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HADRONS AND QCD INSTANTONS:A BOSONIZED VIEWM. Kair, M. Prakash and I. ZahedDepartment of PhysisState University of New York at Stony BrookStony Brook, New York 11794-3800, USA(Reeived Otober 13, 1998)In a dilute system of instantons and antiinstantons, the UA(1) and saleanomalies are shown to be diretly related to the bulk suseptibility andompressibility of the system. Using 1=N (where N is the number ofolors) as a book-keeping argument, mesoni, baryoni and gluoni orre-lators are worked out in p-spae and Fourier transformed to x-spae for aomparison with reently simulated orrelators. The results are in over-all agreement with simulations and lattie alulations, for distanes upto 1.5 fm, despite the fat that some hannels lak the neessary physialsingularities. We analyze various spae-like form fators of the nuleon andshow that they are amenable to onstituent quark form fators to leadingorder in 1=N. Issues related to the lak of on�nement in the model andits onsequene on the various orrelation funtions and form fators arealso disussed.PACS numbers: 12.38.Lg 1. IntrodutionAn outstanding problem in QCD is the understanding of the hadronispetrum from �rst priniples. Deades of dediated lattie simulations haveshown that the problem is di�ult when all QCD degrees of freedom aretaken into aount. Through the years there have been numerous propos-als, both theoretial and numerial, whih suggest that only some relevantdegrees of freedom may be important for the bulk aspets of the hadronispetrum. The proposals range from lattie ooling proedures [1℄ to semi-lassial tehniques [2℄.Reent lattie simulations based on ooling proedures have suggestedthat instanton and antiinstanton on�gurations may aount for a large partof the hadroni orrelations [3, 4℄, although the loal harater of the ool-ing algorithms may not totally rule out persistent quantum e�ets at large(287)



288 M. Kair, M. Prakash, I. Zaheddistanes [5℄. On a periodi lattie (without twists), instanton or antiinstan-ton on�gurations are neessarily singular [6℄. Their ontinuum analogs arethe BPST instantons in singular gauge, a point of some reent onern [7℄.Notwithstanding suh onerns, an impressive amount of results, both fromooled lattie simulations [3, 4℄ and from random instanton simulations [8℄,seem to indiate that the basi features of the hadroni spetrum may emergefrom a dilute ensemble of singular instantons and antiinstantons.Sometime ago, 't Hooft's suggested [9℄ that instantons provide the answerto the axial UA(1) problem. In the presene of instantons or antiinstantons,light quarks aquire zero modes, whih bunh into �avor-singlet on�gu-rations ('t Hooft's verties) thereby dynamially breaking the axial UA(1)symmetry. At low energy, 't Hooft's interations provide interesting orrela-tions in various hadroni hannels, as noted by Callan, Dashen and Gross [2℄,and analyzed using QCD sum rules [10℄, resummation proedures [12, 13℄,instanton simulations [14℄, and bosonisation tehniques [15�18℄.In this paper, we will assume that the QCD partition funtion simpli�esinto a grand anonial ensemble omposed of 't Hooft's verties, with anapriorily unspei�ed measure for the instanton-antiinstanton interations.We will further assume that the ensemble is dilute with a sreened topolog-ial harge, as disussed in Refs. [18�20℄. The sreening is expeted fromthe feedbak of the light quarks on the instantons and antiinstantons inthe vauum [21, 22℄. In this respet, problems related to the original hoieof the instanton-antiinstanton ansatz [23℄, as well as the limitations assoi-ated with the streamline approah [24℄, are somehow irrelevant. Analytialand numerial alulations with suh an ensemble have led to a satisfatoryphenomenology [8, 13, 19℄.The purpose of this paper is to show that the analytially derived resultsusing either resummation tehniques [13℄ or bosonisation tehniques [15,19℄for two and three �avors in momentum spae, are onsistent with the reentfour-dimensional simulations [8℄ as well as with the ooled and quenhed lat-tie simulations [4℄ up to a distane of 1.5 fm. At larger distanes, the lakof on�nement shows up in the form of spurious osillations. The physis ofa sreened gas of instantons and antiinstantons is well desribed by simplemean �eld arguments [15, 19℄. In Setion 2, we reall the e�etive ationfor a random instanton gas using an approximate bosonisation sheme. InSetion 3, we disuss the struture of the massive quark propagator bothin momentum and oordinate spaes, and omment on heavy�light orre-lators. We note that in the long wavelength limit, the quark propagatorbeomes tahyoni for all urrent quark masses. In Setion 4, we outlinethe result for the quark ondensate in the random instanton gas. In Se-tion 5, we give a brief aount of the various mesoni orrelators, inludingthe salars. We disuss issues related to the mixing between the salars and



Hadrons and QCD Instantons 289the �utuations in the instanton salar density through the sale anomaly.The mixing between the pseudosalar singlet and the �utuations in the in-stanton pseudosalar density yields naturally to a resolution of the UA(1)problem. Issues related to the �� �0 mixing are also disussed. The p-spaeresults are disussed in detail for salars, pseudosalars and vetors, andompared with the x-spae simulations. While the analysis of the p-spaepseudosalar orrelator shows lear evidene of poles, the vetor orrelatorssimply exhibit two onstituent quarks. In Setion 6, we brie�y disuss non-strange baryons in x-spae. In Setion 7, salar and pseudosalar gluoniorrelation funtions are disussed. In Setion 8, quark and gluon form fa-tors of the onstituent quark are disussed. To leading order in 1=N, theysaturate the nuleon form fator following from the point-to-point orrela-tor in terms of Io�e's urrent. Our onlusions and reommendations aresummarised in Setion 9.The details of the bosonisation tehniques are given in Appendix A. InAppendix B, we provide a diret alulation of the quark ondensate. InAppendix C, the neessary elements for a Gaussian approximation are pre-sented. In Appendix D, the e�etive ation for the singlet and otet pseu-dosalars is expliitly worked out. In Appendix E, an extension bosonizationsheme is presented. In Appendix F, the various expressions entering theunonneted parts of the mesoni orrelators are summarized. Some of thedi�ulties related with the expansion of the mesoni verties involving thestrange quark mass are disussed in Appendix G. In Appendix H, we outlinethe essentials of our numerial proedures.2. Model� E�etive ation't Hooft has shown that at sales larger than a typial instanton size �(�xed throughout this paper), instantons indue �avor mixing between thelight u; d and s quarks in the form of determinantal interations ('t Hooftdeterminants) [9℄det� = 1Nf !detfg �mfg�� �2i �Z  yfS�10 �� Z ��yS�10  g�� ; (1)where mfg = diag(m;m;ms) is the urrent mass matrix for (u; d; s) quarks,�� are the instanton�antinstanton zero modes,  is the fermion �eld in thelong wavelength limit, and S�10 = � (i�=+ im) is the free fermion propagator.The averaging implied by h� � �i is over the instanton and antiinstanton olororientations.



290 M. Kair, M. Prakash, I. ZahedA random system of instantons and antiinstantons that is ompatiblewith the UA(1) and sale anomaly yields the generating funtional [9,17,20℄Z[�; �y℄ = Z dn+dn�D D y �(n+; n�) e� R d4zL[�;�y;n+;n�℄ ; (2)whereL[�; �y; n+; n�℄ =  yS�10  � n+ log det+ � n� log det� �  y� � �y (3)in (2) at the saddle points. Throughout this paper, the generating funtionalwill be used to arry alulations to leading order in 1=N, where N ountsthe number of olors. The ounting will be understood just as a onvenientway of organizing the alulation, withN = 3. In the presene of instantons,onventional N arguments have to be amended [25℄ (see also below).We are using a oarse grained ation for the desription of the instantonsand antiinstantons, as disussed in [20℄. The relation to the unoarse-grainedapproah, follows from the identi�ationn�(z) = � N�Xi=1 Æ4(z � zi) (4)at the saddle points (N = 3 � 1). The oarse grained version highlightsthe role of the salar and pseudosalar glueball �elds, and their mixing tothe quark�antiquark exitations. The measure �(n+; n�) refers to the dis-tribution of instantons and antiinstantons in the vauum without the quarks(quenhed approximation). Its form is generi, and follows solely from theUA(1) and sale anomalies [20℄�(n+; n�) = exp� � n�2� Z d4z(n+(z) + n�(z))�logn+(z) + n�(z)n � 1�� 12�� Z d4z (n+(z)� n�(z))2� ; (5)where n = N=V4 � N is the mean instanton and antiinstanton densityin the thermodynamial limit, �� = n � N [23℄ the quenhed topologialsuseptibility �� = ��Z d4z(n+ � n�)(z)�2�Nf=0 (6)and �� the quenhed ompressibility (a = 1; 2; : : :)��2�n �a�1 = 1N��Z d4z (n+ + n� � n)(z)�a�Nf=0 : (7)



Hadrons and QCD Instantons 291� AnomaliesThe oarse grained e�etive ation (3) along with the measure (5) satis-�es both the axial U(1) and sale anomaly [20℄. Indeed, in the hiral limitthe determinants in (2) aquire a phase under a U(1) axial rotation, henea non-onserved axial-singlet urrent,��j�5(z) = 2Nf (n+ � n�)(z) + 2i Trf m  y(z)5 (z) : (8)Also, in the quenhed approximation, the measure (5) is not sale invariant.As a result, the divergene of the dilatational urrent (trae of the energymomentum tensor ���), is not onserved,���(z) = 4n�2� (n+(z) + n�(z)) + 2�� (n+(z)� n�(z))2 +O(Nf ) : (9)Comparison with the QCD form of the trae anomaly [26℄ gives �2�=n �12=11N � 1=N.In the fermioni part, we note that for n+ = n�, the generating fun-tional (2) involves only the ombination (det+ det�) and is invariant underUL(3) � UR(3). The �utuations in (n+ + n�) involve mixing between theisosinglet salar and the salar �glueballs�, through�12 Z d4z(n+ + n�)(z) ln�det+ � det�� : (10)For n+ 6= n�, the ombination (det+=det�) is also allowed. The latterdynamially breaks the axial U(1) symmetry through�12 Z d4z(n+ + n�)(z) ln�det+det�� (11)as originally suggested by 't Hooft. The �utuations in (n+ � n�) will mixwith the isosinglet pseudosalar, thereby resolving the UA(1) problem (seebelow).� BosonizationIn vauum, the paking fration is given by the dimensionless ombina-tion n��4 = n2N�4 � 10�3 : (12)Sine the density n � N, the paking fration is of order N0 . The value (12)is small, and an expansion in the density is justi�ed exept in the presene of



292 M. Kair, M. Prakash, I. Zahedinfrared singularities, as we will speify below. In this spirit, the generatingfuntional (2) an be bosonized approximately by inserting the identity 11 = Z D��DP� exp�Trf Z dkdl P�(k; l)���(k; l)� ��(k; l)�� (13)in the partition funtion (2), where �� and P� are biloal auxiliary �eldsand Nf�Nf valued suh that P�(k; l) = P�(k�l) and similarly for ��(k; l).Also (see Appendix A)��(k; l) = h y(k)S�10 ��(k)��y(l)S�10  (l)i : (14)The trae over �avor indies is understood in the exponent (13). The aux-iliary �elds �� an be eliminated by using the saddle point approximation.From Appendix A, we haveZ[�; �y℄ = Z DP� e��yS[P+;P�℄� e�Se�(P�) ; (15)where the e�etive ation is given bySe�(P�) = �NTr(logS�1[P+; P�℄)+n2 Z dz�Tr ln 4n�P+(z) + Tr ln 4n�P�(z)��2Z dzTrfm(P+(z) + P�(z)) : (16)The trae Tr is over �avor and Dira indies as well as four momenta, theTrf over �avor indies and the det is over �avor indies as well positionspae. We have expliitly used 2 n+ = n� = n=2 and de�ned the operatormomentum dependent inverse propagatorS�1[P+; P�℄ = k̂=� im� ipMk� 1� imk̂=k2 !�P++5 + P��5 � 1� imk̂=k2 !pMk : (17)Here, k̂ refers to the momentum operator andMk is the indued momentumdependent sreening quark mass. The sreening mass arises from averag-ing over the instanton zero modes [13℄. From Appendix C, we have after1 In what follows, we use the shorthand notation dk = d4k=(2�)4 and dz = d4z whenintegrating.2 This onstraint will be relaxed below to address the �0 mass and the gluon orrelators.



