now, let us discuss the effects of a Lorentz transformation. We have

x* =D, M) =IE(), zz'*=1Iz7

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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From the formulae (2.14) and (2.3) it follows that

2’ = Ni.Z¥, (2.15)
where
Ny = L+ Lot' (). (2.16)

Let us stress that the components of the velocity ¢* present on the r.h.s. of the formula
(2.16) are taken with respect to the initial reference frame. Because

M B
¥z, = 2%z,
we have the relation
8sp—0%0F = (5ik—,lf'iv"‘)Nistp, (2.17)

where v"° are the components of the velocity in the new reference frame (v = &'Y&;).
Let us also stress that the velocity v* present on the r.h.s. of (2.16) is, in general, 7 de-
pendent. Therefore,

dz'' = Nidz*+ N'dr, (2.18)

where, in the case of t independent Lorentz transformations,

N‘k = ljobk
We also have
J az'* 9 . 0 )
e s N 219)

again it should be remembered that N¥ depends on the components of the velocity with
respect to the initial reference frame.
Finally, let us state explicitly that under Lorentz transformations

=1, di =dz (2.20)

However,
) 0 . 0
= e NN @21
T

This transformation law does not contradict (2.20) — the derivative d/dz is calculated under
the assumption that z' = const, while for §/dt’ the assumption is that z'' = const. From
(2.15), (2.16) it follows that in the former case z’' is 7 dependent. This explains the second
term on the right hand side of Eq. (2.21).

Let us write the Dirac equation,

d
[iv" (h o +ieAu> ~m] p =0, (2.22)



107

using the coordinates s*. We will use B, and I defined by

os* . 05 "
B, I'=—_—. (2.23)

4, = =
S Js

Then the Dirac equation takes the form

J
l:il"’ (h piC +ieBa> —m] p=0. (2.24)
5

We will use the following representation for the y matrices:

o {00 0 i 0 o
Y —(O _0_0>, Y _(*Uz 0), (2.25)

where o, is the 2x2 unit matrix and o, are the Pauli matrices. Thus,
=9 7=
»y Y'Y = 20" (2:25)

Using (2.25) it is easy to write an equation for the conjugate bispinor § = yty°
0
i|h F'P”ieBa@ I'+mp = 0. (2.26)
s
The I'* matrices are s* dependent. They have a very important property
6 - %
ﬁ(\/gl’ ) = 0. 2.27)

Using a well-known formula for Christoffel symbols

oo Lo
55:“‘*:“* &
Vg os’Y

we can write (2.27) in the form

V% =0,

. P .
where V,I[* = = I*+rtI7 is the covariant derivative of I'” (this formula implies that
s

in our case the spinorial connection vanishes).
The equations (2.24), (2.26), together with the fact that

1

FO = - _,yﬂé’
o \/g “
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is a nonsingular matrix for small z, suggest that for the wave functions which do not vanish
only in a sufficiently small vicinity of the classical trajectory we can consider from now
on the t-evolution of the wave function instead of the time evolution. This change of the
evolution parameter constitutes the main step in our considerations of the Ehrenfest-type
classical limit of the Dirac equation.

Using (2.24), (2.26) and (2.27) it is easy to check that

P
7 (VEB™Y) = 0. (2.28)

Assuming that v vanishes for |z] - oo and applying a standard reasoning we obtain from
(2.28) that

(ly) = | d7 & IO 2.29)

is a 7-independent quantity provided that v is a solution of the Dirac equation (2.24)
which vanishes in the region where z is not defined.
Using the formulae (2.23), (2.12), (2.10) we obtain that

&z .
(yly) = J P,y (2.30)
o
We also can write (y|y) in the form

(vly) = [ *zp*(1 -y, (2.31)

where o’ = 7% are Hermitean matrices. From the assumption (2.4) it follows that [p| < 1.
Moreover, (2v)® = v* < 1. Thus,

M=1-a0 (2.32)

is a 4x 4, Hermitean, positive definite matrix. Therefore, the expression

(vlg) = [ dzy*M(De (2.33)

can be used as a scalar product in the space of Dirac bispinors. We have checked that
the norm (y|y) of the wave function is constant with respect to 7 if y is a solution of the
Dirac equation. In order to distinguish the scalar product (2.30) (which, in general, is defined
only for wave functions nonvanishing in a finite vicinity of the world line £*(z)) from the
ordinary scalar product of Dirac bispinors

(ylgy = [ d'xyly,
we shall call (2.30) “the bilinear form™.
It is a rather nice feature of the bilinear form (2.30) that it is invariant with respect

to Lorentz transformations (2.14) for any v, ¢. Let us recall that in the new reference frame
defined by (2.14) one has to use

' (x") = S(L)p(x), (2.34)
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where S(L) obeys the condition
STHLY"S(L) = Ly
For the conjugate bispinor § we have
F(x) = §x)S™HL). (2.35)
Thus,
P I WEY () = B DY Eu 2). (2.36)
The integration measure d3z/, also is Lorentz invariant. This follows from the fact that

3+

_ _d’z
HT—1)dz X

= 8((x*—E*(1))E,)d*x. (2.37)

The r.h.s. of (2.37) is explicitly Lorentz invariant. On the Lh.s. of (2.37) d(1—14)d7 is also
Lorentz invariant because of (2.20).

Another way of seeing the Lorentz invariance of the bnlmear form (2.30) is to use the
formula (2.29). We have

(ylp) = | d*zdt Jg 6(—1)pI . (2.38)
The integration measure in (2.38) is invariant under general coordinate transformations,
‘while 8(t—1) is invariant under Lorentz transformations because of (2.20). Finally,
F'(z, 2)0¢' (1, 2') = §(t, 2)S ' ISe(z, 2),
and

e aslo ot f
ro(f)=m(§))’": o

5/2 yl”i I.

In the last formula we have explicitly indicated that I'° depends on the four-velocity &*,
and that in the new reference frame (denoted by the prime) we have to use the new compo-
nents of the four velocity. It is easy to see that

st = — %,

Therefore, this quantity is a Lorentz scalar. Thus,
I

r°¢y = .

E+éz

Using the condition (2.35) we obtain that

.
tyn v

. I £ oY
STroE)s = Lo
§2+€ovz €2+éovz

This ends the second proof of the Lorentz invariance of the scalar product.

= I°@¢).
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From (2.37) it follows that the bilinear form (2.30) can also be written in the form
(yl) = [dZ,pv"p.

where | dZ . is the integral over the a space-like hyperplane perpendicular to é(x) and passing
through the point &(7).

Let us recall that the usual scalar product for Dirac bispinors, i.e. {y | ) = [ dxytg,
is Lorentz invariant only if ¥ and ¢ are solutions of the Dirac equation. In fact, proofs
of Lorentz invariance of the scalar product (v | ¢ are based on the continuity equation

0.(Py"¢) = 0,

which is valid if v and ¢ obey the Dirac equation. In the case of the bilinear form (2.30)
the proofs of Lorentz invariance presented above do not require that y, ¢ obey the Dirac
equation. However, in order to prove that the bilinear form (2.30) is t-independent we have
to use the continuity equation (2.28), hence also the Dirac equation.

The Dirac equation (2.24) can be written in a Hamiltonian form,

0
ih — vy = Hy, (2.39)
ot
where
502\ . L
H = <1 + 5022 )> (V'€ (m—y'm;) +&n;+eBy, (2.40)
and
df J
7 = ih — —eB,. (2.41)
0z
0 I . -
Because — # —— , the Hamiltonian H is not a Lorentz scalar. Moreover, it is easy to see

ot T o’
that H is not a Hermitean operator with respect to the bilinear form (2.30), because the
operator z'r; is not Hermitean for k = i.
In spite of the non-Hermiticity of H, the t-evolution of the wave function v defined
by the equation (2.39) is unitary. Actually, it is easy to check explicitly that

d ) = 0
dt(ww =

(by using the formulae (2.30), (2.39), (2.40)). Then one sees that the contribution coming
from the non-Hermiticity of H cancels with the 7 derivative of the matrix M, see (2.32),
(2.33).

Because H is a non-Hermitean operator, it cannot be regarded as an observable. In
particular, it should not be related to an energy. The Hermitean operator corresponding
to the energy will be presented in the next Section. Thus, the only role of H is to generate
the t-evolution of the wave function.



111

The rather unusual fact that a non-Hermitean operator generates a unitary z-evolution
is due to the r-dependence of the matrix M defining the bilinear form, see the formula (2.33).
For the same reason an operator which is Hermitean at t = 7, does not have to be Hermi-
tean at 1T 3 1,, even if this operator is t-independent. Also, if P is a Hermitean operator
for all 7, then 0P/Ct does not have to be a Hermitean operator. Such peculiar features of
this proper time form of the Dirac equation should be regarded as a certain disadvantage
of this formalism. However, from our point of view this is more than compensated by the
fact that in this formulation one can clearly see how expectation values of quantum obser-
vables transform under Lorentz transformations. This will be discussed in the next Section.

