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We study the question to what extend classical Hodge–deRham theory
for harmonic differential forms carries over to harmonic spinors. Despite
some special phenomena in very low dimensions and despite the Atiyah–
Singer index theorem which provides a link between harmonic spinors and
the topology of the underlying manifold it turns out that in many dimen-
sions harmonic spinors are not topologically obstructed. In this respect
harmonic spinors behave very differently from harmonic differential forms.
We also discuss parallel spinors and Killing spinors.

PACS numbers: 02.40.Ma, 02.40.Vh

1. Introduction

Let M be a closed n-dimensional differential manifold. Here “closed”
means compact, connected, and without boundary. Let Ωp(M) denote the
space of smooth p-forms on M , p = 0, . . . , n. Then the exterior derivative
d maps Ωp(M) into Ωp+1(M). If M is equipped with a (positive definite)
Riemannian metric g, then we can form its L2-adjoint δg : Ωp+1(M) →
Ωp(M), characterised by (dω, η)L2(M,g) = (ω, δgη)L2(M,g), ω ∈ Ωp(M),

η ∈ Ωp+1(M). The subindex g indicates that δg depends on the Riemannian
metric while d does not.

The Laplace–Beltrami operator ∆g = (d + δg)
2 = dδg + δgd respects

the degree p of forms. It is an elliptic second order differential operator
with nonnegative discrete spectrum. The eigenvalues of ∆g depend on the
Riemannian metric g in a complicated manner, except for the eigenvalue 0.
Namely, one has
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Hodge–deRham Theory:

bp(M) = dim
(

ker(∆g|Ωp(M))
)

is a topological invariant, the pth Betti number.
This is an amazing fact. Harmonic differential forms (solutions of ∆gω=0)

can be counted topologically!
There are other important fields on a manifold like spinors which describe

fermions in quantum mechanics. Is there a similar strong link between har-
monic spinors and the topology of the underlying manifold?

To be more specific, let s be a spin structure on M and let ΣM → M
be the corresponding complex spinor bundle. See e.g. [22] for a definition
of these concepts. At each point p ∈ M there is the Clifford multiplication
map from the tangent space to linear maps of ΣpM to itself

γ : TpM → End(ΣpM)

satisfying the relation

γ(X)γ(Y ) + γ(Y )γ(X) = −2g(X,Y ) · Id

for all X,Y ∈ TpM . The Levi–Civita connection ∇ induces canonical con-
nection on spinors, again denoted ∇. The Dirac operator is defined by

D = Dg,S =
n

∑

j=1

γ(ej)∇ej
,

where e1, . . . , en is a local orthonormal basis of TM .
Example. Let M = R

2 with the Euclidean metric g. Then spinors are
simply maps R

2 → C
2 and Clifford multiplication is given by the Pauli

matrices

γ(e1) =

(

0 −1
1 0

)

, γ(e2) =

(

0 i
i 0

)

.

The Dirac operator is

D =

(

0 −1
1 0

)

·
∂

∂x
+

(

0 i
i 0

)

·
∂

∂y
.

We call a spinor ϕ harmonic if it satisfies the Dirac equation without
potential,

Dϕ = 0.
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To see the analogy to harmonic differential forms note that Dϕ = 0 is
equivalent to D2ϕ = 0. Namely, Dϕ = 0 obviously implies D2ϕ = 0.
Conversely, if D2ϕ = 0 take the L2-product with ϕ and compute

0 = (D2ϕ,ϕ)L2 = (Dϕ,Dϕ)L2 .

This partial integration is possible because D is formally self-adjoint and M
is closed. One concludes Dϕ = 0.

Now the operator D2 is an elliptic second order differential operator
completely analogous to ∆ = (d + δ)2.
Question. Is there topological information contained in

h(M,g,S) := dim (Dg,S) ,

does h(M,g,S) really depend on g and/or S?
It is not hard to see [19] that h is a conformal invariant, i.e. if g′ = u · g

for some positive function u, then

h(M,g,S) = h(M,g′,S).