Hadrons and QCD Instantons 293resalingMk =Mk(m) = �(m) nNk2�02 = �(0) nN k2���2 dd� (I0K0 � I1K1)�2 ;(18)where � = k�=2 is the argument of the MDonald funtions I and K. From(16) and (17) it follows that in the long wavelength limit quarks in theinstanton vauum interat via the exhange of e�etive bosoni �elds P�.The latter are Nf �Nf valued and may be parametrized asP� = e� 12 i��e� 12 i� : (19)Other parametrizations are also possible [27℄. We note, however, that to theorder we will disuss the orrelation funtions below (Gaussian approxima-tion), the results are parametrization independent.� Gap equationThe matries � and � are Nf �Nf valued and hermitean. The � vari-ables an be identi�ed as the pseudosalar Goldstone modes, exept for �0.The matrix � ontains the massive salar�isosalar and salar�isovetor ex-itations. The non zero value of � in the vauum follows from the saddlepoint approximation to (16) by setting � = 0, and swithing o� the soures.The result is an integral equation for eah �avor1� 2m�(m) = 4Nn Z d4k(2�)4 (k2 +m2)M2k (m)�mMk(m)k2k4 � 2mMk(m)k2 + (k2 +m2)M2k (m) ; (20)

Fig. 1. The onstituent quark massMk(m) versus z = k�=2 (k being the momentumand � the average size of the pseudopartile) for urrent masses m = 0 (dashedurve), m = 5MeV (dotted urve) and m=10MeV (solid urve), respetively.



294 M. Kair, M. Prakash, I. Zahedwhere we have set Mk(m)=Mk(0) = �(m)=�(0). For an instanton densityn = 1 fm�4 and size � = 0:33 fm, the behaviour of the onstituent quark massMk(m) versus the dimensionless ombination z = k�=2 is shown in Fig. 1with urrent quark masses m = 0 (dashed), 5MeV (dotted) and 10MeV(solid), respetively. For k ! 0, M0(m) ! � (m) (n=N)(2��)2,while fork � 1, Mk(m) falls o� like 1=k6. The width at half maximum is of order1=�. The result (20) was also obtained in [28℄ using di�erent arguments.3. Quark propagatorIn a random instanton gas, quarks are �sreened�. The light fermionpropagator aquires a momentum dependent mass 3. For one �avor, theresults of Appendix A give (unless spei�ed, we denote Mk(m) by Mk)S(k;m) = 1k=� im � 1k= � i(m� k2=Mk) : (21)In the massless ase [13℄ S(k; 0) = 1k=� iMk(0) : (22)We note, however, that at low momentum, Mk(m) aquires a non-analytialontribution (k ! 0)Mk(m) �M0(m)�1 + 3z2 log z2e+ 12�z=k�=2 ; (23)where  = 0:577 is Euler's onstant. The sreening mass M0(m) does notshow up as a simple pole. What this means is that, as k ! 0, the sreenedquarks beome tahyoni. To the extent that long wavelength quarks areunphysial, this should be of no real onern. However, sine the instan-ton model does not provide for on�nement, these �unphysial� e�ets willontaminate all large distane behaviours. The instanton simulations [8℄, orooled lattie alulations [4℄ have not probed large distanes.With this in mind, we now proeed to x-spae with the deompositionS(x;m) = S0(x;m) + S1(x;m) ; (24)where S(x;m) is the Fourier transform of (21) andS0(x;m) = im24�2 � x=x2K2(mx) + 1xK1(mx)� (25)3 In general, the quark propagator is gauge dependent. Our ase is no exeption, andthe present disussion should be understood as the evaluation of the quark propagatorin a random and lassial bakground of instantons and antiinstantons in a singulargauge.



Hadrons and QCD Instantons 295is the free propagator of quark of mass m. S1(x;m) follows from (24) andwill be understood asS1(x;m) = i�x=Sodd1 � Seven1 � (x;m) ; (26)whereSodd1 (x;m) = 1x ��x 0� 14�2x +1Z0 dk k2k2 + (m� k2=Mk)2J1(kx)1A (27)and Seven1 (x;m) = 14�2x +1Z0 dk k2(m� k2=Mk)k2 + (m� k2=Mk)2J1(kx) : (28)Figs 2(a) and 2(b) show the behaviour of mTrS(x;m)=TrS0(x;m = 0) (hi-rality �ip) and Tr4S(x;m)=Tr4S0(x;m = 0) (hirality non-�ip) versusx up to 2 fm, for quark masses of 5MeV (lower urve) and 10MeV (upperurve), respetively. The squares refer to the results of simulations of Ref. [8℄using 128 instantons and 128 antiinstantons in a periodi Eulidean box of3:363 � 6:72 fm4. These simulations were arried out with equal u and dquark masses of m = 10MeV. The small disrepany in the hirality �ippart of the propagator may be due to the fat that the instanton simula-tions make expliit use of the single-instanton distorted propagator for thenonzero mode part, while the bosonized onstrutions presented above makeuse of the undistorted light quark propagator for the nonzero mode part.Figs 2() and 2(d) show the hirality �ip and non-�ip part of the quarkpropagator for mu = 10MeV and ms = 140MeV over a wider range of x.The larger the quark mass, the larger the osillation in the quark propagatorat large distanes. These spurious osillations are due to the appearane ofthe tahyoni mass (23) and the ourene of the ombination (m� k2=Mk)in the quark propagator, and will ause most orrelators to lak saling atlarge distanes (typially of the order of 2.5 fm and larger) as we will disussbelow. We have heked that these osillations persist in the massless ase.In fat for m = 0 Fig. 2() is almost unhanged.At this stage, we should point out that our treatment of the urrentmasses is only approximate, given our de�nitions (1) and (2). We will hekbelow that the linear e�ets in the urrent mass do reprodue known results,while the non-linear e�ets anel out at large distanes, leaving us with theexpeted masses for the strange pseudosalars. Similar observations applyto the instanton simulations in [8℄, although the handling of the urrentmasses is not neessarily the same as the one disussed here.



296 M. Kair, M. Prakash, I. Zahed(a) (b)

() (d)
Fig. 2. The hirality �ip (a) and non-�ip (b) parts of the quark propagator (nor-malized to the free massless quark propagator) versus x (fm) for urrent massesof 5MeV (lower urve) and 10MeV (upper urve), respetively. The squares areresults of simulations arried out in [8℄ for 128 instantons and 128 antiinstantonsin a periodi box. The large distane behaviours are also shown for the hirality�ip () and hirality non-�iAp parts (d).Finally, we note that the naive interpretation that the x-spae versionof Tr(S(x;m)(1 � 4)=2) as the orrelator of a light quark in the �eld of anin�nitely heavy quark [8, 29℄ overlooks the issue of binding. As it stands,the non-relativisti projetion of the heavy�light-propagator without theWilson line (Coulomb �eld) for the heavy partile re�ets solely on a sreenedlight quark. In a heavy�light system like a D or B meson, the light quarkis expeted to bind to the heavy soure, ausing the spetral funtion todevelop a pole instead of a ut. A detailed analysis of systems with fewheavy and light quarks in a random instanton gas has been given in Ref. [30℄.



Hadrons and QCD Instantons 297In the Coulomb �eld of a heavy quark, the light quarks bind with a bindingenergy of the order of a quarter of the sreening mass [30℄.4. Quark ondensateThe formation of a quark ondensate in the instanton vauum followsfrom the random nature of the system. From our bosonized onstrution,the quark ondensate is obtained from the e�etive ation (16) through
  � = 1V4 �Se� [0; 0℄�m : (29)Sine the present treatment is semi-lassial, all the ambiguities assoiatedwith the urrent mass singularities are ignored. At the saddle point, astraightforward alulation in the m! 0 limit gives
  � = �4N� n2N�(0)� Z dk Mk(k2 +M2k )���0(0)�(0) �4N Z dk M2kk2 +M2k � n� : (30)Using the mass gap equation for zero urrent mass, the term in braketsmultiplying �0(0) vanishes and we are left with
  � = �4N� n2N�(0)� Z d4k(2�)4 Mk(k2 +M2k )� : (31)As a hek, we show in Appendix B how this result an be reovered fromthe original de�nition in the saddle point approximation, prior to the boson-isation proedure. Numerially4,n2N�(0) = 2Z d4k(2�)4 Mk(k2 +M2k ) (32)so that 
  � = �4N Z d4k(2�)4 Mk(k2 +M2k ) = �hS(0;m! 0+)i (33)whih is the expeted result to leading order in 1=N.4 With our hoie of parameters, the disrepany is (10)MeV3.



298 M. Kair, M. Prakash, I. Zahed5. Mesoni orrelatorsTo leading order in 1=N, the mesoni orrelation funtions follow from(16) by di�erentiation with respet to the external soures in the preseneof the auxiliary bosoni �elds P�. Generially,C(x) = hT � + (x)  + (0)i (34)with  = (1; 5; �; 5�; ��;�)
 (1; T a). From (16) we have C = C0 + C1 ,where the onneted part of the orrelator is given byC0(x) = � 1Z[0; 0℄ Z DP�Tr (S[x; 0;P ℄S[0; x;P ℄) e�Se� [P�℄ (35)and the unonneted part is given byC1(x) = 1Z[0; 0℄ Z DP�Tr (S[x; x;P ℄) Tr (S[0; 0;P ℄) e�Se� [P�℄: (36)
(a) (b)
() (d)Fig. 3. The onneted (a) and unonneted (b) parts of the orrelator with arbitraryquantum numbers. The insertions orrespond to the external bakground �eld P�as disussed in the text. The resulting onneted () and unonneted (d) parts toleading order in 1=N ounting.Typial diagrams ontributing to (34) are shown in Figs 3(a) and 3(b).Only the diagrams in Figs 3() and 3(d) are dominant. They will be theonly ones disussed here. In p-spae, the ontribution of Fig. 3() isC0(p) = �N Z d4k(2�)4Tr (S(1)S(2)) ; (37)



Hadrons and QCD Instantons 299where S(1; 2) = S(k�p=2;m1;2) for two arbitrary �avors. This ontributionin the long wavelength limit re�ets on the lak of on�nement in the model.The ontribution of Fig. 3(d) isC1(p) = N2 X� �R� (p)�R� (p)� �R� (�p)�R� (�p)���(p) : (38)The extration of �� and R� from (16) is performed in Appendies B andC, respetively. With the above approximation in mind, the total orrelationfuntion redues to the sum of (37) and (38), i:e: C = C0+C1 . The results(37)�(38) were �rst derived by Dyakonov and Petrov for two massless �avorsusing detailed resummation proedures [13℄.At this stage, it is interesting to ompare the expression we have for themesoni orrelator in the instanton model with the one derived in planarQCD2. In the large N limit, the two-fermion ut in QCD2 is infrared sen-sitive and anels exatly against the infrared sensitive one-gluon exhangegraph [31℄. This anellation makes expliit use of Ward identities in Feyn-man graphs. It is essentially quantum and thus absent from the presentsemilassial argument. The lak of on�nement in our ase will have dra-mati onsequenes on the large distane behavior of the various orrelationfuntions as we will disuss below.The expressions used to generate the various orrelators in p-spae aretabulated in Appendix D. In Figs 4, we show the behaviour of the onneted(minus the vauum) orrelators in the various hannels versus the momen-(a) (b)
Fig. 4. The onneted part C0(p) of the orrelator (normalized to the free andmassless orrelator). (a) for the up (down) quark (mu = md = 10MeV), and (b) forthe strange quark (ms=140MeV) versus p (fm�1). The hannels shown are salar(S), pseudosalar (P), vetor (V), tensor (T) and axial-vetor (A), respetively.