In order to convince oneself that a non-Hermitean Hamiltonian can lead to a consistent
quantum theory one can consider the following simple model of one-dimensional quantum
mechanics of n-component wave functions. The Hamiltonian and the scalar product are

A A, d 3 1_ FS
H=g gix = (plg) = [ dxp'(x, Dg(De(x, 1),

where g(1) is a 7 x n, Hermitean, positive-definite, time-dependent matrix. Tt can be checked
that the Schrddinger equation ihy = Hy gives a unitary evolution of the wave functions.

It is also rather easy to extend the proper time formulation in order to include the
possibility that the particle has an anomalous magnetic moment. This can be done by adding
to H the expression which corresponds to the term (g, —2)upS*’F,, added to the Lh.s.
of the Dirac Eq. (2.22), i.e.

AH = —1 (80— 2y E,S" F o1+ (&) 2E502), 242)

1 eh .
where $*" = n [y*, "} is the spin tensor, ug = pont and F,, = d,4,— 08,4, is the electro-
i

magnetic field strength tensor. The operator 4H is explicitly Lorentz invariant. It is also
Hermitean with respect to the bilinear form (2.30). Therefore, the operator H-+4H generates
a unitary 7 evolution.

Let us end this Section by recalling that the form of the Dirac equation presented
above is in general valid only in a finite vicinity of the world-line £#(7) because of the local
character of the coordinates z’. However, this is sufficient for our purpose because we are
going to consider only wave packets which essentially vanish outside of this vicinity of the
world-line, i.e. we assume that the far ends of the wave packets which reach beyond that
vicinity of £#(t) give a negligibly small contribution to expectation values. In the particular
case of £#(1) being a straight-line the proper time form coincides with the standard form
of the Dirac equation in the rest-frame of the particle, sce Section 5. In this case the co-
-ordinates 7, z are global.

Finally, let us note that the proper time form of the Dirac equation, as well as the
bilinear form (2.30) are form-invariant with respect to reparametrizations of the world-
-line &#(x).
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3. A new definition of classical variables for the Dirac particle

The most essential feature of the Ehrenfest approach to the correspondence between
classical and quantum mechanics is that classical dynamical variables are identified with
expectation values of the corresponding quantum mechanical operators. When the quantum
mechanical state of the particle is described by a wave packet narrow in both position
space and momentum space, then the quantum-mechanical description of the time-evolu-
tion of the state of the particle essentially reduces to classical equations of motion for real
parameters characterising the wave packet.

Straightforward application of this approach in the case of the Dirac equation leads
to well-known difficulties with preserving the Lorentz covariance, [14]. Namely, in accor-
dance with the probabilistic interpretation of the wave function, the expectation value of
an observable P in the state y should be calculated as

(yiPy) = [ dxyl(x, NPy(x, 1). (3.1
From the Minkowski space-time point of view, this integral can be written in the form

(plPyy = [dz,py" Py, (3.2)
where

(d2,) = (d°x,0,0,0)

is the integration measure over the hyperplane x° = r. Now, let us consider two observers
related to each other by a Lorentz transformation. Each of them calculates the expectation
value with respect to his reference frame. However, because the hyperplanes of constant
time in both reference frames do not coincide, the integrals (3.2) calculated by the two
observers are’in general different even if P is a Lorentz scalar. The integrals will be equal if

3,(Py"Py) = 0. (3.3)

Then, using a standard reasoning one can prove that the integral (3.2) does not depend
on the choice of the hyperplane (for y sufficiently quickly vanishing at infinity for any spatial
direction). However, the continuity equation (3.3) is not valid in general. Only in the trivial
case when P = | the validity of (3.3) is guaranteed by the Dirac equation (2.22) for arbitrary
A,. Therefore, the classical variables defined by (3.1) have a rather complex transformation
law even if the quantum operator P is a simple Lorentz tensor. Actualiy, in order to find
this transformation law one has to know the Dirac bispinor y(x, ¢) for all z (where v is a so-
fution of (2.22)). The transformation law will probably depend on the external potentiais
A, and on the initial value of the Dirac function y(x, t = f,).

One could try to solve this problem of Lorentz covariance by using very particular
quantum mechanical operators like, e.g., the relativistic position operator [15]. These
operators are constructed in such a manner that the transformation laws of their expecta-
tion values, calculated with respect to the ordinary scalar product (y | ¢), have the re-
quired simple form. Unfortunately, in the case of the Dirac equation with an external elec-
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tromagnetic field the new operators can be constructed only approximately [6]. In fact,
it is not clear whether exact operators of this type exist at all when the external field is non-
-Zero.
On the other hand, it is easy to see that the quantity
a (d3z .
p = (ylFy) = jg P )Py (3.4)

has the tzansformation law determined only by the transformation law of the observable P.
For instance, if P = (P"") is a Lorentz tensor, i.e. if

P'*™(1,2') = I*,L,P"(z, 7)

when x'¢ = L x°, then a reasoning essentially identical with the proof of Lorentz invariance
of (v | ) presented in the previous Section shows that

p'* = I¥,L',p™",

where

3 ¢
v = [ e DR e )

0
In the proof we do not have to use any continuity equation.

For this reason we propose to define the classical dynamical variables by utilising
the bilinear form (2.30) instead of the ordinary scalar product (g | ¢>. Thus, we will assume
that the classical variable p associated with the quantum observable P is given by the for-
mula (3.4). The classical variables defined in this manner transform under the Lorentzian
changes of the reference frame in Minkowski space-time in the same way as the correspond-
ing quantum operators. We will call the quantity (y | Py) the “covariant expectation
value”.

This new definition of the classical variables resembles the “hyperplane formalism”
of Ref. [16]. In our case there exist distinguished hyperplanes, namely the ones defined
for each 7 by (2.1), (2.2). In the paper [16] no explicit expression for the expectation values
is given.

The prescription (3.4) for the classical variables explicitly contains the trajectory
£,(7) and the solution y(x) of the Dirac equation (2.22). Actually, the trajectory &,(z) is to
be deduced from y(x). The formalism presented so far is designed for the case when y(x)
is a wave packet which moves along a given trajectory. A precise definition of £*(t) could be

(plxty) = ). (3.5)

Some other possible definitions of £*(t) are described at the beginning of Section 6.
The 1.h.s. of (3.5) depends on &*(z) in a very complicated, implicit manner, so that the
definition (3.5), as well as the definitions given in Section 6, probably are not useful for
a direct computation of £*(r). However, we shall show in Section 6 that these formal
definitions are sufficient in order to obtain the classical equation of motion for &*(z).
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Basic classical variables are usually represented by real numbers. Therefore, as basic
quantum observables we shall choose operators which are Hermitean with respect to the
bilinear form (v | ¢).

The t-derivative of the classical variable p can be obtained by differentiating both
sides of the definition (3.4). It is easy to check that

Aty Py) _ (w; (TI: (H, P+ %) w)- (3.6)

art

Here, again we have used the identity V,I'* = 0. The partial derivative éP/ét is present
because of a possible explicit 7-dependence of the operator P.

Let us remark that neither the commutator [H, P] nor the operator 0P/ét are in general
Hermitean, or Lorentz tensors, even if P is a Hermitean, Lorentz tensor operator. This
is due to the fact that H is not a Hermitean operator, and that H and 8/dt are not Lorentz
scalars. However, the sum ?Ll [H, P]+ %I: is a Hermitean, Lorentz tensor operator be-
cause dp/dr is a real-valued Lorentz tenso;‘ for any v (because p is real, and because d/dt
is a Lorentz scalar due to (2.20)).

One can introduce the Heisenberg picture in the proper time formalism by the follow-
ing definitions. The Heisenberg picture counterpart of an operator P is defined by the rela-
tion

(3(0) | Py(1)). = (yp(z = 0) | Py(D)p(z = 0)).=o. (3.7
From (3.7) it follows that
Py = U™z, 0)PU(t, 0), (3.8)

where U(z, 0) is the 7-evolution operator corresponding to the equation (2.39). In order
to deduce (3.8) from (3.7) we have used the relation

J 3L, 0pir = 0)  M(DU(r, 0)g(x = 0) = | d’zy(c = OM©O)(x = 0),  (3.9)
which reflects the fact that the t-evolution is unitary. The equation (3.6) is equivalent to the
following operational equation

dPy
dt

i JopP
=7 [Hy, Pul+ (71—> . (3.10)
H

Now we would like to discuss briefly observables for the Dirac particle. For such
a particle any observable is a function (in general, nonlinear) of the basic observables

~
i

0 . .
X', p;=ih Pl and also it is a linear function of y*, v*y%, S*, y5, where

0 @
5 e 1 0n12.3 0
}"“'”’/’}77 (0,00>’
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In the proper time formalism we insist on having an explicit Lorentz covariance.
Therefore, we will use as the basic observables the following operators

W S N
xR, = ih o ed,,

I =&, iy Iy Ty Is™, (3.11)
where $*7 is given by (2.43). Notice that I” and y® are Lorentz scalars. 7, is related to the

kinetic energy of the classical particle.
Passing to the (z, z') variables we obtain

M=+, (3.12)

R, = dLm+ ! I'(m—y'n), (3.13)

%2

where r; is given by (2.41), and we have used (2.39).
It is easy to check that the observables (3.11) are Hermitean with respect to the bilinear
form (y | ¢).

