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QUANTUM ANTIFERROMAGNETSIN A MAGNETIC FIELD�B. NormandTheoretishe Physik III, Elektronishe Korrelationen und MagnetismusUniversität AugsburgD-86135 Augsburg, Germany(Reeived Otober 16, 2000)Low-dimensional antiferromagnets in an external magneti �eld providean ideal illustration of the physis of quantum phase transitions. Thistheoretial analysis is motivated by the two-leg spin ladder geometry, whihhas been the subjet of muh experimental study in the material CuHpCl.The non-linear sigma model is used to haraterise the quantum phases ofthe system, and the bond-operator desription to disuss exitation spetraand quantum phase transitions between ground states.PACS numbers: 75.10.Jm, 75.30.Cr, 75.40.Cx1. IntrodutionQuantum spin systems are those with su�iently low dimensionality dand spin S that their quantum nature beomes manifest through the e�etsof �utuations. Their value in revealing fundamental quantum mehanialproperties has been understood sine Haldane's onjeture [1℄ onerningintegral- and half-integral-spin AntiFerromagneti (AF) hains. Appliationof a magneti �eld to suh systems a�ets both the spins and their �utu-ations, in ways whih an profoundly alter the sample properties, inludinga hange of ground state. Suh a proess, ourring at zero temperature, isa quantum phase transition [2℄.Synthesis of novel metalloorgani materials has provided a range of low-dimensional antiferromagnets in whih the small exhange onstants permitthe full magnetisation to saturation to be measured in laboratory �elds.The experimental realisation of many profound features of quantum magnetsmay be ounted as one of the major triumphs of ondensed matter physis� Presented at the XL Craow Shool of Theoretial Physis, Zakopane, Poland,June 3�11, 2000. (3005)



3006 B. Normandin the past deade. This overview is intended to highlight some theoretialaspets of the quantum phases and quantum phase transitions whih arise insuh systems in a magneti �eld. The fous will be on the two-hain laddergeometry believed to be appropriate for CuHpCl [3,4℄ the best-haraterisedsample in reent literature, but is in fat relevant for a variety of quantummagnets.CuHpCl provides a weakly-oupled network of S = 1=2 Cu atoms, whihare thought to be most strongly oupled as dimer pairs, with an inter-dimer oupling leading to a on�guration of isolated spin ladders. The ratio� = J 0=J � 0:2 of hain to rung ouplings (Fig. 1) makes CuHpCl a stronglydimerised system, and as suh very well suited to both of the analytial ap-proahes to follow. In an applied magneti �eld, magnetisation [3℄, spei�heat [4℄ and Nulear Magneti Resonane (NMR) measurements [5℄ showlearly the evolution from a gapped system at low �eld, through a gaplessregime at intermediate �elds, to a gapped, saturated magnet at high �elds.In the terminology of quantum phase transitions [2℄, these regimes are re-spetively �quantum disordered�, �quantum ritial� (an extended regimestritly in one dimension (1d)) and �renormalised lassial�. More detail willbe furnished throughout the text on the meaning of these terms and theproperties they desribe. A full aount of the experiments haraterisingthese phases and realising quantum phase transitions in a �eld may be foundin Ref. [6℄.Theoretial studies have been performed using a variety of tehniques[7�10℄. In the following, Se. 2 presents the Non-Linear � Model (NL�M)desription [11℄, whih is shown to provide a good, qualitative piture of thequantum phases and their underlying physis. More spei�, mirosopiresults onerning exitation spetra of these phases are obtained in Se. 3by employing the bond-operator method, whih is found to be ideally suitedto disussing quantum phase transitions. Se. 4 ontains a �nal omparisonwith experiment and summary.2. Quantum phases: non-linear � modelAlthough the NL�M applies stritly to the semilassial limit (large S),it has been used frequently as the basis for fundamental dedutions aboutthe quantum limit of AF systems. It an be shown to be valid for all e�e-tively integral-spin quantum systems in magneti �elds on the order of thezero-�eld spin gap. Of the many approahes to this model, a spin sti�nessanalysis and a renormalisation group tehnique provide the most appealingdesription of the broken-symmetry regime of �nite magnetisation at inter-mediate �eld, and of the low-�eld regime where symmetry is restored byquantum �utuations.
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Fig. 1. Shemati representation of two-hain ladder system, with intrahain su-perexhange oupling J 0 and interhain oupling J , in applied magneti �eld B.The Hamiltonian for the system (Fig. 1) in a magneti �eld b = ~g�BBmay be written asH = Xi;m=1;2 �J 0Sm;i � Sm;i+1 + JS1;i � S2;i + b � Sm;i � : (1)The NL�M ation is derived using the oherent-state representation of thespin Sm;i as S
m;i ' S[(�1)i+mnm;i + alm;i℄, where nm;i is the staggeredspin, or Néel vetor, and the uniform omponent lm;i desribes normal �u-tuations. In the ontinuum limit, the �eld l is integrated out subjet tothe onstraint l � n = 0. A key element of the derivation, whih is detailedin full in Ref. [11℄, is the demonstration that for the two-hain system thePontryagin index terms for the S = 1=2 spins are e�etively paired due to the�nite-size gap aross the ladder, plaing the ladder in the lass of integral-spin systems. Negleting this term, the ation for the quasi-1d system, in1 + 1 Eulidean dimensions denoted by �, is [12℄SE = 12g Z d� dx n(��n)2 � hb2 � (n � b)2i+ 2ib � (n ^ _n)o ; (2)in whih g = (2=NyS)q(J 0 + 12J)=J 0 is the bare oupling onstant, and theintegral over � is from zero to LT = �, with � the inverse temperature and = 2SaqJ 0(J 0 + 12J) the e�etive spin-wave veloity.In spherial oordinates for n, hosen as (#+�=2; �), the orrespondingLagrangeanLE = 12g ��� _�+ ib�2 + (�x�)2�� # ��2� + � _�+ ib�2�#� (3)has the physially more transparent form of separating into distint ontri-butions from in-plane and out-of-plane �utuations in the high-�eld regime,