300 M. Kair, M. Prakash, I. Zahedtum p, for the Axial- (A), Vetor- (V), Pseudosalar- (P), Salar- (S) andTensor-hannel (T), without strangeness (Fig. 4(a)) and with strangeness(Fig. 4(b)). Similar orrelators are shown in Figs 5 for the unonnetedpart. By about p � 10 fm�1 the orrelations are totally washed out. Theplots are for u and d quark masses of 10MeV and a strange quark mass of140MeV. Although unonventional, this hoie of the urrent masses allowfor a omparison with the numerial simulations of Ref. [8℄.(a) (b)
Fig. 5. The same as in Figs 4 but for the unonneted part C1(p) of the orrelator.The tensor hannel vanishes identially for the up and strange quarks as does thevetor hannel for the up quark.5.1. Gell-Mann�Oakes�Renner relationIn the pion hannel, a pole is produed by the unonneted part of theorrelator that lies well below the two-onstituent quark ut. This is a goodexample of an infrared sensitive hannel, where a simple expansion in theinstanton density fails. The presene of small denominators through zeromodes fores the resummation of an in�nite string of terms of inreasingpowers in the instanton density, ausing the orrelation funtion to developa pole. Using the small momentum expansion (see Appendix F), we have inthe pseudosalar hannel��(p) = f24N �M2� + p2 +O(m2; p2)� (39)to leading order in the urrent quark mass m. Above, the deay onstant fsatis�es f2 = 4N Z d4k(2�)4 M2k � k2M 0k + k24 M 02k(k2 +M2k )2 (40)



Hadrons and QCD Instantons 301and the pseudosalar mass M� is given byf24NM2� = 2m� n2N� (m)� Z d4k(2�)4 Mkk2 +M2k � : (41)To this order, the quark ondensate is urrent mass independent and is givenby (31). Thus, f2�m2� = �2m 
  � (42)whih is the urrent algebra result derived by Gell-Mann, Oakes and Renner(GOR) [32℄. For equal u and d quark masses with m = 5MeV, we obtainm� = 158MeV, 
  � = �(249 MeV)3 and to leading order in the urrentmass f� = 88MeV. Similar results an be derived for K and �, althoughthe small momentum expansion is no longer valid for the unonneted partof the orrelation funtion with a large strange quark mass. This point isfurther disussed in Appendix F.In the expansion disussed above, the onsisteny of the GOR result anbe further heked by noting that the unonneted part in the pion hannelreads C1�(p � 0) = 12 �4Nf� R5� (0)�2 1p2 +m2� ; (43)where R5� (0) = �2Z d4k(2�)4 Mkk2 +M2k : (44)The term in brakets in the expression for C1� an be identi�ed with the usualpseudosalar strength g�. From (31)�(33), it follows that g� � 2 
  � =f�.5.2. Pseudosalars� � and KFigs 6 and 7 show the behaviour of the pion and kaon orrelators versusx, respetively, as they follow from (37) and (38) by Fourier transforms.The upper urve is for m = 5MeV, while the lower urve is for m = 10MeV.The squares are the results of simulations using 128 instantons and 128antiinstantons in a (3:363 � 6:72) fm4 periodi box. The dotted irles arethe results from ooled and quenhed lattie gauge alulations on a 163�24lattie with a physial lattie spaing of 0:17 fm.
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Fig. 6. The pion-orrelator (normalized to the free and massless orrelator) versusx (fm) for mu = md = 5MeV (upper urve) and mu = md = 10MeV (lowerurve). The squares are the results obtained in [36℄ using 128 instantons and 128antiinstantons in a periodi box. The irles are the results obtained in [4℄ fromooled lattie gauge alulations.

Fig. 7. The kaon-orrelator (normalized to the free and massless orrelator) versusx (fm) for mu = md = 5MeV (upper urve) and for mu = md = 10MeV (lowerurve). The squares are the results obtained in [36℄ using 128 instantons and 128antiinstantons in a periodi box.The momentum dependent parts display a low-lying spurious ut atabout 627MeV, as well as a pole in the salar and pseudosalar hannels. InFig. 8, we display these two separate ontributions to the pion hannel foran average quark mass of 10MeV.
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Fig. 8. In the pion hannel, the onneted C0(x;mu), unonneted C1(x;mu) andfull orrelators for mu = 10MeV versus x (fm) are plotted in dashed, dotted andsolid lines, respetively.The asymptoti form of the orrelation funtion in x-spae is stronglyin�uened by the position of the pole in most hannels. Indeed, the largedistane behaviour produed by the pole is approximately of the formC1(x!1) ' (gM�)24 e�M�x(2�M�x)3=2 (45)whih is to be ompared with the ontribution of two �regular� (not tahy-oni) sreened quarks:C0(x!1) ' N4 M60 e�2M0x(2�M0x)3 �Tr()� Tr(x=x=)x2 � (46)with M0 = M0(m). Beyond 2 fm, the running mass (m � k2=Mk) auses(46) to osillate as shown in Figs 9 and 10. These osillations, however,are overpowered in the pion hannel given the very large signal aused bythe pion pole ompared to the spurious ut (about 100 : 1). We note thatfor m = 10MeV, the sreening mass for the two sreened quarks is about627MeV. In (45), the pseudosalar mass squared M2� follows from the GORrelation M2� = �(m1 +m2)
  � :f2 (47)In the ase of the pion, we plot in Fig. 11 the total orrelator timesx3=2 for quark masses of 5 and 10MeV, respetively. The pion mass sets
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Fig. 9. Large distane behaviour of the onneted and normalized orrelatorC0(x;m). (a) for up (down) and (b) for strange quarks.(a) (b)
Fig. 10. Large distane behaviour of the onneted orrelator times x3. (a) for up(down) quark, and (b) for strange quark, respetively.in at about 2.5 fm. From the asymptote, we read a slope of m� � 157 and215MeV, respetively. The agreement of the slopes with the GOR resultprovides onsisteny heks on the various Fourier transforms performed. Westress that to read the masses through slopes requires a proper identi�ationof the preexponent power (here x�3=2). A raw plot of the total orrelatorversus x does not show any saling up to 10 fm!A similar analysis for the kaon hannel is shown in Fig. 12, where only theresaled and unonneted part C1(x) is shown. The onneted part osillatesat distanes of the order of 2.5 fm and larger, as shown in Fig. 9(b), for twostrange quarks. In ontrast to the pion hannel, the ratio of the onneted
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Fig. 11. In the pion hannel, the total orrelator times x3=2 versus x (fm) is plottedfor mu=5MeV (upper urve) and mu=10MeV (lower urve), respetively.

Fig. 12. In the kaon hannel, the onneted orrelator times x3=2 versus x (fm) isplotted for ms=140MeV.to unonneted parts in this ase is about 5:1. The linear fall o� in Fig. 12sets in between 2 and 3 fm. From the slope, we read mK = 490MeV, form = 5MeV and ms = 140MeV. We note that all the non-linearities in thestrange quark mass anel out to give a kaon mass that is ompatible withthe mass obtained by a naive use of the GOR relation, as indiated above.



306 M. Kair, M. Prakash, I. Zahed� � and �0In the � and �0 hannels, the situation is a bit more subtle beause ofmixing and the anomaly. First, let us follow the nonet deomposition usedin Appendix D, for the singlet (�0) and the otet (�8) exitations. Theonneted part of the orrelator in the (00,08,88) hannels readsC0(p) = �Z dkTr (5��S(k1;m)5��S(k2;m)) (48)with �� any of the singlet or otet U(3) generator. Spei�ally,C00 (x) = 43C0(x;mu) + 23C0(x;ms) ;C08 (x) = 23C0(x;mu) + 43C0(x;ms) ;C008(x) = 2p23 �C0(x;mu)� C0(x;ms)� (49)with C0(x;mu) and C0(x;ms) the orrelators of two sreened uu and ssquarks, with mu = md = 10MeV and ms = 140MeV. The behaviour of (49)is shown in Fig. 13 versus x. The osillations seen in all hannels beyond2.5 fm are due to the spurious quark modes.

Fig. 13. The onneted orrelator (normalized to the free and massless orrelator)for the � (00,88,08) versus x (fm).The unonneted part of the orrelators in the singlet, otet and mixedhannels follow from the results of Appendix D. Sine the �0 and �8 �eldsare integrated over, we an desentangle them by a unitary rotation of angle� (� = ��(k;m;m), �s = ��(k;ms;ms) and z = ��Nf=N)sin 2�(p) = 4p23 ���s�+(k)� ��(k) ; (50)



Hadrons and QCD Instantons 307where��(k) = �+�s + z2 ������s + z2�2 + 2z3 (�s ��)�1=2 ; (51)at the expense of rotating the verties (soures) as well. The result isC10 (p) = 2N�(R0 os � +R08 sin �)2�+(k) + (�R0 sin � +R08 os �)2��(k) � ; (52)C18 (p) = 2N�(R08 os � +R8 sin �)2�+(k) + (�R08 sin � +R8 os �)2��(k) � ; (53)C108(p) = 2N (R0 os � +R08 sin �)(R08 os � +R8 sin �)�+(k)+2N (�R0 sin � +R08 os �)(�R08 sin � +R8 os �)��(k) : (54)The poles in the unonneted parts are just the � and �0 masses, sine wehave rewritten the singlet and otet orrelators in the � and �0 basis 5. At lowmomentum � � �13:1Æ, whih is to be ompared with � � �11:5Æ in [17℄.From the e�etive ation of Appendix D, we onlude that to leading orderin the urrent masses��(k � 0) = �m+ms2N 
  �+ z2��(ms �m2N 
  �+ z2 )2 + 2z3 ms �m2N 
  ��1=2: (55)Then, f2m2�0 = 2N �+(k � 0) (56)and f2m2� = 2N ��(k � 0) : (57)The above relations give m�0 = 1163MeV and m� = 557MeV. These valuesare to be ompared with m�0 = 1172MeV and m� = 527MeV for 
  � =(�255MeV)3 and f = 91MeV as used in Ref. [17℄. From (55), (56) and (57)we have f2(m2�0 +m2� � 2m2K) = 2Nf�� (58)whih is the Veneziano�Witten formula [25, 33℄.5 Sine the diagonalization is momentum dependent, it is not possible to devise a loalsoure that would trigger preisely the � or �0 quantum numbers without mixing.
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Fig. 14. The unonneted orrelator times x3=2 for the (00) hannel (a) and the(88) hannel (b) versus x (fm) is plotted with (upper urve) and without (lowerurve) a topologial suseptibility.Figs 14(a) and (b) show the behaviour of the resaled and unonnetedparts of the orrelators versus x. At about 3 fm, the asymptoti slopes set in.The large distane behaviour being ditated by the smaller pole, we obtaina slope of 220MeV (essentially the pion mass) when the term ��Nf=N isswithed o�, and a slope of 480MeV (essentially the � mass) when it is not.The ontribution due to the large �0 mass dies o� too rapidly, as seen fromthe asymptoti behavior. In this sense, it is very hard to measure the �0harateristis from an x-spae analysis of the orrelation funtions. Thex-spae analysis of the topologial suseptibilities o�ers a better probe [21℄,although on the lattie there may be subtleties related to the de�nition ofgluoni soures. Finally, we note that in the presene of the onneted partsof the orrelator, no asymptote sets in within 5 fm due again to the spuriousosillations disussed above.We note that sine �� = n � N, the instanton-indued shift in the �'mass 2��Nf=f2 � N0 , at variane with Witten's argument [25℄. This is nottotally surprising, if we reall that the original instanton gauge-on�gurationA � 1=g � pN. Also for n � N, we have a �xed ompressibility �� � N0 .However, when the density n grows, the instanton and antiinstanton systemis no longer dilute, and one would a priori expet a phase hange [23℄, whenea breakdown of the onventional large N arguments. The aademi ase ofn � N0 yields zero ompressibility, with the quantum �utuations dwar�ngthe instanton e�ets.