2. Parallel spinors

Before we study harmonic spinors let us first look at a stronger equation.
A spinor is called parallel if for all X ∈ TM

∇Xϕ = 0.

This is a linear overdetermined elliptic equation. Of course, every parallel
spinor is harmonic. In the “general case” this equation has no nonzero solu-
tions. Existence of parallel fields can always be characterized by a reduction
of the holonomy group Hol (M,g). A generic Riemannian spin manifold
has holonomy group Hol (M,g) = SO (n) and no parallel spinors. Going
through the list of possible holonomy groups of (irreducible, simply con-
nected) Riemannian spin manifolds one obtains the following table [19,33]:

TABLE I

n = dim (M) Hol (M, g) geometric condition N

2m, m ≥ 2 SU (m) Kähler, Ricci-flat 2
4m, m ≥ 2 Sp (m) hyperkähler m + 1

8 Spin (7) 1
7 G2 2
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Here N denotes the dimension of the space of parallel spinors. For ex-
ample, every (4m)-dimensional hyperkähler manifold has m + 1 linearly in-
dependent parallel spinors.

The irreducibility condition is technical. It means that a general simply
connected Riemannian manifold is a product of irreducible ones and the
various combinations of the holonomy groups in Table I can occur. For the
nonsimply connected case see [34].

3. Killing spinors

The concept of parallel spinors generalizes as follows. Let α ∈ C.
A spinor ϕ is called a Killing spinor with Killing constant α if for all X ∈ TM

∇Xϕ = α · γ(X)ϕ.

Again this is an overdetermined elliptic equation. Killing spinors were first
introduced by Penrose [32] in General Relativity. They are important in
Supergravity theories [9]. If α = 0, then we are back to parallel spinors.
It can be shown that on a closed manifold M only real α can occur. If
α ∈ R − {0} then by appropriately rescaling the metric we can assume
α = ±1

2 . Let N± denote the dimension of the space of Killing spinors with

Killing constant ±1
2 .

The essential idea to characterize manifolds with Killing spinors geomet-
rically and to compute N± is the following.

Let CM be the cone over M , i.e. CM = M × R+ with the Riemannian
metric gCM = dt2 + t2g, t ∈ R+. The crucial observation is that Killing
spinors on M correspond to parallel spinors on CM . Applying the results
from the previous section to CM and translating the geometric conditions
on CM into conditions on M yields the following possibilities for simply
connected M with Killing spinors [3]:

TABLE II

n = dim (M) Hol (CM, gCM ) geometry of M (N+, N−)

arbitrary {1} Sn (2[n/2], 2[n/2])
2m − 1 SU (m) Einstein–Sasaki (1, 1) or (2, 0)
4m − 1 Sp (m) 3-Sasaki (m + 1, 0)

7 Spin (7)
nearly parallel vector

cross product
(1, 0)

6 G2 nearly Kähler, nonkähler (1, 1)

In particular, if the dimension n is even but n 6= 6, then the standard
sphere Sn is the only simply connected manifold with Killing spinors. In
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dimension n = 4 and n = 8 this had been known before, see [8] and [18].
For other previously known special cases of the classification, obtained by
different methods, see [11–13,17].

4. The Atiyah–Singer index theorem

We have seen that parallel spinors or, more generally, Killing spinors
exist only on very special Riemannian manifolds. A slight perturbation of
the metric will immediately destroy their existence. This is not too surprising
since they are defined by overdetermined equations. Let us therefore return
to harmonic spinors.

If n = dim (M) is even, then the spinor bundle splits into the so-called
half-spinor (or Weyl spinor) bundles, ΣM = Σ+M ⊕ Σ−M . The Dirac
operator maps positive half-spinors into negative ones and vice versa. Thus

h(M,g,S) = h+(M,g,S) + h−(M,g,S) ,

where h±(M,g,S) is the dimension of the space of harmonic positive/nega-
tive half-spinors.
Atiyah–Singer Index Theorem [1].
The number

h+(M,g,S) − h−(M,g,S) = Â(M)

is a topological invariant (independent of g and S), the Â-genus of M .