The set (3.11) of observables is not minimal. For instance x, can be expressed by x’,

X0 = 4TI = O ix-9)
(thus we have not introduced any time operator).

We use the nonminimal set in order to deal with full Lorentz tensors — the set (3.11)
is closed with respect to Lorentz transformations.

The classical variables correépoxxding to the operators (3.11) are defined by (3.4).
Their 7 dependence is determined by the © dependence of y which follows from the Dirac
equation (2.22) (x* is related to 7. z' by (3.12)). In practice we can exactly solve the Eq.
(2.22) only for rather particular external potentials A,(x).

4. Lorentz- gnd gauge-covariant wave packet

In this Section we shall utilize the new variables 7, - in order to construct an example
of a relativistic wave packet moving along a given classical trajectory &1). We do not
expect that this wave packet is a good approximation to an exact solution of the Dirac
equation, apart from the very basic feature that it is localised around the classical trajec-
tory. In order to construct a better approximation to the exact solution it is necessary
to apply a technique for approximate by solving the Dirac equation. One of the possibili-
ties is to construct an approximate wave packet propagator following the ideas presented
in, e.g. [17].

We shall require that the wave packet y(x) obeys the following three conditions
— its center moves along the classical trajectory &(1),

— the wave function y(x*) transforms under Lorentz transformations according to (2.34),
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— y(x*) transforms in the usual manner under gauge transformations, i.e.

AL(x) = A(0)+0,4(%),  9(x) = exp [- —’E ﬂ.(x):' w(x). (4.1)

The last two requirements are imposed by the fact that exact solutions of the Dirac equation
(2.22) have these properties.

Let us first consider the gauge transformations. Then it is convenient to pass to the
B, potentials, see (2.23). It is easy to see that under the gauge transformation (4.1)

-~

- - 0
By(t,z) = By(t,2)+ - 4. 4.2)
as

Now, let us introduce a new bispinor y,, defined by the formula

p(x) = exp [— s | 2, “3)
where
Ao(t,2) = f By(%, 0)d7 +2'B(1, 0)+1 2'2* fo (z,0)
+ % FPare ;:;:Zsk 0o+ ... 4.4
It is easy to see that under the gauge transformation (4.2)
AT, 2) = Aoz, )+ M1, 2)+A(— 0, 0). 4.5)
The constant A(—oo, 0) does not matter because it gives rise to a constant phase of the

wave function w(x) Thus, the Ansatz (4.3), (4.4) essentially secures that under the gauge
transformations y(x) transforms in the manner required by (4.1), provided that p,(z, z)
is gauge-invariant. Thus, v, defined by (4.3) can be regarded as gauge-invariant.

Let us note that A4, is a scalar with respect to Lorentz transformations. For instance,

2By =z' — A, = A+ 4, = "4,
Notice also that
Bo(t, 3) = SLb3A, +EA,

is not a Lorentz scalar in general. However, By(t, 0) is a Lorentz scalar because of the fact
that z = 0 is invariant under Lorentz transformations.
Now, let us turn to Lorentz transformations. Because A, is a scalar, 9o(7, z) has to
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transform according to (2.34). An analysis of wave packets for free Dirac particle in the
positive energy sector suggests the following Ansatz for y,

. 2 Shom i (., k€D (EE) :
polt, 2) = j@j k—o Xlk, YU (k) exp l:" N (k,,.. + “7 >]f(k, ).
x=1,2

(4.6)

Here ko = + vm?+k2, UD(K) are two linearly independent positive energy solutions
of the free Dirac equation, f(k, &) is a shape function (in momentum space) for the wave
packet, (y,) is a 2-component spinor. In the representation adopted in (2.25) the bispinors
U™ have the form [18]

o7 _y [(ko+m) ¥
U( )(k) = [2"1()11+k0)] <(&7€) e(a) 5 (47)
where e = <(1}>, e? = G)) Their normalization is
HO 7B ko 77 )
L/ b = - baﬁ’ LI U = 51ﬂ' (4. 8)

m

We shall assume that the shape function f is a Lorentz scalar function on the positive
energy part of the hyperboloid k,k* = m?, clearly peaked at the momentum & = mé,.
Such a function is easy to construct with the help of boosts. A boost which transforms the
standard 4-momentum (m, 0, 0, 0) = ¢ into the 4-momentum g = (¢"), i.e., H 4" = g,
has the form, [19]

o q q
(H)o = (H) = —, (H)% = —,
m m

i i qq’
B, = 34

— 4.9
m(m+q,) “.9)

. . f _ . .
Now, let us consider a four-component object p g H, 'k and its transformation law under
Lorentz transformation of ¢ and k. We have

p' = Hy'Lk = H'LH,p = R(L, 9)p,

where R(L, g) = H,:q’LHq is a rotation. In fact, it is the Wigner rotation associated with
the Lorentz transformation L and the momentum ¢. Thus, p? is a Lorentz scalar. It is easy
to see that p = 0 if and only if kK = g. Now it is clear that as the scalar shape function
f we can take, e.g.

-2
Sk, &) = exp [~ %] (4.10)

0
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where p = (H;) 'k and ¢ = mé/\/ EE Instead of the exponential we can also take any other
function of p? which is clearly peaked at p = 0. Using (4.9) it is easy to show that

- 1 . .. 2
Pl = [ﬁ (k~m(éz)“?é)2—m:| —m?. (4.11)

The parameter a, measures the width of the wave packet in the momentum space. We shall
assume that a, is a constant Lorentz scalar.
The bispinor v, will satisfy the condition (2.34) if

2a(Lk, HU(LK) = S(LYUP ) yy(k, 7). (4.12)
From (4.12) it follows that
2Lk, 7) = Ry(L, K)ye(k, 1), (4.13)

where R(L, k) = [IAQO,,;(L, k)] is a SU(2) matrix corresponding to the Wigner rotation
R(L, k). In order to prove the relation (4.13) we use the correspondence between the Lorentz
group and SL(2, C). This correspondence is given by the relation, [19],

Ao, A" = I, (4.14)
where 4 € SL(2, C). The SL(2, C) counterpart of the boost H, is given by
H, = [2m(qo+m)] *((qo+m)ao+q0). (4.15)

N 1 N A
It is easy to see that H, = -— g"o,, H} = H,. With the help of (4.14) one can check that
m
the matrix

=1 4 -
A+(AH™Y A—(4h) ‘) 4.16)

V1
S =2 <A—(Af)‘1 A+(4N!
obeys the relation (2.35) for y* given by (2.25). Using (4.15), (4.16) we can write U in the
form

UP(k) = S(H,) (gm>. (4.17)

Then, it follows from (4.8), (4.17), (4.16) that
RL k) = A AR, (4.18)

From (4.18) we see that R(L, k) is the SL(2, C) counterpart of the Wigner rotation R(L, k).

The k-dependence of the y, spinor is still arbitrary. Actually, the k-dependence of the
transformation matrix in (4.13) implies that it is not possible to assume that y, does not
depend on k without breaking the Lorentz covariance of y,. Therefore, we shall introduce
a new spinor {(k, t) which is defined by the formula

x(k, 7y = M(k, &)Uk, 1), (4.19)
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where
Mk, &) = 5 B (HR+HIDH L. (4.20)
The transformation matrix for the { spinor does not depend on k. Namely, we have
¢'(Lk, ) = M~ Y(Lk, LE)y/(Lk, 7).
Using (4.13), (4.18), (4.20) and the formula
Hi, = AH2A,
which follows from (4.15), (4.14), we obtain that
{'(Lk,7) = R(L, m&){(k, 7). (4.21)

In view of (4.21) we now see that the Lorentz covariance of v, is not broken when we
assume that { does not depend on k. In Section 5 we show that { can be regarded as an
instant rest-frame quantity.