Hadrons and QCD Instantons 3095.3. SalarsIn Fig. 15 we plot the (normalized) onneted C0(x) and unonnetedC1(x) parts of the orrelator in short and long dashed lines respetively.The solid line represents the sum of these two. As seen from Fig. 3(d) theontribution from the �rst three diagrams is non vanishing in the salarhannel. If we were to repeat the alulation leading to the unonnetedpart of the orrelator in x-spae we would obtain the additional termN Z Tr S(k;m)�N Z Tr S(k;m)�2Z Mk�+(k � l)Tr C2(k;m) (B(l;m)l= + iA(l;m))� : (59)

Fig. 15. The salar onneted and unonneted sigma meson-orrelator (normalizedto the free and massless orrelator) versus x (fm) for mu = md = 10MeV arerespetively plotted in short dashed and long dashed lines. The solid line representstheir sum. The squares are the results obtained in [36℄ using 128 instantons and128 antiinstantons in a periodi box. The irles are the results obtained in [4℄from ooled lattie gauge alulations.If we reall the de�nition for the unonneted orrelator we expet thisadditional term to be amenable to the square of the ondensate 
  �. Thedeay onstant and the sigma meson mass follow from the last diagram ofFig. 3(d). They an be evaluated through the use of a similar expansion of�� to �+. Spei�ally
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f2 = 4N Z d4k(2�)4 M2k4D2 ��M 0kk +M 00k��1� 2M2kD ��Mk2D  1 + M 02k4 � k22D �1 + MkM 0kk �2!! (60)and the salar mass M+ is given byf24NM2+ = 2m� n2N� (m)� Z d4k(2�)4 MkD ��1� 8M2kk2D �+Z 18�2 4MkK2D2 ; (61)where D = k2+M2k . Numerially, we obtain m�=640MeV and f=109MeV.The salar mass is about twie the onstituent mass of 2� 310 = 620MeV.This is generi of all bosonized interations at the mean-�eld level (e.g.Nambu�Jona-Lasinio model). The nearness of the quark�antiquark thresh-old is expeted to yield a large width for the salar�isosalar.5.4. Vetors� �, K� and �To leading order in the instanton density, the vetor orrelation funtionsfor both the � and � do not aquire any unonneted part. (The vetor or-relation funtions are just the orrelation funtions of two sreened quarks.)This is expeted, sine the instanton-antiinstanton interation ats primar-ily in the spin-isospin zero hannel. Figs 16 and 17 show respetively, thebehaviour of the �- , and �-orrelators versus x up to 2 fm, for a light quarkmass of 5 MeV and a strange quark mass of 140MeV. The squares in these�gures orrespond to the instanton simulations, while the �lled irles inFig. 15 orrespond to the ooled and quenhed lattie simulations. Thefailure to produe orrelations in the vetor hannel, while obvious in thep-spae analysis, is implausible from the x-spae analysis. In general, simplespetral guesses as used in the instanton simulations or lattie alulationsfor an x-spae analysis within 1 to 2 fms may be misleading. They annotdi�erentiate between uts and poles within 1.5 fm. At these distanes it isdi�ult to reliably di�erentiate between poles and uts (the pion-hannelbeing an exeption). A resolution of the two requires a areful analysis ofthe preexponents and the asymptotis, as we have disussed.In the ase of the K�, it is lear that a ontribution due to the mixingbetween the up (down) and strange setors ours in the unonneted part
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Fig. 16. The total orrelator (normalized to the free and massless orrelator) inthe � meson hannel versus x (fm), for mu = md = 10MeV. The squares are theresults of [36℄ using 128 instantons and 128 antiinstantons in a periodi box.

Fig. 17. The total orrelator (normalized to the free and massless orrelator) inthe � meson hannel versus x (fm), for mu = md = 10MeV. The squares are theresults of [36℄ using 128 instantons and 128 antiinstantons in a periodi box.of the orrelator. This is evident from Appendix E, where we see thatthe oupling of the � and � to the quarks vanishes identially, whereas inthe ase of the K� a ontribution in O(ms � mu) arises. The possibilityof the unonneted part of the K�-orrelator being ontaminated by theexitations of its salar partner (in �avor spae) �Ks is allowed. Having saidthis we display in Fig. 18 the behaviour of the K�-orrelator versus x up to



312 M. Kair, M. Prakash, I. Zahed2 fm, for a light quark mass of both 5MeV (upper urve) and 10MeV (lowerurve), and a strange quark mass of 140MeV. Again, the squares in this�gure orrespond to the instanton simulation.

Fig. 18. The total orrelator (normalized to the free and massless orrelator) inthe K� meson hannel versus x (fm), for mu = md = 5MeV (upper urve) andmu = md = 10MeV (lower urve). The squares are the results of [36℄ using 128instantons and 128 antiinstantons in a periodi box.� A1 and K1.Similar onlusions apply to the axial-vetor orrelators, although thelatter are ontaminated by pion and kaon exitations through their longi-tudinal parts. Generially, the nonstrange axial-vetor orrelator an bedeomposed along the tranverse and longitudinal diretions that onsist ofthe A1 and �, respetively:C��(p) = (Æ�� � p̂�p̂�)CT(p) + p̂�p̂�CL(p) : (62)From the p-spae analysis, eah ontribution is well separated. CT ontainssolely a ut, while CL displays only a pole. Similar remarks apply to thestrange axial-vetor orrelator K1. Figs 19 and 20 show the behaviour ofthe ombination 3CT+CL versus x in the A1 and K1 hannel, respetively.The squares refer to the results of simulations using instantons.Sine the longitudinal pole re�ets on the pion pole, onsisteny with thepseudosalar orrelators requires that the pion properties (mass and deayonstant) should be the same. The expliit form of the longitudinal part of
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Fig. 19. The total orrelator (normalized to the free and massless orrelator) inthe A1 meson hannel versus x (fm), for mu = md = 10MeV. The squares are theresults of [36℄ using 128 instantons and 128 antiinstantons in a periodi box.

Fig. 20. The total orrelator (normalized to the free and massless orrelator) forthe K1 meson hannel versus x (fm) for mu = md=10MeV.the axial orrelator readsCL��(p) = p̂�p̂�2N�R+5�(p)�2��(p) ; (63)where at zero momentumR+5�(p = 0) = 2Z d4k(2�)4 M2k � kMkM 0k=2(k2 +M2k )2 (64)



314 M. Kair, M. Prakash, I. Zahedwhih is just f2�=2N. Numerially, we obtain from the axial-orrelatorf� = 76MeV, whih is about 10 % o� from the value of f� = 88MeVextrated from the pseudosalar-orrelator. This point illustrates some ofthe systemati unertainties introdued by the use of undistorted satteringstates for the nonzero mode states around a single instanton or antiinstan-ton [13℄. 6. Baryon orrelatorsIn the large N limit, a baryon is made out of N quarks, and is believedto be a soliton [25℄. In our ase, we will think of a nuleon as made ofN = 3� 1 quarks. To leading order in 1=N, the nuleon is just three freestreaming onstituent quarks. In ontrast to the meson ase, the induedinstanton (or gluon interation) interation between diquarks is subleadingin 1=N. We note that the soliton ase in this model was onsidered in [23℄.Generially, the baryoni orrelators will be de�ned to beR(x) = i hT �JB(x) JB(0)i ; (65)where we use for the nuleon and delta urrentsJN (x) = "ab �ua(x)C�ub(x)� �5d(x) ;J�� (x) = "ab �ua(x)C�ub(x)� u(x) ; (66)respetively. Using Wik's theorem, we an redue the nuleon and deltaorrelators into (Minkowski)RN (x) = 2"ab"a0b00�5S0(x)�5Tr��Sbb0(x)�Saa0(�x)� ;R�(x) = 3"ab"a0b00S0(x)Tr��Sbb0(x)�Saa0(�x)� : (67)In the free ase, (67) redues toi 24x=�6x10 and � i 18x=�6x10 ; (68)respetively.Fig. 21 shows the behaviour of three onstituent quarks versus x. Thetwo solid lines are for 5 and 10MeV, respetively, the open irles are theresults of instanton simulations and the full irles are those of quenhed andooled lattie simulations. Clearly, both simulations show attration in thenuleon hannel, whih is very likely due to the fat that in the instantonmodel, the instanton indued interation in a spin-zero isospin-zero diquark
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Fig. 21. The total orrelator (normalized to the free and massless orrelator) in thenuleon hannel versus x (fm) is plotted for mu = md = 5MeV (upper urve) andfor mu = md = 10 MeV (lower urve), respetively. The squares are the resultsobtained in [36℄ using 128 instantons and 128 antiinstantons in a periodi box. Theirles are the results obtained in [4℄ from ooled lattie gauge alulations.

Fig. 22. The total orrelator (normalized to the free and massless orrelator) in the� hannel versus x (fm) is plotted for mu = md = 5MeV (upper urve) and formu = md = 10 MeV (lower urve). The squares are the results obtained in [36℄using 128 instantons and 128 antiinstantons in a periodi box. The irles are theresults obtained in [4℄ from ooled lattie gauge alulations.on�guration (qq)J=0I=0 is attrative. This follows from the large attrationalready observed in the spin-zero isospin-zero quark�antiquark on�guration(qq)J=0I=0 by rossing. This attration is, however, an order of magnitudesmaller than the attration in the pion hannel. Whether these interationsan result in a pole remains an open question and requires a more detailed



316 M. Kair, M. Prakash, I. Zahedanalysis. Indeed, the sreened quarks amount to a mass of about 940MeV,whih is lose to the empirial value of the nuleon mass.Fig. 22 shows the results in the delta hannel. From this, we onludethat the present simulations annot distinguish between a ut and a polein this hannel. In fat, it is very unlikely that a dilute instanton gas anyield binding in deuplet hannels, sine the instanton indued interationis usually non-existent in these hannels.7. Gluoni orrelatorsThe present onstrution allows for a onvenient analysis of orrelationfuntions involving F �F and F � ~F re�eting on the salar and pseudosalarglueballs in the model [17,21℄. In the quenhed approximation, these orre-lators are ultraloal and given by our hoie of the measure (5). Throughthe identi�ation 132�2F � F (x) = (n+ + n�)(x) (69)the salar gluon orrelator readsCFF (x� y) = �T � 132�2F 2(x) 132�2F 2(y)�onn:;Nf=0= �T ��(n+ + n�)(x)� n��(n+ + n�)(y)� n��Nf=0= �2� Æ4(x� y) : (70)Also, through the identi�ation132�2F � ~F (x) = (n+ � n�)(x) (71)the pseudosalar gluon orrelator readsCF ~F (x� y) = �T � 132�2F ~F (x) 132�2F ~F (y)�Nf=0= 
T �(n+ � n�)(x) (n+ � n�)(y)�Nf=0= �� Æ4(x� y) : (72)In (2), the glueballs in the quenhed approximation arry in�nite mass andzero size. They at as heavy soures.



Hadrons and QCD Instantons 317In the presene of quarks, the glueball soures mix. The mixing is oforder 1=N. In the salar hannel,CFF (x� y) = �T ��(n+ + n�)(x) � n��(n+ + n�)(y)� n��= �2�� Æ4(x� y) + 2Nf�2� hT ��0(x)�0(y)i� ; (73)where the unonneted orrelator in the �0 salar hannel ish�0(x)�0(y)i = 12N Z dk eik(x�y)� 2=32�+(k;m;m) + 1=32�+(k;ms;ms)� :(74)The large separation behaviour of the above result follows from Setion 5with the pole m0 = 640MeV as the mass of the salar�isosalar. Beauseof the mixing, the fall-o� is ditated by the salar�isosalar masses. Fig. 23shows the plot of the salar orrelator CFF (x) (minus the ultraloal term).From (73) and (74), the ompressibility takes the form�2 = 1V4 *�Z d4z(n+ + n� � n)(z)�2+ ' 4nb ; (75)where b is given by b = 11N3 � 2Nf3 �+ (76)with �+ = nNXf 1�+(k = 0;mf ;mf ) : (77)Numerially we �nd �+ = 1:22, whih is to be ompared with �+ = 1 inthe QCD trae anomaly. This is only suggestive, however, sine the twoalulations are totally di�erent in spirit. Ours is lassial, while in QCD itis quantum. In a similar way, we have in the pseudosalar hannelCF ~F (x� y) = 
T �(n+ � n�)(x) (n+ � n�)(y)�= ��� Æ4(x� y)� 2Nf�� hT ��0(x)�0(y)i� ; (78)where the unonneted orrelator in the �0 pseudosalar hannel ish�0(x)�0(y)i = 12N Z dk eik(x�y)�os2 �(k)�+(k) + sin2 �(k)��(k) � (79)
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Fig. 23. The oe�ient A(k;m) versus z = k�=2 for up (a) and for strange (b)quarks. The solid line is the unexpanded result and the dotted line is the expandedresult. (a) (b)
Fig. 24. The oe�ient B(k;m) versus z = k�=2 for up (a) and for strange (b)quarks. The solid line is the unexpanded result and the dotted line is the expandedresult.The rotation angle �(k) along with �� are de�ned in (50) and (51), respe-tively. The �utuations in the pseudosalar gluoni soure fall o� with arate that is given by the lightest mass (the � in our ase) m� = 557MeV.Fig. 26(b) shows the plot of the salar orrelator CF ~F (x) (minus the ul-traloal term). Let us now evaluate CF ~F (x� y) using the pseudosalar �elddeomposition, in whih the quadrati part of the ation is diagonal. We
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Fig. 25. The salar (pseudosalar) gluoni orrelator is plotted in this �gure. Thepoints are results from simulations in [34℄.obtainCF ~F (x� y) = Z dk eik(x�y)� 1�� + 12N NfXi=1 1��(k;mi;mi)��1: (80)One should not be alarmed by the two di�erent expressions for the pseu-dosalar gluoni orrelators (78) and (80). Using the two relations (denoting� = ��(k;m;m) and �s = ��(k;ms;ms) )�+(k)��(k) = 4��s + 23 ��NfN (�+ 2�s) (81)and �+(k) sin2 �(k) + ��(k) os2 �(k) = 23(�+ 2�s) (82)we an easily rewrite (80) to (78). The mixing auses the topologial sus-eptibility to derease. From (80) we have� = 1V4 *�Z d4z(n+ � n�)(z)�2+ = ��1�PNfi=1 ��mih  i (83)and vanishes for any quark mass going to zero. The topologial harge istotally sreened in the hiral limit.