Corollary. h(M,g,S) ≥ |Â(M)|, i.e. there is a topological lower bound for
h(M,g,S).

This gives a nontrivial estimate only if n is divisible by 4 since otherwise
Â(M) = 0. In certain dimensions there is a refinement of the index theorem
[2] using Milnor’s α-genus:

If n ≡ 1 mod 8 : h(M,g,S) ≡ α(M,S) mod 2 ,
If n ≡ 2 mod 8 : h+(M,g,S) ≡ α(M,S) mod 2 .

The index theorem in its various versions establishes a certain link between
h(M,g,S) and the topology of the underlying manifold. The analog for
differential forms is the formula

n
∑

p=0

(−1)pdim(ker∆g|Ωp(M)) =

n
∑

p=0

(−1)pbp(M) = χ(M)

for the Euler–Poincaré characteristic of M . But we know that more is true,
the individual bp(M) are topological.
What can we say about h(M,g,S) = h+(M,g,S) + h−(M,g,S)?
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5. The 1-dimensional case

To start let us look at the simplest case. There is only one closed
1-dimensional manifold, the 1-sphere S1. Its metric is determined by its
length L > 0, S1 = R/L · Z. There are two spin structures on S1, S1

and S2. For S1 spinors correspond to periodic functions ϕ : R → C,
ϕ(t+L) = ϕ(t). For S2 they correspond to antiperiodic functions ϕ : R → C,
ϕ(t + L) = −ϕ(t). In both cases the Dirac operator is D = i d

dt
. Obviously,

the kernel of D consists of constant functions which are admissible only for
S1. Thus

h(S1, g,S1) = 1,
h(S1, g,S2) = 0.

This example already shows that h depends in general on the spin structure.

6. Surfaces

Let us turn to two dimensions. The situation depends a lot on the genus
of the surface.
Case 1: genus = 0.
Theorem [4]. Let M be a closed surface of genus 0. Then all eigenvalues λ
of the Dirac operator on M satisfy

λ2 ≥
4π

area(M,g)
.

In particular, h(M,g,S) = 0, so again h does not depend on the metric.
This also follows from conformal invariance of h and the fact that all metrics
on S2 are conformally equivalent.
Case 2: genus = 1.

The 2-torus has four different spin structures, one of which, Str, is in a
sense trivial (biinvariant). Every metric on a 2-torus is conformally equiv-
alent to a flat metric, hence it suffices to consider flat metrics. For flat
metrics the eigenvalues of the Dirac operator are easily computed [10]. It
follows from this that for any metric

h
(

T 2, g,S
)

=

{

2, if S = Str

0, otherwise.

Again, h does not depend on g.
Case 3: genus = 2.

This case turns out to be similar to the torus case, h depends on the
spin structure but not on the metric [19].
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Case 4: genus > 2.

It turns out that in general h does depend on both, the spin structure
and the metric [19]. Despite the promising first results in dimension one and
for genus ≤ 2 we get disappointed at this stage. It turns out that harmonic
spinors are less closely related to the topology of the manifold than harmonic
differential forms.

7. Berger spheres

To get an idea of what to expect in higher dimensions let us look at a
family of Riemannian metrics on spheres constructed as follows.

Let S1 → S2m+1 → CPm be the Hopf fibration. Here CPm denotes
complex projective space. Let g be the standard metric on S2m+1 of constant
curvature 1. At each point p ∈ S2m+1 the tangent space TpS

2m+1 splits
into the 1-dimensional vertical subspace Vp tangent to the fiber S1 and
its orthogonal complement Hp, the “horizontal” subspace. Hence we have
TpS

2m+1 = Hp ⊕ Vp. With respect to this splitting we can define for each
T > 0 a new metric by gT := g|H ⊕ T · g|V . In other words, we keep the
splitting TS2m+1 = H ⊕V orthogonal, on H the metric remains unchanged
whereas it becomes rescaled by T along the fibers. This way we obtain a
one-parameter family of metrics gT on S2m+1, called Berger metrics.