Thus, the full Ansatz for y, has the form

- r Ak m .
Po(r.3) = N E J G b Mt EGOU)
“= (4

a=1,2
' k&) (£6 .
exp [— fil(kuzu ¢ 22( é)ﬂ f(pPiad), (4.22)

where N is a normalization factor, M(k, {) is given by (4.20) and p? is given by (4.11)
Utilizing a transformation to the instant rest-frame described in the next Section it is easy
to prove that N does not depend on &, &. The spinor {(t) transforms by the Wigner rotation
R(L, mé) according to (4.21). We shall assume that { is normalised to 1,

Ll = 1. (4.23)

The wave function y, given by (4.22) is, in general, rather complicated function of
x* — recall that 7 and z are related to x* by (2.1), (2.2).

The classical variables contained in y, are £, é,,, {,. The last variable describes spin
degrees of freedom. All those classical variables are assumed to be gauge invariant.

At first sight it might be unclear whether y, given by (4.22) really is a well-localised
wave packet. For this reason we would like to note that for fixed 7, in the instantaneous

rest-frame, i.e. for c/\’c2 = (1,0, 0, 0), the integral in (4.22) has the form
- ian \ oo
j d’k exp <}7 sz> f(k), (4.29)

where f(k) is sharply peaked at k¥ = 0, and 7 is equal to 7 transformed to the rest frame.
From (4.24) it follows that the rest-frame transform of y, is indeed well-localised at ER = 0.
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The full expression for the Lorentz- and gauge-covariant wave packet is given by (4.3),
where v, is given by (4.22).
Using the formulae of Section 5 it is easy to see that for small a,/m

p(t, z) = N exp [—— —;li eAO] Z CADUP(mé)

x

Ak om i " (k,‘é”) (fgég) p’ do
* | T o [‘ [ ("~Z e )]f (‘) o (“)

o

m
the spin degrees of freedom decouple from the other degrees of freedom in the a,/m — 0
limit.

Using formulae of the next Section it is easy to check that for the wave packet (4.22)

a
where ¢ ( )denotes terms of the order — or higher. Thus, for the wave packet (4.22)
m

(pz'y) =0, (4.25)
- A\ L ad
(p'2'z'y) = | — | do(0y+EEN+O | —5 |, (4.26)
a m
where d, is a positive, dimensionless constant. From the formulae (4.25) it follows that

(pix*y) = (1), (4.27)

and from (4.26) it follows that the mean deviation from &*(z) is of the order h/a,. Thus
the wave packet (4.3) is localised at E(r) with a dispersion of the order h/a,.

5. Transformation to the instant rest-frame

The Lorentz transformation to the rest-frame is given by H; ', where H; is the boost

(4.9) for g = g = mé//E2. The rest frame quantities will be marked by the subscript R
on cither the r.h.s. or the Lh.s. of them.

From now on we choose the parameter 7 such that é2 = 1. Thus, now t is the proper
time for the world-line &(r).

We have
& = (Hy)" 50, CBY
and &g = (8%). Similarly,

2 = (Hgl'2k

i.e.

20 =0, Z = H\z, (5.2)
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where
L
Hk=6k+ﬁ—é—- (5.3)
0
Furthermore,
= @Y= (5.4)
ozt Yoz ’
where H = [H%] is a 3x 3 matrix, and
. ) i
H 1 ki = ()ki"' T T . 55
o Eo(1+E0) (3-5)
Of course,
TR = T.

For the y* matrices and the related matrices like S"*, we may use the relation (2.35), i.e.,
ST(H)Y'S(H;) = (Hp)"y" (5.6)

As an example, let us transform the wave packet (4.22) to the instant rest frame.
Substituting into (4.21) L = H; we obtain

k() = (), (5.7

i.e., the passage to the rest frame does not change the spinor {. Next, using the formula
(4.12) we can write

Rsz(kRa T)U(a)(kR) = S_ 1(Hé)U(ﬂ)(k)Xﬂ(ks T)'

On the other hand, from (4.19) it follows that

) Ko+
i, ©) = Mk, D) = [*5 ey
m
Thus,
xs(k, DUP (k) = \/ “k;;'f S(Hp) (DU kg)- (5.8)
Furthermore,

. kE) (&€
k2" = Rk“z,‘{ = TRKIg, (—é)z(ié)

0.0
u = kRéRa

and p, present in (4.22) and defined as H[_I' 'k, is just kg. Thus, because the integration
measure in (4.22) is Lorentz invariant, we finally can write

wO(T'»‘ 2) = S(Hé)RQPO(Ta ER)a (59)
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where

. d*k ko+m
wWo(T, 3) = Z j Gy ;" Tl LEUO® - exp[—?kock]

A N
X exp (X sz> f(K*ad). (5.10)

In the formula (5.10) we have skipped the index R in kg, Q.
ie
The phase factor (4.4), i.e. exp (— W A(,), is form-invariant with respect to Lorentz

transformations, thus it has the same form (4.4) also in the rest frame.

When passing to the instant rest-frame we have to remember that the corresponding
Lorentz transformations are 7-dependent. Therefore, special care is required when dealing
with a quantity which contains t-derivatives. For example,

. { .
(P # 0, ;!‘—@R) £ (.
T

The bilinear form (2.30) acquires a simpler form when the wave function y(z, z)
is expressed by its rest-frame counterpart yg(t, zz). The relevant formula is

w(t, 2) = S(H)ye(t, Zp). (5.11)
From (5.2) it follows that
z = Egd Zg. (5.12)
Using (5.11), (5.12), and (2.35) we obtain that

Wip) = [ @ Zepl(r, Z)er(t, Zo)- (5.13)

Thus, the bilinear form (2.30) can be regarded as the ordinary scalar product of Dirac
bispinors in the instant rest-frame.

The form of the r.h.s. of the formula (5.13) implies that the r-evolution of the rest-
-frame wave function w, is governed by a Hamiltonian which is a Hermitean operator.
Indeed, using (5.11), (5.4) and the formula

~

—(H Y B - (5.14)

T Otz Gzk

0

=7
itz

we obtain from (2.39) the following form of the Dirac equation transformed to the rest-
-frame:

¢ - .
il a we(T, z») = Hpy(t, zv), (5.15)
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where the rest-frame Hamiltonian Hg has the form (we assume that &2 = 1)

) k ﬁ EsEr
Hy = eBy+my®—afnb+m (E" bof ) 90— —¢ _ﬁi_(a,, g)
P

1+& 2 PI+E,\0
ér&ﬂ 5’51’ - EOér rY1 R,
B g 220 L{zR . 5.
+( 1+¢&, CTeg) ) e (>-16)

-~

8
In this formula 7}y = ih o —eBy, and B§, B} represent B,, B, transformed to the rest-
ZR

-frame accordingly to the formulae
0z°f

B® = By+ —
0 o (37.'

B, BR =

_.

x
which in turn follow from the fact that B, = —- 4, i.e.
[EAY

see (2.23). Also, we have used the formula

s () (e 25
ot 2148 ™ 0 o 1+&,
for § = S(H;). This formula follows from (4.16), (4.15), (4.9).

Tt is clear that Hy is a Hermitean operator with respect to the rest-frame scalar product
(5.13). The sum of the first three terms on the r.h.s. of (5.16) has the same form as the usual
Hamiitonian for the Dirac equation (2.22) written in Cartesian coordinates. The other terms
on the r.h.s. are due to the fact that the instant rest-frame is t-dependent, in general. These
terms vanish when the acceleration f vanishes. The fifth term on the r.h.s. of (5.16) gives
the Thomas precession of the rest-frame spin.

Now, let us consider how the rest-frame quantities transform under a Lorentzian
change of the coordinates x" in Minkowski space-time. Using the formulae

[ LMVZV, zlk — (HL;" ksz;{s, Zk — (Ilé)kg Z;,
it is easy to see that
= R(L, E)—Z.Rs (5’17)

where R(L, ) is the Wigner rotation introduced in Section 4. Similarly, the formulae
(2.34), (5.11) and

Y(x") = S(H . )ye(z, 28)
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give
Pr(T, Zp) = S(R(L, &))yr(z, Zp)- (5.18)

Thus, the rest-frame quantities merely transform by Wigner rotations.

Particularly interesting is the transformation law (5.18) for the rest-frame wave func-
tion, because it does not mix the two upper components of the Dirac bispinor with
the two lower components ¢f it. This implies that in the Hamiltonian (5.16) the sum of the
terms containing the «” matrices is Lorentz invariant. Therefore, the standard Foldy-
-Wouthuysen transformation [20] applied to the rest-frame Dirac Hamiltonian (5.16)
also is Lorentz invariant. This is in sharp contrast to the case of the usual Dirac Hamilto-
nian in which the Foldy-Wouthuysen transformation severely complicates the problem
of Lorentz invariance.