320 M. Kair, M. Prakash, I. Zahed8. Nuleon form fatorAll hadrons are haraterized by various form fators, eah of whiharry information on the various harge and urrent distributions. In thispart, we show how various nuleon form fators an be analyzed in 1=N,thinking of N = 3� 1. In this Setion, we will distinguish between purelygluoni form fators G(x) � F 2(x) ; F ~F (x); ���F �F � ; : : : and fermioniform fators F (x) =  y� , where � =  
 T is a spin-�avor matrix.Mixed form fators M(x) =  y���F�� ; : : : an be obtained in a similarway, although they will not be disussed here.� Gluoni form fator of a onstituent quarkSine the model laks on�nement, the nuleon form fator reeives on-tribution from the unon�ned onstituent quark states. This is representedin Figs 26(a) and (b) as P� insertions. To leading order in 1=N, theseontributions are either diret as shown in Fig. 26(a), or meson mediated(Figs 26() and (d)). The onstituent quark gluoni form fator is de�ned(when x!1) asFG(k2) DT � �x2� y ��x2�E = DT � �x2�G(k) y ��x2�Eon: (84)with G(k) = Z dy eik�yG(y) : (85)Throughout, we will think of FG as matrix valued (here in spin spae),so that various omponents of the form fator an be extrated by proper
p p+k(a) ()

+ + ...
p p+k

k(b) (d)Fig. 26. In (a) and (b), we display the insertion mehanism involved in evaluatingthe gluoni form fator of a onstituent quark. Figures () and (d) show the mixingthat enters in the onneted part.



Hadrons and QCD Instantons 321traing. To leading order in 1=N, the form an be readily evaluated usingthe bosonization results developed in Appendies C and D. The result is(x! 1)F FF (k2)S(x;m) = iZ dpeip�xpMp�Mp+C(p�)32�2h�s(�k)�(k)iC(p+)(86)for a salar gluon insertion, andF F ~F (k2)S(x;m) =iZ dpeip�xpMp�Mp+ C(p�) i32�25h�ps(�k)�(k)iC(p+) (87)for a pseudosalar gluon insertion. Here p� = p�k=2. The mixed spin-gluonmatrix element an be disussed using similar arguments. The expetationsin (86)�(87) involve a Gaussian integral over the e�etive bosoni �elds, withquadrati ations as disussed in Appendix C. After integration, the resultsare (x! 1)F FF (k2) S(x;m) = +i Z dpeip�xpMp�Mp+ C(p�)C(p+)� 32�22N�+(k;m;m)� nn��2� + 12NXf 1�+(k;mf ;mf )��1 (88)and F F ~F (k2) S(x;m) = +iZ dpeip�xpMp�Mp+ C(p�) 5 C(p+)� 32�22N��(k;m;m)� 1�� + 12NXf 1��(k;mf ;mf )��1: (89)From our numerial analysis of Setion 3, the onstituent quark prop-agator S(x;m) shows a rough saling in the window 0 < x < 2:5 fm, withM0 � 300 � 400MeV, but then osillates for x > 2:5 fm, due to non-analytiities. In the window 0� 2:5 fm,S(x;m) � iM204�2xr �2M0xe�M0x(/̂x+ 1) : (90)It would be interesting to see how the present form fators (88)�(89) with(90) ompare with simulations in the range 0 < x < 2:5 fm. This is only



322 M. Kair, M. Prakash, I. Zahedindiative, sine the hannel is ontaminated by spurious osillations forx > 2:5 fm.The large x separation provides for a way to selet the onstituent quarkon its �mass-shell� 6, hene the analogy with the Minkowski de�nition of theform fator. We an also de�ne a totally �o�-shell� form fator by onsidering(88)�(89) for �nite x and integrating x over V4. In this way, one obtains o�-mass shell form fators with zero-momentum onstituent quarks. For k = 0,the results areF �FF (0) = 12N��(0;m;m) � nn��2� + 12NXf 1�+(0;mf ;mf )��1 (91)and F �F ~F (0) = 12N��(0;m;m) � 1�� + 12NXf 1��(0;mf ;mf )��1: (92)To leading order in 1=N, the �o�-shell� salar form fator redues toF �FF (0) = 311N� ; (93)where � = 2�+ � 2:45. We note that (93) di�ers by almost a fator of 2from its �on-shell� analogue with � = 1, as argued from a QCD low-energytheorem based on the trae anomaly [26, 37℄. For the pseudosalar formfator (92) the result is F �F ~F (0)=0.44, whih is to be ompared with thegluoni part of the �on-shell� value of the axial-singlet form fator g0A, asdetermined from the U(1) anomaly (8) in the onstituent quark stateg0A(0)DT � y �x2� 5 ��x2�E =*T � y �x2��Z dz F ~F (z)32�2 + iNf Z dzTrfm y5 (z)� ��x2�+onn:(94)The mass term in (94) involves the UA(1) form fator in the onstituentquark state. In the last few years, e�orts have been made to understandthe data from the European Muon Collaboration (EMC) [38�46℄. One of itsremarkable results has been to yield a small value for the singlet axial ou-pling onstant g0A = 0:13 � 0:24. The result obtained above �o�-mass shell�seems to be lose to this value. The approah desribed here, provides someinsights from a instanton vauum model, to the e�etive approah disussed6 This is, of ourse, suggestive in Eulidean spae.



Hadrons and QCD Instantons 323by many [38, 43, 46℄. In fat, the modi�ed bosonisation sheme disussedin Appendix E, is very lose in spirit to these models. A omprehensivedisussion of all these issues goes beyond the sope of this work.� Fermioni form fator of a onstituent quarkThe fermioni form fators an be analyzed in the same way as the gluoniform fators. The mehanism onsisting of P� insertion is shown in Fig. 27.In Fig. 28, we show the leading ontributions to the mesoni form fator toorder 1=N. Fig. 28(a) ounts the bare harge, while Fig. 28(b) involves atypial meson-exhange with non-loal form fators. Generially (x! 1),F�(k2) DT � �x2� y ��x2�E = DT � �x2�  y� (k)  y ��x2�Eonn :(95)Parametrizing all meson �elds by �A = A�A, where A = (1; 5)
T , yieldsto leading order in 1=NF�(k2)S(x;mf ) = �Z dp dq ei(p+k=2)�xpMpC(p;mf )C(q + k;mg)pMq+k��pMqC(q;mg)C(k � p;mf )pMk�ph�fg(p� q � k)�gf (q + k � p)i+Z dp ei(p�k=2)�xpMpC(p;mf )C(p� k;mg)pMp�kh�fg(k)�gf (�k)i�Tr��pMqC(q;mg)C(q + k;mf )pMq+k� ; (96)
+ + + ... + + ...(a) (b)Fig. 27. The insertion mehanism for the fermioni form fator of a onstituentquark.

+
p p+k p p p+k + + ...(a) (b)Fig. 28. The leading ontributions to the fermioni form fator.



324 M. Kair, M. Prakash, I. Zahedwhere summation over �avor g is understood and f is the �avor of the quarkbeing probed.  is 1 (5) for the salar (pseudosalar) setor. The �rst andseond terms of (96) are displayed in Fig. 28(a) and 28(b), respetively. Theexpetation value involves a Gaussian integration over the measure derivedin Appendix C and an be evaluated for arbitrary momentum q. In thesalar setorh�fgs (q)�gfs (�q)i = 12N�+(q;mf ;mf ) �1 + 12N�+(q;mf ;mf )��� nn��2� +Xg 12N�+(q;mg;mg)��1: (97)For the pseudosalar ase, we replae �+ by �� and n=(n��2�) by 1=�. Thease where  = � (vetor form fators) and  = ��� (tensor form fators)an be analyzed similarly.It is interesting to note at this stage that most of these form fators maybe used to assess the strength of the meson-onstituent quark interationin some onstituent quark models, as reently disussed by Glozman andRiska [49℄. When ouhed in the 1=N framework, the present analysisprovides some rationale for their suessful phenomenology.As in the gluoni ase, we an investigate the �o�-shell� limit of theform fator at k = 0. Using (96) for �xed x, integrating numerator anddenominator over the entire V4, and taking the k = 0 limit, yieldsF�(0)S(0;m) = �M20 C(0;m) Z dq Mq��C(q;m)�C(q;m) � Tr (�C(q;m) C(q;m))�C(0;m) ; (98)where all momenta are taken to be zero. Numerially, the meson-meson ex-petation value h�s(0)�s(0)i in the salar setor is 0.69 fm�4 and 0.92 fm�4,for the up (down) and strange quark, respetively. The same applies for thepseudosalar setor, where h�ps(0)�ps(0)i is 4.68 fm�4 and 6.69 fm�4, forthe up (down) and strange quark, respetively. In short, formula (98) alongwith the numerial values for the meson�meson expetation value, will serveus as a hek point when numerially generating the values of F�(k2) using(96).� Form fators from Io�e's urrentsIf we were to think about the nuleon as made out of three onstituentquarks, then the nuleon form fator follows from the additive onstituentquark piture. When simulations are performed, however, it is ustomary



Hadrons and QCD Instantons 325to use Io�e's urrents (66) for the nuleon. This results in some non-trivialombinatoris and folding of the single onstituent quark propagators, aswe now explain. Let J�N (x) be Io�e's urrent (66). Then, the nuleon formfator reads (x!1)FN (k2) DT �J�N �x2� J�N ��x2�E = DT �J�N �x2�O(k)J�N ��x2�E ; (99)where O = G;F , whih are short for the gluoni and mesoni insertionsdisussed above. Typial diagrams for mesoni insertions are displayed inFig. 29. The term (L.H.S.) multiplying FN (k2) in the left-hand side of (99)an be readily redued to give (67). The right-hand side (R.H.S.) takes theformR:H:S: = +6 (�5OS(x; k;m)�5)�� Trs (�S(x;m)�S(�x;m))+6 (�5S(x;m)�5)�� Trs (�OS(x; k;m)�S(�x;m))+6 (�5S(x;m)�5)�� Trs (�S(x;m)�OS(�x; k;m)) ; (100)where OS(x; k;m) follows from the right-hand side of (86) and (87) for thegluoni insertions, and, (96) for the mesoni insertions.
+ + ... + + ...(a) (b)Fig. 29. The form fator in terms of Io�e's urrentIt would be interesting to see how (100) ompares to atual simulations.As noted above, the atual onstituent quark propagator osillates at dis-tanes larger than 2.5 fm. Hene, a true asymptoti form fator may not bereahed in this model for the nuleon. In the region 0 < x < 2:5 fm, theonstituent quark propagator seems to be damped following the behaviourdesribed in (90). Using this behaviour, the left-hand side term in (99)redues toL:H:S: = � iM204�2xr �2M0xe�M0x�3�6��5OS(/̂x+ 1)�5��� Trs ��(/̂x+ 1)�(�/̂x+ 1)� (101)