It is possible to explicitely compute the spectrum of the Dirac operator
on S2m+1 for each gT . The reason for this is the fact that all metrics gT are
homogeneous for the unitary group when we write

S2m+1 = U(m + 1)/U(m).

Therefore one can apply methods from harmonic analysis using represen-
tation theory for the unitary groups to compute the spectrum, see [19] for
m = 1 and [5] for the general case.

It turns out that if m is odd, i.e. if n = 2m + 1 ≡ 3 mod 4, then
h(S2m+1, gT ,S) is zero for general T but for special choices h(S2m+1, gT ,S)
> 0. Actually, h(S2m+1, gT ,S) is unbounded for fixed m and for T ∈ (0,∞).
One of these special values of T is 2(m + 1). More precisely, the Dirac
operator on (S2m+1, gT ), m odd, has an eigenvalue

λ(T ) = (−1)
m−1

2 ·
(

T
2 − (m + 1)

)

with multiplicity

(

m + 1
(m + 1)/2

)

. This eigenvalue vanishes for T = 2(m+1)

and in a neighborhood of 2(m + 1) no other eigenvalue vanishes.
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8. The conjecture

The example of Berger spheres indicates that one can produce harmonic
spinors by special choices of the metric and it gives rise to

Conjecture. Let (M,S) be a spin manifold of dimension n ≥ 3. Then
there exists a Riemannian metric g on M such that

h(M,g,S) > 0.

In other words, we believe that in contrast to harmonic differential forms
harmonic spinors are not topologically obstructed for dimension n ≥ 3.

Using the Atiyah–Singer index theorem for families and the theory of ex-
otic spheres Hitchin [19] has shown that the conjecture is true for
n ≡ 0, 1, 7 mod 8. We give a completely different argument for dimension
n ≡ 3 mod 4. First we prove the following

Gluing Theorem [6].
Let (M1, g1,S1) and (M2, g2,S2) be closed Riemannian spin manifolds of
dimension n ≥ 3. Let ε > 0 and Λ > 0. Then there exists a Riemannian
metric g on the connected sum of M1 and M2 such that the Dirac spectrum of
(M1#M2, g,S1#S2) is (Λ, ε)-close to the disjoint union of the Dirac spectra
of (Di, gi,Si).

Here (Λ, ε)-close means that if λ1 ≤ λ2 ≤ . . . ≤ λk are the eigenvalues
of Dg in the range (−Λ,Λ) (repeated according to their multiplicity) and
µ1 ≤ . . . ≤ µl are the eigenvalues of Dg1

and Dg2
in the same range, then

k = l and |µj − λj | < ε.

Now let (M,SM ) be a closed spin manifold of dimension n ≡ 3 mod 4.
Pick any Riemannian metric g on M . If h(M,g,SM ) > 0 we are done,
otherwise we can assume (after possibly rescaling g) that all Dirac eigen-
values λ of (M,g,SM ) satisfy |λ| ≥ 1. We apply the Gluing Theorem to
(M1, g1,S1) = (M,g,SM ) and (M2, g2,S2) = (Sn, gT ,SSn) with ε very
small and Λ = 1. Then there exist metrics g̃T on M#Sn = M with Dirac

eigenvalues λ(T ) such that
∣

∣

∣
λ(T ) − (−1)

m−1

2

(

T
2 − (m + 1)

)

∣

∣

∣
< ε. Since λ

depends continuously on T it must necessarily vanish for some T̃ close to
2(m + 1).

Thus g̃T̃ is the desired metric on (M#Sn,SM#SSn) = (M,SM ) with

h(M, g̃T̃ ,SM ) > 0.