The advantage of the Foldy-Wouthuysen representation for the Dirac Hamiltonian
consists of the fact that in this representation the Hamiltonian is expressed by operators
which have a straightforward physical interpretation from the classical point of view.
For instance, it is well-known, that the X variables present in the original form of the Dirac
Hamiltonian are not what one would like to identify with the position operator, while the
x variables present in the Foldy-Wouthuysen counterpart of this Hamiltonian have all the
desired properties (except for a very complicated transformation law under Lorentz trans-
formations). In our formalism the disadvantage of the Foldy-Wouthuysen representation
consisting of the loss of explicit Lorentz invariance disappears. Another problem, namely
that of the very existence of the Foldy-Wouthuysen representation, remains on the same
level as in the standard approach to the Dirac equation.

The Foldy-Wouthuysen transformation has the form

Ye-w = exp (iG)yg,

)
Hg_w = exp (iG)Hg exp (iG)—ih exp (iG) 5 exp (—iG), (5.19)
T

where G is Hermitean and is chosen in such a way that Hy_y does not contain the « matri-
ces. In the following we shall perform an approximate Foldy-Wouthuysen transformation
which leads to Hy.yw which is free of the « matrices up to terms proportional to m~2.

When estimating the power of m~! in terms contributing to Hp_ we shall take into
account the fact that also & and &, contain m~! as a factor. This follows from the fact
that *(z) is a physical trajectory, i.e., it is a line which is followed by a wave packet which
evolves according to the Dirac equation (2.22). For large m (large in comparison with the
average momentum of the wave packet) the Dirac equation (2.22) can be reduced to the
Pauli equation for 2-component spinors, [18]. This nonrelativistic Schrédinger type equation
predicts that the wave packet will follow the trajectory which obeys Newton’s equation
with the Lorentz force, mé = e{é+5x B). Thus we expect that £ vanishes like m~ for
large m. The Pauli equation can be regarded as the first in a whole sequence of approxima-
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tions to the Dirac equation (2.22). The s-th order approximation is given by the equation

ih ; vr-w = HE2w¥e_ws (5.20)
T
where HI, is free of odd matrices «', y° up to terms proportional to m™".

In each order the classical trajectory has to be determined anew, because terms by
which H™ differs from H”™ " will influence the evolution of the wave packet and therefore
they can change also the trajectory £*(t) followed by the wave packet. H® differs from
H®™ Y by terms proportional to m™". Hence we expect that the correction to the equation
for the classical trajectory is of order m™" too. The following calculations support this

s

expectation. Thus we expect that £“(7) obeys a classical equation of the form

5

B =
%

mkFRY, (5.21)

M=

k

1

where F®" does not contain (a power of) m as a factor.

6. A derivation of classical equations of motion

Several times we have made the qualitative statement that the classical trajectory
£H¥(t) is defined as a line along which a wave packet moves which obeys the Dirac equation
(2.22). 1t is clear that any precise form of this definition of the classical trajectory raust
contain a certain degree of arbitrariness, because the wave packet has a finite extension.
Therefore there are many lines one can say about that the wave packet moves along then.
Different definitions will yield different classical trajectories £*(z) in general. However,
for each 7 the separation between the trajectories will not exceed the width of the wave
packet. Therefore, as long as this width is small on a classical scale, the definition is rather
arbitrary. One possible definition of the classical trajectory has already been presented in
formula (3.5). The operator x* present in (3.5) is the operator of the coordinate x* present
in the original Dirac equation (2.22). On the basis of available knowledge about the Dirac
equation we expect that x* contains a Zitterbewegung part, and therefore in principle
&¥(r) could contain it too. In order to avoid this rapid oscillation one could utilize an averag-
ing. For example one could try to define £#(z) by the formula

t+T
h

1
r) = — | di(plx"y), T =—s.
&) sz (i) —
t~T

Another possibility is to use the formula (3.5) in the Foldy-Wouthuysen representation.
This is equivalent to the replacement of the x* in (3.5) by another operator, the so-called
mean position operator xg_y [20].

In the present paper we shall use the last possibility. That is, in each order of the expan-
sion in powers of m~! we shall require that for all ¢

¢ = (YIxF-w¥) (6.1)
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Because xg_w = "+ zp_w and (v | Pp_w¥) = (Yr_w | Pyp_w) for any observable P, the
requirement (6.1) is equivalent to

| (vl wizeyiw) = 0. (6.2)

In the following we shall show that the condition (6.2) leads to the Newton equation of the
type (5.21) with F being the Lorentz force.

We would like to include the contribution coming from the anomalous magnetic

moment. Therefore we shall include the AH term, formula (2.42), in the Hamiltonian.
The rest frame counterpart of AH is

.
AHg = 3 (g8o—2)us [1 + <§k”" foc >Z§:|

1+¢&,
c, 0\ . ‘o
X |:% €y’ ( > Fy— i)’O‘XIFOi] (6.3)
0 o,
e
where pg = — and
2m
Fip = (He Y (He)' F . (6.4)
Observe that F,, # fr, Where
J 0 d 0
R=—_B*—__ B} R= B*— B? 6.5
fOp 61 §4 Oz" 1] fps 62‘{ S 62}{ P ( )

(the fields f, ,{’t, will appear again in the following). Thus the Hamiltonian to which we shall
apply the transformation (5.19) is equal to Hy+A4Hy, where Hy and 4Hy are given by
(5.16) and (6.3) respectively.

The computation of the approximate Hamijltonians Hy_y is not significantly different
from computations presented in [20], except that we have to remember about (5.21).
Performing consecutively the two transformations of the form (5.19), the first one with

G, = 5 y°ony, (6.6)
and the second one with
Gy = e (184 (go =D P 6
@m)y? or 20 or

we obtain

1) R 0 k Eoék k LR
Hi)y =eBy+my? [ 1+ [ &~ ) zK ) + 5V TR

1+¢&, 21
oh pepmope
+ —— g,y EfR —he,, ~ I+ 2z,
2mp7 Jo 8171_*_50 1+¢, 7 %R p}+

. - 1
+% (8o — Dty 2 Fy +0 (?) s (6.3)
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1
which is free of the odd matrices to the order — . In the formula (6.8) {,}. denotes the anti-
m

p—1(% 0
Z—2<0 ap>'

1 ., . . - .
Notice that the term ;° I 7z is Lorentz invariant because 7 transforms by the Wigner
m

commutator, and

rotation. It is easy to check that the equation
20y (y (1)
ih 7 Yrow = HpZwyr-w (6.9)

is Lorentz covariant. When checking this one has to remember that

-~

0
o1

-
’

o
wﬂ&r

I
wr—(R l(L, ER(L, f))kpzlp{ 5% ¥,
R

R’ IR

B = By—(R™ (L. HR(L, &)p2kBY
. d . R
where R = -;{—R, and yg is related to yyi by (5.18). f,; transforms by
T

jp'SR = Rkastﬁg'

It is also useful to remember that

is just the spatial part of the acceleration &' transformed to the rest-frame, hence

(L&~ (Li}o{_lfé)k = R, (L& & - éﬁ)
1+(L)o A 1+&/)"

Now we shall obtain Newton’s equation (5.21) in the order n = 1. It follows from the
requirement (6.2) which is assumed to be satisfied for all z. In fact, it will turn out that the
requirement (6.2) is compatible with the equation (6.9) for the wave packet only when
&"(7) obeys an equation of the form (5.21).

The problem of consistency becomes apparent when we notice that the requirement
(6.2) implies that

d&* .
7 72w = 0 (6.10)
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for any k = 1, 2, ..., and for all 7. For any observable P we have the relation (following
from (6.9))

i

d oP
Pt = (W T2 P+ ) i),

T | N lixs
Taking P = z' and using (6.10) we find that (6.2) and (6.9) imply that

(w%‘_’wi ,il [H‘F‘_’wza]w‘g‘_’w> = 0. (6.11)
Taking k = 2, 3, ... in (6.10) we find yet other conditions of the type (6.11). On the whole,
we find an infinite set of consistency conditions which have to be satisfied if (6.2) is not
to contradict (6.9).

We shall analyse the consistency conditions in the approximation consisting of neglect-
ing all terms which are not linear in the external field strength F,,. The acceleration & will
be regarded as proportional to F,,, in accordance with the intuition gained from the
Pauli equation. Moreover, because in H{',, we have neglected the terms of order m~?
and higher the consistency conditions should be considered also with this accuracy.

It is useful to write the Heisenberg equations of motion for the operators z, m,, X' in
the Heisenberg picture. It is easy to show that they have the following form

7;‘ "0 Sréi_;réi
TR _ R 2 ;’ .z (6.12)
dr m +&o
it ) : i tize  pigp
Mze_ﬁg+n1y°(f'— &0u>+g~i .66 .
dt 1+§o, 1+§()

€ o, R,R, RR el Ogr R
+ 2_my (Hpjpi +fpinp)+ ‘z_n;‘ 8p,s'}’ Z ps.i

+'§— ia(go —z)epkr“/’ozrﬁpk.f- (6.13)
dx EE e 0
—w‘fzasrsih-z——_“ srei Z‘i
dt I e A
go—2 -
- %{— g6 pirEric? 2 Fpp (6.14)

In (6.12)-(6.14) we have neglected terms of the order m~2 or higher, and terms nonlinear
in F,,.