326 M. Kair, M. Prakash, I. Zahedwhile the right-hand side redues toR:H:S: = 6� iM204�2xr �2M0xe�M0x�2�� (�5OS(x; k;m)�5)�� Trs ��(/̂x+ 1)�(�/̂x+ 1)�+��5(/̂x+ 1)�5��� Trs ��OS(x; k;m)�(�/̂x+ 1)�+��5(/̂x+ 1)�5��� Trs ��(/̂x+ 1)�OS(�x; k;m)��:(102)Numerial results for the resulting form fators will be given elsewhere.9. DisussionWe have analysed the mesoni orrelators in a random instanton gas inmomentum spae using bosonization tehniques, and, in oordinate spaeby performing diret Fourier transforms. Our starting point was a grand-anonial ensemble of instantons and antiinstantons, where the 't Hooftverties play the role of �fugaities�. The momentum spae results are inagreement with the original analysis in both the massless [13℄ and massiveases [19℄. Following 't Hooft's suggestion, the resolution of the �0 problemfollows by assuming that the topologial harge is sreened [19, 21℄, witha �nite sreening length (non-zero topologial suseptibity). This e�et isleading in 1=N ounting and results in a ontribution of order N0 to the �0mass. Without this e�et, the �0 would be degenerate with the �.We remark that a non-vanishing topologial suseptibility should not betaken for granted [7℄. In the present ase, it follows diretly from the useof instantons and antiinstantons in a singular gauge. A hek would be torepeat the analysis using instantons and antiinstantons in a regular (non-singular) gauge, or, arry out ooled lattie simulations with free boundaryonditions.Our x-spae translation of the p-spae orrelators shows that the resultsof simulations using either a large sample of instantons and antiinstantonsin four dimensions, or quenhed and ooled lattie gauge on�gurations, arein agreement with the Fourier transformed analytial alulations within thereported range of (0�1.5) fm. The reent analysis arried out in Ref. [35℄ fortwo �avors di�ers from the bosonized results [19℄ 7, hene our analysis.We have shown that the running quark mass auses the quark propagatorto osillate at large x. The osillations are larger for larger quark masses7 Eq. (58) in Ref. [35℄ relies on a resummation of the quark propagator Eq. (57) whihis valid only for zero quark mass.



Hadrons and QCD Instantons 327and a�et most of the orrelation funtions at large distanes. These e�etsare spurious and re�et on the lak of on�nement in the model. They areeasily subtratable in a p-spae analysis. They are harder to trak down inan x-spae formulation. The extent to whih these spurious modes impaton the subtrated results is presently unlear.We have shown that, while the asymptotis of suitably subtrated orre-lators yield pseudosalar masses that are aurate to within a few per ent,the non-asymptoti readings ould be as inaurate as 100 %. From ouralulations, the subtrated and resaled orrelators show good asymptotisbetween 2 and 3 fm. The non-resaled orrelators do not show any reason-able asymptotis even up to 10 fm. This point merits further srutiny inlattie alulations.The bosonized results show that while it is possible to infer the existeneof light pseudosalars in a dilute instanton gas, they do not seem to supportthe appearane of bound vetors. We have expliitly shown that the resultsof simulations are onsistent with the presene of just sreened quarks inthese hannels. We have noted that the use of shemati poles and uts toanalyze the x-spae orrelators in these hannels would have implied other-wise. Due to mixing between the otet and singlet pseudosalars, we havefound it di�ult to extrat the � and �0 masses from the x-spae analysis.The extration is straightforward in the p-spae analysis.We have presented a simple analysis of the baryoni orrelators in boththe nuleon and the delta hannels. The attration seen in the nuleon han-nel is expeted from general arguments. In this hannel, however, it appearsto be di�ult to identify a nuleon mass without going to the asymptotis,sine three sreened quarks already yield a mass of the order of 940MeV.This may ause the nuleon to unbind, although soliton-inspired alulationswith onstituent quarks seem to suggest otherwise [48℄. In this respet, itwould be interesting to repeat our analysis by inluding diquark �elds. Theresults of simulations in the delta hannel are also onsistent with three on-stituent quarks. A dilute instanton gas does not indue orrelations in thedeuplet hannels.Using Io�e's urrent for the nuleon, we have worked out various glu-oni and mesoni form fators �on- and o�-mass� shell, to leading order in1=N. The form fators are sensitive to the the three onstituent quark ut.Moreover, the appearane of spurious osillations in the single onstituentquark propagators auses the form fators to be ill-de�ned for point-to-pointseparations that are larger than 2.5 fm. In the region 0 < x < 2:5 fm, someestimations have been made that would be of some interest for future simu-lations. The analysis of the nuleon form fator presented in this work ouldalso be extended to other mesoni and baryoni hannels. It also providesinsights in to some reently used onstituent quark models [49℄.



328 M. Kair, M. Prakash, I. ZahedThe �utuations in the number sum and di�erene of the instantons andantiinstantons relate diretly to the salar and pseudosalar glueball orre-lation funtions. In the quenhed approximation, the glueballs are in�nitelyheavy and stable. In the unquenhed approximation, they mix with theirsalar and pseudosalar ounterparts and deay. The mixing and deay areof order 1=N.The overall agreement between the instanton simulations and the presentanalysis within 1.5 fm shows that a random set of instantons and antiinstan-tons that is suitably stabilized in the infrared is well desribed by gaussian�utuations over a mean �eld solution. The mean �eld solution follows froma simple bosonisation sheme. It also shows that onstituent quark mod-els with dynamially generated masses, e.g. Nambu�Jona-Lasinio model,are also likely to give similar results provided that hiral symmetry is dy-namially broken. In all these models, however, the subtle issue is that ofon�nement with its impat on large distane asymptotis and form fators.This work was supported in part by the US Department of Energy underGrant No. DE-FG-88ER40388.Appendix AGenerating funtionalIn this Appendix, we provide the neessary details for the derivation of thegenerating funtional (15) disussed in the text. Although these alulationswere extensively used in establishing the results of Refs [19℄, they were neverpublished. We start by evaluating the olor averages ouring in the 't Hooftdeterminants (1) for Nf = 1. For onveniene, we will use the shorthandnotation d4k=(2�)4 ! dk and d4x! dx when integrating out. If we denoteby ��(z) = �Z dx yS�10 ��(x� z)Z dy��y(y � z)S�10  (y)�U� (103)then its Fourier transform reads��(z) = Z dk dl e�i(k�l)z ��(k; l) (104)with��(k; l) =  yi;�(k) (k=� im)ij h��j;�(k)��yk;�(l)iU� (l=� im)kl  l;�(l) : (105)



Hadrons and QCD Instantons 329Averaging over the olor group, we obtain [19, 20℄��(k; l) = k�0 (k) l�0 (l)N  yi;�(k)��1� imk=k2 � �5 �1� iml=l2 ��ij  j;�(l) ;(106)where �0(k) is the Fourier transform of the fermion zero mode pro�le, andis given by �0(k) = ��2 ��z (I0(z)K0(z)� I1(z)K1(z))z=k�=2 : (107)With the use of (13), the partition funtion (2) takes the formZ[�; �y℄ = Z D yD DP�D�� (�2im)N e� R  yS�10  � y���y � exp n2 Z dz log�1� 12im��(z)�� exp iZ dk dl P�(k; l) ���(k; l) � ��(k; l)� ; (108)where the integral in the last exponent is performed in both variables k andl of the biloal auxiliary �elds. The �eld �� is eliminated using the mean�eld equation�iP�(k; l) = n2 Z dz 11� 12im��(z) e�i(k�l)z2im : (109)For Nf > 1, the auxillary �elds �� and P� are Nf � Nf valued alongwith the average �� (103) entering the 't Hooft determinants (1). As aresult, additional traes over �avor indies will be needed. With this inmind, the previous results an be generalized in a straightforward way. Form = diag(m1; : : : ;mNf ), the result is (after absorbing in the measure a termin the size � to have a dimensionless argument in the log)Z[�; �y℄ = Z D yD DP� e� R  yS�1[P+;P�℄ � y���y � e�n2 R dzTrf log� 4n�P+(z) 4n�P�(z)�e2 R dzTrfm(P+(z)+P�(z)) (110)where S�1[P+; P�℄ is given in the text (17). At the saddle point P� = P ,and S is the quark propagator in the external bakground P suh that inmomentum spae S(k; l) = Æ4(k � l) S(k;m) (111)



330 M. Kair, M. Prakash, I. Zahedwith S(k;m) written down in (21). From (110), the partition funtion (15)follows after integration over the fermioni �elds.Appendix BQuark ondensateIn this Appendix, we will show that (31) follows from an exat derivationusing the standard de�nition prior to the bosonization proedure. Followingthe method used in Ref. [19℄, the partition funtion (2) an easily be writtenas (ignoring �utuations in the density and swithing o� the soures)Z = �Z D yD e� R  yS�1 � ; (112)where in the one �avor aseS�1 = S�10 + 12imS�10 �I�yIS�10 : (113)The (Eulidian) quark ondensate follows asD y E = 1V4Z �Z D yD Z  y e� R  yS�1 � ; (114)where averaging over all pseudopartiles is understood. Spei�ally,D y E = �hTrS(0;m) det(�S�1)ihdet(�S�1)i : (115)Introduing a set of Grassman variables for the pseudopartile ensemble, thepartition funtion (112) reads (sum over I; J understood)Z = �Z D yD D�D�ye� R  yS�10  e�yI(T�im)IJ�J� : (116)Here, T is the kineti part of the overlap matrix [13,19℄ and the integrationis over fermioni �elds  ; y and Grassman variables �I ; �yI , where I is aninteger that runs over all the instantons and antiinstantons in the ensemble.Similarly, the ondensateh y i = 1V4Z �Z D yD D�D�y�Z  y � �yI�I��e� R  yS�10  e�yI (T�im)IJ�J� : (117)



Hadrons and QCD Instantons 331From the two formulas above, it is easy to show that
  � = �i D y E = � 1V4 � logZ�m : (118)We now shift the fermion �elds aording to  !  + i�I�I and  y ! y + i�yI�yI (sum over I understood). We then expand � and �y around therespetive lassial solution of the shifted ation. The remaining integral(117) has now a Gaussian form in �y� and an be performed. We obtainD y E = 1V4Z*Z D yD (�2im)N e� R  yS�1 �  Z  y �1 + S0S�1 + S�1S0 + S�10 �I�yI2(im)2S�10 ! + Nim!+:Rewriting the pseudopartile sum in the exponent as a produt over I, andnoting that only the �rst two terms in the Taylor expansion ontribute, wean easily perform the olor group average to yieldD y E = 1V4Z Z D yD (�2im)Ne� R  yS�10  � �Z  y + Nim � i ��m�YI Z dzI �1� 12im��(zI)� ; (119)where ��(z) is given in Appendix A. As in [16℄, we assume a su�ientamount of oarse graining so as to rewrite the produt over I with the resultD y E = 1V4Z Z D yD (�2im)Ne� R  yS�10  � Z  y + n2im Z dz 1� _��(z)=2i1� ��(z)=2im! en2 R dz log(1� 12im ��(z)) ; (120)where the dot on ��(z) indiates the derivative with respet to m. Thefuntional integral above an be evaluated exploiting the same bosonisationsheme used for the partition funtion ZD y E = 1V4Z Z D yD DP�(�2im)N e� R  yS�1[P+;P�℄ � e�n2 R dz log( 4mn P�(z))� e(�N+2mR dzP�(z))�Z  y + Z dz � _��(z)� 2i�P�(z)�;(121)