Summarizing, we now know that the conjecture holds in dimension n ≡
0, 1, 3, 7 mod 8, n ≥ 3, it is not true for n = 1 or n = 2, and it is still open
for n ≡ 2, 4, 5, 6 mod 8, n ≥ 4.
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9. Further aspects of harmonic spinors

Generic metrics. Our conjecture, which we have seen to be true in many
dimensions, tells us that for specific choices of the Riemannian metric there
are nontrivial harmonic spinors. On the other hand, all examples which one
can explicitly compute, like the Berger metrics on odd-dimensional spheres,
indicate that for generic metrics the number of linearly independent har-
monic spinors is minimal in the sense that there are not more than there
must be by the index theorems. This has recently proven to be true in
dimensions ≤ 4 at least, see [24].
Positive Scalar Curvature. The scalar curvature function of a Rieman-
nian manifold is a very weak geometric invariant. It is known that every
function f on an n-dimensional closed manifold, n ≥ 3, which is negative
somewhere, is the scalar curvature function for some Riemannian metric on
M [20, 21]. In other words, if the scalar curvature s is negative somewhere,
then it contains no topological information at all.

But from Lichnerowicz’s formula [23]

D2 = ∇∗∇ +
s

4

it follows that if the scalar curvature is positive, then D2 is a strictly positive
operator. Hence, h(M,g, S) = 0. In particular, if n is divisible by 4, then

Â(M) = 0. We see that nonvanishing of the Â-genus is a topological ob-
struction against existence of a metric of positive scalar curvature. A similar
remark holds for the α-genus in general dimensions.

Combining surgery results obtained independently by Gromov/Lawson
and Schoen/Yau with homotopy theoretic work by Stolz one obtains the
remarkable fact that for simply connected manifolds this is the only ob-
struction, see [15, 27, 29, 30].

The nonsimply connected case is still a topic of active research [14].
The corresponding conjecture is known as Gromov–Lawson–Rosenberg con-
jecture. See [25] or [31] for a survey, see also [16] for the noncompact case.
Very recently, the Gromov–Lawson–Rosenberg conjecture in its original (un-
stable) form has been shown to fail in dimension 5,6, and 7 [26].

In the case of zero scalar curvature, s ≡ 0, there can be nontrivial har-
monic spinors, h(M,g, S) can be positive. But then, again by Lichnerowicz’s
formula D2 = ∇∗∇, every harmonic spinor must be parallel and we are back
to Section 2.
Nodal Sets. Let ϕ be a harmonic spinor or, more generally, a solu-
tion of (D + h)ϕ = 0 where h denotes any potential. The set of zeros
Nϕ = {x |ϕ(x) = 0} is called its nodal set. This terminology stems from the
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analogous classical theory for Laplace operators describing vibrating mem-
branes. For example, if ϕ is an eigenspinor on a 3-dimensional manifold,
(D − λ)ϕ = 0, λ ∈ R, then

Φ(x, t) = eiλt · ϕ(x)

describes a fermion in “pure state”. The nodal set Nϕ is precisely the set of
points where the probability density |Φ|2 vanishes, i.e. the locus at which
the probability to find the particle is zero.

How big can such an “exclusive” set be? The answer is the following [7]:
If ϕ solves (D + h)ϕ = 0 on an n-dimensional manifold, then

dim(Nϕ) ≤ n − 2.

Here dim denotes Hausdorff dimension. In particular, the exclusive set for
a fermion is at most 1-dimensional.
Seiberg–Witten Theory. In order to explain confinement of electric
charge in N = 2 supersymmetric gauge theory Seiberg and Witten [28]
introduced equations which led recently to spectacular results in differential
topology of 4-manifolds. It seems that most theorems proved by Donald-
son’s instanton theory can also be proved using Seiberg–Witten theory, only
in a simpler way. Moreover, there have been new important applications.
The Seiberg–Witten equations couple the harmonic spinor equation to an
equation for a U(1)-potential.
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