As the final preparatory step let us specify the assumptions about the wave functions
p{ . First of all, we assume that only the two upper components of yi.,; do not vanish.
We may assume this because Hy ..y does not contain the odd matrices. Because of this

-assumption we can in fact abandon the 7° matrix in the Heisenberg equations of motion
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(6.12)-(6.14) because now (y | y°Py) = (y | Py) for any P. Of course, we also assume that
i w is a wave packet concentrated around zz = 0.
Now we are ready to consider the consistency conditions. (6.2) and (6.10) applied

to the covariant expectation value of the equation (6.12) give

i

— (ptwinipilw) = 0. (6.15)

m
This implies that (2, | ¥yt y) is zero in the order m°. It does not exclude the possibility
that y°n; has nonvanishing covariant expectation value of the order m~!. Now let us consider
(6.10) for k = 2. Differentiating both sides of {6.12) with respect to 7, using (6.13) and

2

neglecting terms of the order m~? we obtain

dzzlil yo R 0 =i EOéi ér”
CR L {er 20 ) 4 Zg | - 6.16
dr? m <8ﬂ0+m)’ (é 14+¢&, ) dr( I—H_Zg “r ( )

Taking the covariant expectation value of the Eq. (6.16) and using (6.2), (6.10) we obtain

m (&"‘— ot ) = —e(piwl fo v, (617)
1+ Co
The consistency conditions (6.10) for k > 2 follow from (6.16) by differentiations
with respect to 1. It is easy to see that (6.17) guarantees that all of them are fulfilled.
The equation (6.17) is Newton’s equation (in the instant rest-frame form) for the trajec-
tory. From the definition (6.5) it follows that

fio = —F B (H) i +(terms of the type &'F,,). (6.18)

The terms between brackets in (6.18) are nonlinear with respect to F,,, therefore we neglect
them. It is easy to check that

Ei—- 50{
1+¢,

= —&(H) (6.19)

Then (6.17) is equivalent to the equation (recall that £* = 1)

mé, _EC"(VJ(” F wW(F‘—)w- (6.20)

For constant F,, this equation reduces to Newton’s equation with the familiar Lorentz
force. For nonconstant F,, we can expand around z = 0,

A A2
; (%)

¢ )
~ p Fu\!.R 0+7 Zﬁ"‘ P F!tvl;g=0‘ (621)

Fui(fg Z) = an(T’ 0)+Zs azﬁ az"" H

Because of (6.2) the second term on the r.h.s. of (6.21) does not contribute to the expecta-
tion value present on the r.h.s. of (6.20). The third term gives the contribution

Tay Gﬁs(l’)’ {6.22)
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where o5(1) = (y{2w | zhzpwklyw) is the z-dispersion for the wave packet in the instant
rest-frame (in the Foldy-Wouthuysen representation). It is easy to compute that

~2
U

-:,éa‘:_l; T (Ho) {(H) pF iy, 20l (D).

It is clear that the expression (6.22) is a Lorentz scalar (affs transforms by the Wigner
rotations R(L, &)). The fact that the successive terms in the expansion (6.21) give Lorentz
covariant contributions to the r.h.s. of the Eq. (6.20) is due to the use of the covariant expecta-
tion values.

Now we shall consider the next approximation, i.e. we shall include terms of the order
m~2. Again we shall keep only terms which are linear with respect to the external field F,
The reasonings are strictly analogous to the ones just presented in the order m='.

Calculating the terms of the order m~2 in (6.8) and removing the odd matrices by the
transformation (5.19) with G = G3, where G is suitably chosen (G5 is proportional to

m-3), we obtain the Hamiltonian H{®, which is free of the odd matrices up to the order
m2. It has the following form
el

eh
1 R R R
3 ssprzr 7z {TCS afOp}+ - Qi fOp,p
1

@) _ g
HZw = HpZw— ol

Ul &8\ o rrr KR skor R
+ 2“;”‘ (§ - 1+50 7 (RPZR’ITP“hfI,ka np_ehg!pkz ZR.f;)t)

1 ~ -
+ am (go—Dup(—h Fo;i+2e, 2" { Foiy p) +)- (6.23)

The corresponding Heisenberg equations of motion for zk, nk, X' have the following
form
dz!il 70 eh R éréi'—éréi

R r
- = - —m+ 5 epdfop— T —
dr m o 2mE TP 144,

1 { e é gr r 1 r I
+ 3 3"0 <‘§ L )(hbrmz {TCF, Zpt+) — — up(8o—2)8d Fors (6.24)
n 1 +¢ m

d R i
i - f; prsyoz fps i :n ?O{nllc{s ka:}+
£oé' > N geér-& «:"

1+¢, 1+&,

eh eh?

R oR R 0 i
- 2 Sspfzr{ns ’,ﬂ)p,i} - 3 fop,pﬁ—my 5 —
4m S

1 z EOEi - 7 I
2171 (é - I:é;) )’07’12{4' Z IuB(gO z)epkryoz Fpk,l

+g0

-2 - -
” P — R Fop i+ 28 2" { For,is Rﬁ}-ﬁ-)’ (6.25)
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dr’ & 5k € o1/
— = Gabpik— 5 L == & L
dr T4 g, 2m 7 ps

e L l r éoir R
-+ :1‘;1'1_2- grikgsprzk{n.?s gp}-& + 2T)1 (g 1 + K >? 2z Eris€rpr T p
- g’g;z PO —1( ~2) s I Fop 7o} {6.26)
Sh HpEprrric? k580 & prrir oks Apf+- .
Now let us again consider the problem of the compatibility of the conditions (6.2),
(6.10) with the equation (6.24) and equations following from (6.24) by differentiations
with respect to 7. The conditions (6.2). (6.10) applied to both sides of Eq. (6.24) give the
relation

Co&” . =
oy (\hﬂrikzk" {“?a ZR}+)'—yB(gO°—2)8kirUX Foy)s

o

eh
(n)—A s,p,(ngpH- (gr
(6.27)

where the covariant expectation values are taken with respect to the wave function v
which obeys the equation

ih ; -yl = HE W, (6.28)

Differentiating both sides of Eq. (6.24) with respect to 7, using (6.25) and noticing that
dZ/dr is of the order m~* (as it follows from (6.26)) we obtain

d’zq 7ok m Sl el
B3 :—M_ei—ﬂ“‘V ,,,18'2' r;i
de? m o= ¢ 1+¢&, T om2 s
L0 gi¥p  Figp
e RS XS 1
- — - = R ¢ e FL
FyeRt o i)+ " 1+, zla(go )pk! pk
eh d [EE— é’rh’
+ ‘ ,.Z’ T U 1-
2m2 fono = dr( 1+¢&, R

1 ,d [, &&
2”*’ “:’ de (,,__ f_?_i()) (h Sm.zk {“?a Zl'z}+)" 'i_ #n(go ey 2 FOk 0+ (6.29)
Here again we have neglected all terms which are proportional to ™", n > 3, and all terms
which arc nonlinear with respect to F,,.

Equation (6.29) is much more complicated than Eq. (6.16). When taking the covariant
expectation value of the r.h.s. of Eq. (6.29) we encounter covariant expectation values of
operators which have not been considered yet, like Z’f;‘i. Now we must consider them.
First of all, we shall replace f® by its Taylor expansion around zg = 0, e.g.,

f;s,i(gk’ T) = fplz,i(0> T)'*' ZII;J‘.pRs,ik(Oa T) + ... (630)
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Because the wave function is, by assumption, a well-localised wave packet, we can cut
off this expansion and use only the first few terms. In this manner the problem is reduced
to finding the covariant expectation values of operators of the type Zz§, 2'zkz5, etc. In the
case of Eq. (6.29), such operators appear with the second or higher derivative of the external
field (at zz = 0) as a factor. In this paper we shall neglect such terms, 1.e. we will keep
only F,, and F,, , (i.e. we consider only weakly varying external fields). Therefore, in this
approximation Eq. (6.29) does not require to consider the operators X'z§, 2'z5zg, etc.
However, such operators have to be considered when analysing Eq. (6.26) for the spin.
Another operator present on the r.h.s. of Eq. (6.29) is {n}, zk}+. It appears twice: in the
fourth term (after expanding f; around zz = 0) and in the term which precedes the last
term. Furthermore, Eq. (6.26) for the rest-frame spin, in addition to the above listed opera-
tors, contains also the operators

IMn%, z8},  and  Zm,.

Eq. (6.25) contains yet another operator, namely 7g.