332 M. Kair, M. Prakash, I. Zahedwhere S�1[P+; P�℄ is given in the main text (17). At the saddle pointD y E = 1V4Z Z D yD � n2iP �N e� R  yS�1 e�N(�N+4mP )��Z  y ��1 + 2S0S�1� � 4iV P� ; (122)where (aside from resalingMk(m)) the quark propagator S is written downin momentum spae (21). After performing the integral and properly resal-ing P , we reover the expression (31) quoted in the main text for the on-densate (in the hiral limit). This result is expeted, sine to leading orderin 1=N, the determinants in (115) anel out, after fatorization (quenhedapproximation). Appendix CGaussian approximationIn what follows, we give details leading to the Gaussian approximationin the partition funtion. We an repeat the steps performed in AppendixA with the onstraint n+ = n� = n=2 now relaxed and the parametrizationn�(z) = n�2 + �(z) � �(z)2 ;P�(z) = P + ~��(z) : (123)A few omments are in order. In the equations above, �(z) and �(z) respe-tively represent the salar and pseudosalar glueball soures. The �eld ~��ontains pseudosalar and salar exitations and will be disussed furtherbelow. Following Appendix A, the auxilliary �eld �� is eliminated using themean �eld equation�iP�(k; l) = n�2 Z dz e�i(k�l)z2im 11� ��(z)=2im : (124)Along with the ontribution from the measure �(n+; n�) (5) the bosonizede�etive ation readsSe� = �NTr logS�1[P+; P�℄� 2Z dzTrfm �P+(z) + P�(z)�+Z dzn�(z) Trf log�4P�(z)n�� �+ Z dz n�(z) logNf ! + ~SG ; (125)



Hadrons and QCD Instantons 333where ~SG = + 12�� Z dz (n+(z)� n�(z))2+ n�2� Z dz (n+(z) + n�(z))� log n+(z) + n�(z)n � 1� : (126)The trae (Trf ) is in �avor spae and the trae (Tr) is over �avor and Diraindies with an integration over momentum.� Gluoni ontributionLet us �rst turn our attention to the last three terms of the e�etiveation (125).SG [P�; n�℄ = +Z dz n�(z) Trf log�4P�(z)n�� �+Z dz n�(z) logNf !+ 12�� Z dz(n+(z)� n�(z))2+ n�2� Z dz (n+(z) + n�(z))� log n+(z) + n�(z)n � 1�:(127)Using the saddle approximation in the salar glueball soure �(z) �utua-tions, we obtainn� = n exp�� �2�n�Nf=�2� logNf !Yf 4Pn�� : (128)As �rst disussed in [23℄ and later in [16℄, the distribution of the �utuationsin the number densities n�(z) is Gaussian (exat) in �(z) with a widthgiven by (6). The distribution is logarithmi in the sum �(z) and Gaussian(approximate) in the large N limit with a dispersion relation given by (7).Along with the saddle point deomposition of the biloal auxilliary �eldP� = P e�i�ps=2(1 + �s)e�i�ps=2, we obtain 8SG [P�; n�℄ = �Nn�2� + S(1)G [�s;ps℄ + S(2)G [�s;ps; �; �℄ : (129)8 This parametrization is reminisent of the ation being invariant (for massless quarks)under global axial transformation with the subsript s and ps respetively standingfor the salar and pseudosalar mesoni exitations.



334 M. Kair, M. Prakash, I. ZahedAdopting the nonet deompositions �ps = �0�0+P �a�aps and �s = �0�s;0+P�a�as , the term S(1)G [�s;ps℄ ontains mesoni �utuations only and readsS(1)G [�s;ps℄ = �n�2 Z dz Trf��2s(z)� �2ps(z)�+Z dz Nf����20(z)� �2��2s;0(z)� : (130)We point out that the term S(1)G [�s;ps℄ should be put in onert with the �rsttwo terms of Se� [P�; n�℄ in order to obtain the total mesoni ontributionto (125).The last term S(2)G [�s;ps; �; �℄ involves mixing on the one hand betweenthe isosinglet salar and the salar glueballs, and, between the isosingletpseudosalar and the pseudosalar glueballs, on the other hand.S(2)G [�s;ps; �; �℄ = +Z dz 12����(z) + i��p2Nf�0(z)�2+Z dz 12�2���(z) + �2�p2Nf�s;0(z)�2 : (131)� Mesoni ontributionPerforming a Taylor expansion of P� around the saddle point P in the�rst two terms of Se� [P�; n�℄ (125) along with S(1)G [�s;ps℄ the total mesoniontribution reads 9Smeson [�s;ps℄ = �NTr log S�1(P )� 4V mfP (mf )�N Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Z dk��0(k)��NfN �0(�k)� �s0(k)��NfN �s0(�k)�; (132)where the saddle point approximation leads to an integral (gap) equation inP (mf ) for eah �avor f4Nn Z dkA(k;MkP (mf );mf ) = 1� 2mf 2P (mf )n : (133)9 The sum over �avor indies f and g is understood.



Hadrons and QCD Instantons 335After resaling the onstituent mass aording toMkP !Mk with P (mf ) =n�(mf )=2, we obtain the gap equation (20) in the text. We de�ne belowthe various quantities introdued in the mesoni ation (132). In momentumspae, we write the inverse quark propagator in the bakground of instantonsand antiinstantons ashkjS�1(P )jli = Æ(k � l)S�1 (k;m) (134)and S�1 (k;m) = �iMkPk2 (k= � im)�k= � i� k2MkP �m�� : (135)The oe�ient A (k;Mk;m) appearing in the gap equation is given byA (k;Mk;m) = k2Mk Mk �m+ Mkm2k2k2 + �m� k2Mk�2 : (136)Exept for the isosinglet salar and pseudosalar, the inverse meson prop-agator in the bakground of instantons and antiinstantons, apart from thefator f2=4N, an be identi�ed with ��(k) appearing in the quadrati partof (132) and reads��(k;m1;m2) = n2N � 2Z dq (A1A2 � (q1:q2)B1B2) : (137)where we have set q1;2 = q � k=2, M1 = Mq1(m1), A1 = A (q1;M1;m1),B1 = B (q1;M1;m1), m1 being one of the quark masses in SU(3) �avorspae and B is given byB (k;Mk;m) = k2Mk 1k2 + �m� k2Mk�2 : (138)In what follows, we will always onsider the resaled onstituent massMk(mf ).� Bosonized partition funtionTo be thorough, let us exhibit the bosonized partition funtion utilizedin evaluating the various (mesoni, baryoni and gluoni) orrelators. Tothis end, Z = Z D�s;ps D� D� e�Se� [�s;ps;�;�℄ ; (139)



336 M. Kair, M. Prakash, I. Zahedwhere the bosonized ation follows from regrouping terms in SG (129) andSmeson (132).Se� [�s;ps; �; �℄ = S(0)e� h0; n2 ; 0i+ Se� [�s;ps℄ + Se� [�; �℄ (140)withS(0)e� h0; n2 ; 0i = �NTr logS�1(P )� Nn�2� +NTrf log Pn� � 4V mfP (mf )(141)along with the mesoni part of the e�etive ationSe� [�s;ps℄ = �N Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Z dk ��0(k)��NfN �0(�k)� �s0(k)��NfN �s0(�k)�(142)and the gluoni part of the e�etive ationSe� [�; �℄ = +Z dz 12����(z) + i��p2Nf�0(z)�2+Z dz 12�2���(z) + �2�p2Nf�s;0(z)�2: (143)We are now in a position to evaluate the orrelation funtions of interest.� Conneted meson orrelatorFrom the expression of C0(x) (35) in the text along with the bosonizedpartition funtion (139), we easily �nd that to leading order in N (the traebeing over �avor as well as Dira indies)C0(x) = �NTr� S(x;m)  S(�x;m)  � (144)along with its p-spae version C0(p) quoted in (37) of the main text.



Hadrons and QCD Instantons 337� Unonneted meson orrelatorFrom the expression of C1(x) (36) in the text, we need to examine theterm Tr S(x; x; P�) in the integrand (the trae being in �avor, olor andDira spae). With the shorthand notation~� = �s � �2ps2 + i5��ps + 12�s�ps + 12�ps�s� (145)we an writeTr S(x; x; P�) = Z dk dl ei(k�l)x Tr S(k; l; P�) ; (146)where the relevant term in the large N limit is given aording toS(k; l; P�) = S(k;m) Æ(k � l) + ipMkC(k;m)~�(k � l)C(l;m)pMl�pMkC(k;m) �Z dq ~�(k � q)pMq�1� imq=q2 ��S(q;m)�1� imq=q2 �pMq~�(q � l)� C(l;m)pMl: (147)The oe�ient C(k;m) is given further below. De�ningC1(p; q) = Æ(p� q) � ~C1(p) + C10 (p)�; (148)where~C1(p) = �Æ(p)Z Z D�s;ps D� D� exp (� Se� [�s;ps; �; �℄)�Tr S�Tr S � 2Tr pMkC ~� (Bk̂=+ iA) ~� C pMk�: (149)Here, the trae arries an integral over momentum. The meson �eld ~� is leftinside the trae so as to re�et its biloal harater in the momentum. Itis lear that ~C1(p) vanishes identially exept in the isosalar singlet �s;0.From a diagram approah, it has two unonneted losed fermion loopswith possibly the �s;0 being emitted within one loop (Fig. 3()). Furtherdisussion will be presented in the text regarding this term.We are therefore left with the seond term ontribution in C1(p). Thisterm amounts to a propagating meson from one losed fermion loop to the



338 M. Kair, M. Prakash, I. Zahedother (Fig. 3(d)) and readsC1(p) = �NZ Z D�s;ps D� D� R(p;mf ;mg) R(�p;mf ;mg)� exp�� Se� [�s;ps; �; �℄�; (150)whereR(p;mf ;mg) = Z dk pM1M2Tr�C(k1;mf )~�(p) C(k2;mg)�(151)with k1;2 = k � p=2, M1 =Mk1(mf ) andC(k;m) = S(k;m)�1� imk=k2 �: (152)If we rede�ne R so as to extrat the meson �eld, we haveR(p;mf ;mg) = R� (p;mf ;mg)�R� (p;mf ;mg) (153)with R� (p;m1;2) = Z d4k(2�)4pM1M2Tr�C1 1� 52 C2� (154)and C1;2 = k=1;2k21;2 (1�A1;2) + iB1;2 : (155)Performing the funtional integral, we obtain (38). As an example, we ex-hibit the ase of the mixing singlet �0 and otet �8. The spei� �avorharater of R� follows from the e�etive ation (142) for the nonet de-omposition. For instane, the pertinent terms R5 (151) for the �0 and �8orrelators are given byZ dkpM1M2Trf (5�0;8C(k1;m)5C(k2;m)�(p)) : (156)Expliitly, for the unonneted parts of the �0 and �8 orrelators, we obtainC1�0;8(p) = �NZ RD�0;8 ~R0;8(�p)�(�p)~�(p)R0;8(p)eN R ~�[�℄�; (157)



Hadrons and QCD Instantons 339where the partition funtion Z in the denominator ontains only �0 and �8.For the �0 we have R0(p) =  43R(p) + 23Rs(p)2p23 (R(p)�Rs(p)) ! (158)and for the �8 R8(p) =  2p23 (R(p)�Rs(p))23R(p) + 43Rs(p) ! (159)with R(p) = R5(p;m) and similarly Rs(p) = R5(p;ms) where m and msare the up (down) and strange quark mass respetively (151).C1�0;8(p) = N2 ~R0;8(�p)[�(p)℄�1R0;8(p) : (160)Appendix DNonet deompositionTaking the partition funtion (139) derived for Nf > 1 with the samedeomposition for the meson �elds �s;ps, we have as the mesoni e�etiveation (142)Se� [�s;ps℄ = �N Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Z dk ��0(k)��NfN �0(�k)� �s0(k)��NfN �s0(�k)�; (161)where f and g are �avor labels (f is not to be onfused with the pseudosalardeay onstant). Using the deomposition �ps =P8k=0 �k �k, the �0 and �8exitations ontribute to Se� in the formSe� [�0; �8℄ = N Z dk ~�(k) [�(k)℄ �(�k) ; (162)