The covariant expectation values of those operators in general cannot be reduced to
the covariant expectation values of the basic operators zg, 7%, Z°. Therefore, in principle
they have to be considered as independent classical variables. Let us introduce for them
the following notations

(z'zh) =z (&) = PR,
({m za}s) = ACE,  (1Z'{xk, za}+) = hD,. (6.31)

A complete set of classical equations of motion has to include also equations for these
variables in addition to the expected equations for the trajectory £“(x) and for a classical
spin. Those additional equations of motion can be obtained by taking the covariant expecta-
tion values of the Heisenberg equations of motion for the corresponding operators. Such
Heisenberg equations of motion are easy to obtain with the help of Egs. (6.24)-(6.26).
For example,

d ass dn®
o Zs R - R Z-s e 4 ,
dr( p) dt ot dr

where dX/dt, dnjdt are given by (6.26), (6.35) respectively. It is easy to see that
these equations imply other new, independent classical variables, e.g. (In¥7y). In this
manner we are led to consider an infinite set of classical equations of motion which probably
is just equivalent to the initial wave equation (5.20). The very essence of the idea of the
classical approximation is that that infinite set of equations of motion can be approxi-
mately replaced by a set consisting of a few equations of a type occurring in classical
mechanics. The use of the proper-time coordinate T and of the covariant expectation values
greatly facilitates preserving the Lorentz covariance in the process of approximating.
A detailed mathematical analysis of such an approximation, which would employ
a precise, quantitative criterion for the quality of the approximation, is far beyond the
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scope of this paper. Such an analysis should answer many crucial questions such as, for
example, for a given external field F,, what is the least number of classical variables one
has to use in order to have a classical approximation with an error not exceeding an a priori
fixed bound? In the present paper we shall be satisfied with an analysis of the consistency
conditions, As we have seen, in the order m~* such analysis leads to Eq. (6.20) for the trajec-
tory E#(r). We think that it is a rather interesting feature of our approach to the classical
limit of the Dirac equation that the equation for the classical trajectory &“(z) arises in this
rather unusual way.

Now let us analyze the consistency condition following from (6.29). Taking the covar-
iant expectation values of both sides of Eq. (6.29), utilizing the Taylor expansions of the
type (6.30) and neglecting all terms with the second or higher derivatives of F,,, using the
fact that (|n}) is proportional to the external field F,, (as ‘t follows from (6.27)), and finally
utilising the notation (6.31) we obtain the following equation

NG e o eh N
'—'+"—-—_i'—'_'— vs. sisr
¢ 14+¢&, mfo 2m? Eors SR
eh eh
= ﬁfk]i(,sci'l' I r%,O (o
. 1 .~ 1 .
—7 (80— 2up n_1 epkrSRFpk,i_(gO —2up ;1 xS Foxo = 0, (6.32)
where
Sk = (pPwZ vy, (6.33)

will be called the rest-frame classical spin of the particle. In Eq. (6.32) all fields f* and F,
as well as their derivatives, are taken at the point zg = 0.

Eq. (6.32) is Newton’s equation for the classical trajectory in the order m~2. Expressing
ﬂ; and Faﬁ by F,,, and dropping all the terms which are not linear with respect to F,,,
and finally passing from the rest-frame to the lab-frame description, we obtain from (6.32)
the following equation (gg23 = +1)

. . eh . . .
mé, = eF, "+ o EauaaW T EF? (50— E,EP)

eh

s g eh .
+ Ce”(égﬁévéa)lgua,g—i_ 2—m CvaégépF” .0

2m

+5 (80— 2)ﬂngauazéanFW, (08— EE) +(go— 2)ﬂnﬁlzavégéu£aFua,qu’ (6.34)
where
C* = (H&)gr(H::)uka}k’ (6.35)
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and
w* = (Hp), Sk (6.36)

is by definition the lab-frame classical spin of the particle. Strictly speaking, (6.34) follows
from (6.32) only for v = 1, 2, 3. Eq. (6.35) with v = 0 follows from these three equations
because &, = &g 1EE (recall that &2 = 1).

It follows from the definition (6.31) that under Lorentz transformations C® transforms
by the Wigner rotations. Then, it is easy to check that C**, as defined by (6.35) is a Lorentz
tensor. Similarly, W* is a Lorentz 4-vector. Thus, Eq. (6.34) is Lorentz covariant.

A comparison of Eq. (6.34) with classical equations which have been presented in the
literature will be given in the next Section.

Differentiating both sides of (6.29) with respect to = and applymg the conditions (6.2),
(6.10) we obtain further consistency conditions. However, it is not difficult to check that
within the adopted approximations, i.e. linear with respect to F,, and up to m~* in powers
of m~*, the equation (6.32) is sufficient in order to guarantee that those further consistency
conditions are fulfilled. This is essentially due to the facts that from Eqs. (6.24)-(6.26)
it follows that

)| d dzy 1

—~—, —m ~ F,,
dt m dr " dt m

~ —

Thus Eq. (6.32) is the necessary and sufficient condition in order to satisfy all the consistency
conditions following from the assumption (6.2) in the order m~2.

Eq. (6.34) is not self-contained even in the considered case of weakly varying external
fields. It has to be associated with an equation for the lab-frame classical spin W*, and for
the tensor C*. It is an interesting fact that Eq. (6.20) obtained in the lowest order (m~')
and in the case of weakly varying external fields is self-contained.

The equation of motion for the classical spin S§ follows from Eq. (6.26) by taking the
covariant expectation value of both sides of it. Utilising the Taylor expansions around
Zz = 0 and employing the notations (6.31), (6.33) we obtain in the case of weakly varying
external fields the following equation

dSy &
’_E = EsrpCikp [:1 50 R m (f SR+frs lel)

€ R pR R nR h sp éfO&' R
+ rP s+h.l r D st) T N - > P s
4"12 (fO k Or,t™'k. t) Im (é 1 +§0 k

—3(8-2) lff(s F +Frzzkz)+ (80—2) ‘—‘(FOrPks'*"hFouDksl):l (6.37)

where the fields f,,ﬂ, . and their derivatives are taken at Zz = 0. Let us introduce the lab-
-frame counterparts of the quantities (6.31),

2" = H H°Z%,
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P* = HvsHlkP:b
D" = H'H“H DY, (6.38)

where H = H; is the boost (4.9). It is easy to see that all these quantities are perpendicular
to &* (in the four-dimensional sense) with respect to each index, for instance

§2% =2 =0. (6.39)

Using the definition (6.36) and performing straightforward algebraic manipulations we
obtain from (6.37) the following equation for the lab-frame classical spin w*

dw* . e ! e s
= —EEW + — (W —EEVWF, + — (= EENZF o
dz m m
e . . ) .
+ ‘_1_____2 (Pv}qu#v_}_vaéuFu/.__I_hDv/lo'Fuv’aéu
m
vaorup A h EApVv g pvi
_hD v é Fu ,a')+ _—"(é P v+évP )
2m
u LA o v,
+(go=2) 3 (0"~ &) (WF g+ Z7F )
+1(g,—2) % (P2EF,* 4 PP, — D7 08 F 2+ D EE,, ), (6.40)

where 7 is the Minkowski metric. It is understood that the acceleration Eu is eliminated
from the r.h.s. of Eq. (6.40) with the help of Eq. (6.34).

The set of the two equations (6.34) and (6.40) is not selfcontained. It has to be complet-
ed with equations for the quantities C*¢, Z*, P**, D'**. As we have already mentioned
this would lead to an infinite set of classical equations of motion. In such circumstances it is
normal practice to cut off that infinite sequence of equations by making some extra assump-
tions. In our case such assumptions should be regarded as restrictions on the form of the
wave packet. Therefore it should be checked whether the assumptions are compatible with
the fact that the wave packet obeys the Dirac equation. A detailed discussion of possibili-
ties for such assumptions is postponed till later. In the present paper we would like only
to give an example of a plausible assumption of this type, without actually attempting
to answer the question of its compatibility with the Dirac equation. This assumption is moti-
vated by a consideration of wave packets in the absence of an external field, i.e. F,, = 0.
It is easy to see that in this case the wave equation (6.11) has wave-packet type solutions
such that the spin decouples from Zzg, i.e. |

(12°0) = S (6.41)
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for any observable Q which does not contain the spin operators Z". For such a wave packet
ZR = PR =0, DR, = SiCl. (6.42)
From (6.42) it follows that
2" = P*=0, D =wc(cr. (6.43)
Assuming also a spherical symmetry of the wave packet in the rest-frame we have
CE = cody (6.44)
ie. "= —co(nf'?—E"&, (6.45)

where J,, is Kronecker delta, and ¢, is a dimensionless consiant. When switching on the
external field we do not expect that the formulae (6.42), (6.44) are still valid, in general.
However, we expect that the corrections are regular functionals of the external field F,,, at
least for some sufficiently small F,,. Therefore the corrections would give contributions
to the right hand sides of Egs. (6.34), (6.37) which are nonlinear with respect to F,,. Thus
in the linear approximation adopted in this Section we can effectively use just (6.42), (6.44),
or equivalently (6.43), (6.45). Let us write equations (6.34), (6.40) with the assumptions
(6.43), (6.45) taken into account and with the substitution of (6.34) into (6.40):

e . 1 . . .
¢t = - FrE—(2—T go)itn - EavagWOEF P — £4E")

1 . 1 Aivievre e
—Coltn - (" =N, ,+(80—2)itp -~ Eyo EEEWOF ", (6.46)
where
eh
e = 2m
dw*  eg,

e ...
= FA WY —(g,—2) — E*WF,,
dt 2m (80=2) 2m ¢ "

eh 2320\ Sr1gry I i A
=033 (80— D) [0 = EENW F o= EWF,]

eh . eh s ) )
6o 53 EWR + (2= 5 80) s opuacl & W W F™. (6.47)

This set of equations is self-contained. However, the price for this is that this set follows
from the Dirac equation only when the assumptions (6.43), (6.45) are not in contradiction
with the fact that the wave packet obeys the Dirac equation (2.22) (with the anomalous
magnetic moment term included).
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Eqs. (6.46), (6.47), as well as Egs. (6.34), (6.40) are compatible with the two conditions
&=1 &w, =0. (6.48)

Eq. (6.47) is compatible also with the condition
W, W* = const. (6.49)

Eq. (6.40) is not compatible with (6.49). We comment upon this fact in the next Section.

7. Discussion

In this Section we would like to discuss two topics. First, we would like to present
some general remarks about the classical equations of motion obtained in the preceding
Section. Next we shall discuss limitations of the proper-time formulation of the Dirac
equation coming from the fact that the 7, 7 coordinates are local.

A. First let us note that in the lowest order approximation, i.e. when keeping only
the terms of the order m !, Eqs. (6.46), (6.47) reduce to the well-known B-M-T equations
[11], even for nonconstant external fields F,,. Looking at the more general equation (6.40)
we see that the B-M-T equation for the classical spin W’ in the lab-frame follows from
(6.40) in the order m~! and in the linear approximation if Z*¢ is of the order m-! or higher,
or if Z is proportional to F,,. These two conditions for Z?¢ are non-trivial in the sense
we cannot exclude the possibility that there exist wave-packets for which Z°¢ does not
meet any of these conditions. Therefore, the B-M-T equation for W is not universal in
the context of the classical limit of the Dirac equation even in the order m-!. It is valid
only for a subclass of wave packets. On the other hand, Newton’s equation in the order
mt, ie.

=S g
m
turns out to be universal in that sense.

Let us also note that in the case of constant external fields, ¢,F,, = 0, the general
equations (6.34), (6.40) valid up to the order m~2, reduce again to the B-M-T equations.
In this case particular assumptions about the wave packet are not necessary. This is due
to the fact that all the terms in Egs. (6.34), (6.40) which contain Z°¢, P**, D**, C*° or are
of the order m~2, are proportional to the derivatives of the external field.

Thus the B-M-T equations appear in the classical limit of the Dirac equation
as equations which are universal for all wave packets in the case of a constant external field
(¢.F,, = 0), at least up to the order m=2 considered in this paper. Moreover, these equations
appear also in the case of non-constant external fields in the order m~!. However, in this
last case the equations are not universal.

The terms in Eqs. (6.46), (6.47) proportional to F,,, differ from such terms present
in other equations of motion for classical spinning particles which have been presented
in the literature, see e.g. [4-10]. The general structure of these terms is identical, but coeffi-
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cients and several other details are different. This is not a surprise because in most cases
the equations given in the literature have been derived from entirely different starting points
like for instance, an a priori assumed classical Lagrangian. In the case of derivations
which, like our derivation, start from the Dirac equation (e.g. the derivation presented
in [6]), the differences are due to the fact that there is no unique definition of a classical
trajectory on the ground of quantum mechanics. For instance, there is freedom in choosing
the position operator, as well as in defining the classical variables. Different definitions
of the classical trajectory obviously lead to different classical equations of motion, in gener-
al. The classical equation obtained in the previous Section should be considered as relevant
only within the framework developed in the present paper.

We would like to underline two particular differences between the classical equations
of motion obtained in the present paper and equations presented in the literature. Both
differences are due to the fact that in our approach classical variables are defined as the
covariant expectation values of the corresponding operators. Therefore it is natural that
the classical equations which we obtain might contain some parameters which are directly
related to the underlying wave packet. The ¢, coefficient present in Egs. (6.46), (6.47)
is an example of such a parameter. Its value has to be calculated with the help of (6.44)
(for wave packets which actually obey the assumption (6.44)). The classical equations
presented in the literature do not contain such parameters.

The other difference which we would like to underline 1s related to the condition (6.49).
This condition is equivalent to Sz = const., which means that the classical spin has constant
length. This condition is adopted in most derivations of classical equations of motion for
spinning particles which have been presented in the literature. However, within the frame-
work used in the present paper the condition (6.49) in general is not justified. In order
to see this, let us compute S2 using the definition (6.33). We shall assume that y{” , is a nor-
malised wave packet, i.e.

('P(&‘Z—)W:W(Fz—;w = j'd3ERy)y_2€v(r, ER)‘/’(FZ—)»V(T’ :"R) =l (1.1
For Sk we have the following explicit formula
Se =1 d*ZepE 201, Z)o Wit Zx) (7.2)
)

(by the assumption w{*, has 2 nonvanishing components). Using Schwarz’s inequality
it is easy to prove that from (7.1), (7.2) it follows that

(Sp)? < %. (7.3)
Thus in general we should not expect that S§ = — W, W” is constant in 7.
The equality in (7.3) occurs only if v (7, ) has the form
€1
RENCEA T RS PTCEERY (74)

0
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where ¢(r, zg) is a c-number valued function. One can say that in (7.4) the spin degrees
of freedom factorize from the translational degrees of freedom. Thus in the particular
case of wave packets of the form (7.4) one should expect that Sg =— W,W* = 4 = const.
It is easy to see that (7.4) implies (6.41) and, subsequently (6.42), (6.43). Thus we would
expect that in the case when the assumption (6.41) is valid, the classical equation of motion
(6.40) is compatible with the condition (6.49). It is easy to check that indeed this is the case.

Finally, let us recall that our classical equations of mgtion have been obtained in the
approximation linear with respect to F,,, and that we have neglected all higher than the
first derivatives of F,,. We have also neglected all the terms which are proportional to
m ", on> 2.

B. Now let us turn to the second topic planned for this Section. The region of cor-
rectness of the coordinates 7, z is determined by the condition of non-singularity of the
metric tensors (2.9), (2.11). This is equivalent to nonvanishing of the determinant g of the
metric g,; and of its inverse. Using the formula (2.10) and adopting the condition ¢ = |
we obtain the following restriction (for the zz coordinates defined by (5.2))

. Eoér >
1+{&— —~1zx > 0. 7.5
(- )4 03
Using Egs. (6.17), (6.18) and neglecting the terms nonlinear with respect to F,, we obtain
from (7.5) the following condition

e T
1+ — ERZg > 0 (7.6)
m

where E® s the electric field in the instant rest-frame. The condition (7.6) is certainly
satisfied if

CUBR 1 < 1. 1.7)
m

For a well-known reason the wave packet should not be smaller than the Compton wave
h

length Ac = — . In order to obtain a rough estimate we shall assume that this applies just
m

to the zg coordinates, i.e. that the maximal |Zg| allowed by (7.7) should be greater than
Ac. This gives a bound for the electric field

n263

7.8
i (7.8)

- - F
R TR
|[EY| < |Ec| ~

where we have reintroduced the velocity of light ¢. The definition of |ER| can be written
in the form

elE‘CR[}LC ~ mc?. (7.9)

From (7.9) we see that the allowed values of [ER] are rather high — the work performed
by the field E¢ on the microscopic distance A is equal to the rest energy of the particle.
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The electric field on a Bohr orbit in a hydrogen atom is of the order eE ~.10-7 m2¢3h-1,
where m is the mass of the electron. When passing from the lab-frame to the rest-frame
the components of electric and magnetic field transverse to the velocity increase by the
factor y, while the parallel components do not change. Thus the relation (7.9) can be written
in the form

Lab, 2
eyciF 01~ me”,

where 7 = (1—22)"*%. Even for a very fast particle, e.g. y ~ 10°, the allowed fields (in the
lab-frame) are rather strong.

The condition (7.7) has also to be satisfied for the sake of the validity of the linear
approximation. For instance, looking at the formula (6.3) for the contribution of the
anomalous magnetic moment we see that the magnitude of the terms nonlinear in F,, rela-
tive to the linear terms is characterised just by the value of the Lh.s. of the inequality (7.7).
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