340 M. Kair, M. Prakash, I. Zahedwhere ~�(p) = (�0(p); �8(p)) = f(�0(p); �8(p)) and[�(k)℄ = 0� 23 (2�+�s) + ��NfN 2p23 (���s)2p23 (���s) 23 (�+ 2�s) 1A (163)with the shorthand notation � = �(k;m;m) �s = �(k;ms;ms) with thestrange quark mass inserted. The ontribution ��Nf=N follows from thesinglet mixing with the topologial �utuations through the measure (5). Atlow energy, and to leading order in the urrent massSe� [�0; �8℄ = +Z dk 12f2k2(�20 + �28) + Z 12(2NF��) �20� Z dk12 h  i��20 �43m+ 23ms�+ �28 �23m+ 43ms��� Z dk12 h  i�0�8 4p23 (ms �m) : (164)Note that Se� [�0; �8℄ � N. The above result yields the GOR relations forthe singlet and the otet, if we were to drop nNfN . As is well known, the GORresult is badly violated in the singlet hannel by the axial U(1) anomaly. Thelatter is arried over by loal �utuations in the topologial harge, whihresults in a mixing with the singlet quantum numbers as displayed in (164).Appendix EExtended bosonizationThe use of the mean-�eld equation (109) in Appendix A has allowed fora bosonization sheme that is trouble free. Indeed, if we were to arry agaussian analysis around all the �elds inluding the auxillary �eld ��, andhene expand (109), then instabilities show up along the salar (�s) andpseudosalar (�ps) diretions. This, however, an be easily �xed through ageneralization of (13) to inlude �utuations around the instanton densities.We start with a modi�ation in (13)1 = Z D��DP� exp�Trf Z dz P�(z)���(z)� N�(z)n�=2 ��(z)�� (165)that is inserted in the partition funtion (2), where the term in the exponentN�(z)n�=2 = 1 + gs�(z) + gps�(z)n� (166)



Hadrons and QCD Instantons 341learly ouples salar (pseudosalar) glueballs to the quarks with strengthgs (gps) (see (169) below).Following the steps of Appendix C, the mean �eld equation in �� reads�iP�(z) = n�4im n�(z)N�(z) 11� n���(z)=(4imN�(z)) : (167)Along with the ontribution from the measure �(n+; n�) (5) the bosonizede�etive ation readsSe� = �NTr logS�1[P�; �; �℄ � 2Z dz N�(z)n�=2 TrfmP�(z)+Z dz n�(z) log�Nf !Yf 4P�(z)n�� N�(z)n�(z) �+Nf Z dz �n+(z) + n�(z)� + ~SG ; (168)where ~SG is the gluoni ontribution (126). The inverse quark propagatorS�1[P�; �; �℄ in (168) isS�1[P�; �; �℄ = +S�1[P+; P�℄�ipMk�1� imk̂=k2 � gs�(z) + gps�(z)n���1 + �s + i5�ps��1� imk̂=k2 �pMk (169)and its seond term learly exhibits glueballs oupling to quarks. The �rstterm S�1[P+; P�℄ in (169) is given in (17). Following the saddle pointapproximation used in Appendix C, we obtain the e�etive ation as followsSe� [�s;ps; �; �℄ = �NTr logS�1(P ) + n�V�Nf � Trf 4mPn� � n����N Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Se� [�2; � �s℄+Se� [�2; � �ps℄ : (170)In the last two terms of (170), we have lumped terms in �2, ��s, �2 and��ps where �s (�ps) is deomposed in the salar (pseudosalar) unphysial



342 M. Kair, M. Prakash, I. Zahedbasis (in �avor spae) �fgs (�fgps ). Only diagonal terms �ffs (�ffps ) mix withsalar (pseudosalar) glueballs aording toSe� [�2; � �s℄ = +Z dk �(k) g�s (k) �(�k)+Z dk�(k)Xf �1� gs 2Nn� �+(k;mf ;mf )��ffs (�k);(171)whereg�s (k) = n2n��2� + g2s2n� Xf �1� 2Nn�Nf�+(k;mf ;mf )�� Nf2n� (gs � 1)2:(172)The point made at the start of this Appendix an now be appreiated. Wesee that if we set gs = 0 the result di�ers from what we had in Appendix Cby the last term. The latter with its negative sign an ause an instabilityin the salar glueball �utuations. This is easily tamed by the use of thebosonization sheme disussed in Appendix C.For the pseudosalar part, we haveSe� [�2; � �ps℄ = +Z dk �(k) g�ps(k)�(�k)+Z dk�(k)Xf �1� gps2Nn� ��(k;mf ;mf )�i�ffps (�k);(173)whereg�ps(k) = 12�� + g2ps2n� Xf �1� 2Nn�Nf��(k;mf ;mf )�� Nf2n� (gps � 1)2:(174)Again, if gps=0 the latter term may ause the �utuations in the pseu-dosalar glueball diretion to be unstable. This is easily tamed by thebosonization sheme disussed in Appendix C.As a hek, we learly see that in the absene of fermion we reover thesalar (pseudosalar) gluoni ontribution ~SG for n� = (n+ � � �)=2. Theexpression (171) in terms of physial salar meson �eld in �0 and �8 hannels(�avor spae) readsSe� [�2; � �s℄ = + Z dk �(k) g�s (k)�(�k)+ Z dk �(k)p2Nf�g0s(k)�s0(�k) + g8s(k)�s8(�k)� (175)



Hadrons and QCD Instantons 343and similarly (173) for the pseudosalar setor readsSe� [�2; � �ps℄ = +Z dk �(k) g�ps(k) �(�k)+ Z dk �(k) ip2Nf�g0ps(k) �0(�k) + g8ps(k) �8(�k)�:(176)We have de�ned above for the salar (pseudosalar) part of the ationg0s;ps(k) = 1� gs;ps 2Nn�Nf �2��(k;m;m) +��(k;ms;ms)�; (177)g8s;ps(k) = gs;ps 2Nn�Nfp2���(k;ms;ms)���(k;m;m)�: (178)The expression of n� and the mass gap equation of Appendix C remain un-hanged.� Salar gluoni orrelator CFF (x; y)The form of the salar gluoni orrelator is unhanged up to a onstanttermCFF (x� y) =Z dkeik(x�y)� nn��2� + 12N NfXf=1� 1�+(k;mf ;mf ) � 2Nn� ���1:(179)� Pseudosalar gluoni orrelator CFF (x; y)Similarly, for the pseudosalar gluoni orrelatorCF ~F (x� y) =Z dk eik(x�y) � 1�� + 12N NfXf=1� 1��(k;mf ;mf ) � 2Nn� ���1:(180)� Pseudosalar form fatorFor the pseudosalar ase, we haveFp(0) = 32�22N��(0;m;m)� 1�� + 12N Xf � 1��(0;mf ;mf ) � 2Nn� ���1(181)as indiated in Setion 8.



344 M. Kair, M. Prakash, I. Zahed� Salar form fatorFor the salar ase, we haveFs(0) = 32�22N�+(0;m;m)� nn��2� + 12NXf � 1�+(0;mf ;mf ) � 2Nn� ���1(182)as indiated in Setion 8.� Pseudosalar oupling onstant gpsIn order to determine the strength gps(k = 0) of the pseudosalar glue-balls oupling onstant to the quarks, we �t the experimental value of themixing angle � = �20Æ when diagonalizing. The result gives an estimate forgps (k = 0 is understood) aording to2 ot 2� �2p23 g�ps(� ��s) + Nf2 g0ps g8ps�= 23g�ps(���s) + Nf2 �g0 2ps � g8 2ps � : (183)We obtain gps = �7:025. Appendix FUnonneted orrelatorsWe tabulate below the expressions for the unonneted orrelator C1(p)in the various hannels Tr�C1 1+52 C2� C1 (p) =2N 1 2�(1�A1) (1�A2) k1k2k21k22 �B1B2� (R+1 (p))2�+(p)5 �2�(1�A1) (1�A2) k1k2k21k22 +B1B2� (R+5 (p))2��(p)� 2�kx+p=2k21 (1�A1)B2 + kx�p=2k22 (1�A2)B1� (R+� (p))2�+(p)5� 2�kx+p=2k21 (1�A1)B2 � kx�p=2k22 (1�A2)B1� (R+5� (p))2��(p)��� R��� (p) = 0 0



Hadrons and QCD Instantons 345Appendix Gms expansionIn this Appendix, we give the details leading to (39). Inserting themass gap equation for small quark masses m1 and m2 in the �rst term of��(p;m;m) with the following approximationsA ' M2 �mMk2 +M2 � 2mM ; B ' Mk2 +M2 � 2mM (184)we obtain (denoting ��(p) = ��(p;m;m))��(p) = n2N (m1�1 +m2�2) + Z d4k(2�)4 (k1M2 � k2M1)�k21 +M21 � �k22 +M22 ��(m1 +m2)Z d4k(2�)4 M4k + k4 � 2M2kk2 � 4M2kk2�k2 +M2k �3 : (185)At small momentum, and using(k1M2 � k2M1)2 = p2M2k + (k:p)2 �M 02k � 2MkM 0k=k� ;we obtain��(p) = p2 Z d4k(2�)4 �M2k � kMkM 0k=2 + k2M 02k =4��k2 +M2k�2+ n2N (m1�1 +m2�2)� (m1 +m2)Z d4k(2�)4 Mkk2 +M2k ;(186)To illustrate the fat that the approximations used for A and B fail in thease of a strange quark mass, we show the plots of A (Fig. 23) and B (Fig. 24)for both the up (a) and strange quark (b). The solid line is the unexpandedresult, while the dotted line is the expanded one.Appendix HOutline of the numerisIn this Appendix, we sketh how the numerial alulations were per-formed. First, we solve the integral equation (20) for �(m). With theonstituent mass Mk(m) fully known (41), the propagator S(x;m) follows.



346 M. Kair, M. Prakash, I. ZahedThe deomposition (24) of S(x;m) lends itself to a straightforward numer-ial integration of S1(x;m) (27), (28). The singular behavior at x = 0 isontained in S0(x;m). In p-spae, eah orrelator is the sum of an onnetedpart (37) and a unonneted part (38). To speed up the onvergene of thenumerial integration of (37), the free bubble diagram is removed by handand later added. The evaluation of (38) is ahieved in stages (numeratorand denominator). Beause we will later on numerially Fourier transformthe p-spae version of (38), great are is taken at low momenta sine thereading of a meson mass is done at large distane. In x-spae, the onnetedpart of eah orrelator is diretly evaluated from the x-spae version of thepropagator S(x;m) asC0(x) = �NTr(S(x;m)S(�x;m)) : (187)For the unonneted orrelator, we numerially Fourier transform its p-spaeversion. In the pion ase, we sum the two parts of the orrelator and readthe pion mass from the large distane behavior of x3=2 times the orrelator.The kaon unonneted orrelator is exponentially damped by a fator ofm� �mK with its pion analog and turns out to be of about the same orderas its onneted part. Therefore, we single out the unonneted part to readthe kaon mass. REFERENCES[1℄ A. Di Giaomo, Nul. Phys. B23, 191 (1991); O. Miyamura, S. Origuhi,Hiroshima preprint 95-08.[2℄ C.G. Callan, R.F. Dashen, D.J. Gross Phys. Rev. D19, 1826 (1979).[3℄ M.-C. Chu, J.M. Grandy, S. Huang, J. W. Negele, Phys. Rev. Lett. 70, 225(1993).[4℄ M. -C. Chu, J.M. Grandy, S. Huang, J.W. Negele, Phys. Rev. D48, 3340(1993).[5℄ M. Tepper, Nul. Phys. B411, 855 (1994).[6℄ J. Polonyi, Phys. Rev. D29, 716 (1984).[7℄ H. Yamagishi, I. Zahed, Stony Brook preprint SUNY-NTG-95/29 (1995).[8℄ E.V. Shuryak, J.J.M. Verbaarshot, Nul. Phys. B410, 37,55 (1993).[9℄ G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D14, 3432 (1976); Phys.Rev. D18, 2199 (1978); Phys. Rep. 142, 357 (1986).[10℄ E.V. Shuryak, Nul. Phys. B203, 116, 140, 237 (1982); Nul. Phys. B214,237 (1983).[11℄ M. Chemtob, Physia Sripta 29, 17 (1984).
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