3008 B. Normandjbj > _� � !. The �eld behaves as a hard axis, foring the spins to align inthe normal plane, and an be onsidered as suppressing out-of-plane �utu-ations. 2.1. Spin sti�nessThe spin sti�ness provides valuable initial insight into the e�et of themagneti �eld [13℄. To 1-loop order in g, this is given by�s = 12L �2F� 2 ���� =0 = �0s 241� gLLT Xk 1k2 + � b�235 ; (4)where �0s = =2g is the lassial (bare) value, and the sum inludes bothquantum and thermal (through the �nite �length� LT) orretions to �rstorder in g. The system length L over whih the sti�ness vanishes is theorrelation length, whih for the quantum regime LT � L is given by�(B) = 2L�m1� �L�mLm�2 � �01� � BB� �2 : (5)Lm = �=b is the e�etive magneti length sale, �0 = Aa e2�=g / e�S(A � O(1)) is the zero-�eld orrelation length familiar from the Haldaneanalysis, and L�m = a sinh(2�=g) gives the ritial �eld B� at whih �(B) di-verges. For �nite �elds B < B�, the system has only short-range orrelationsand �nite orrelation length (Fig. 2), there is no spontaneous breaking of theO(3) spin symmetry, and this �quantum disordered� regime has gapped spin
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0 BB*Fig. 2. Shemati behaviour of spin sti�ness and orrelation length, or spin gap,with applied �eld.exitations (� / ��1). For B > B�, the �eld enfores a quasi-long-rangedorrelation throughout the system, the symmetry is lowered to O(2), or XY ,and in-plane �utuations (� in Eq. (3)) are massless. In the 1d model this



Quantum Antiferromagnets in a Magneti Field 3009is the �quantum ritial� phase; in higher dimensions the presene of gaplessmodes gives the properties of the �renormalised lassial� phase of Ref. [2℄.Exitation modes (#) in the �eld diretion are gapped with �mass� b. Thesuppression of quantum �utuations whih leads to this symmetry breakingis the origin of the �eld-indued quantum phase transition between the twodistint regimes. 2.2. Renormalisation groupRenormalisation-Group (RG) study of the NL�M in an applied �eldyields meaningful results over the full �eld range. Appliation of a stan-dard Wilson momentum�shell treatment to the ation of Eq. (2) yields to1-loop order in the (small) oupling onstant g a self-similar form. With�ow parameter l = ln(a0=a), the di�erential form of the resulting, oupledRG equations is dgdl = g22� 11 + ��2 ; (6)d��2dl = 2��2 � g2� ln �1 + ��2� : (7)These represent an extension of the usual NL�M RG equations to inludethe magneti �eld B, ontained in �� = a0 = a0b(a0)=. Eq. (6) is the on-ventional ��-equation� for renormalisation of the oupling onstant, with anadditional �eld term in the denominator. A strong �eld restrits �ow to thestrong-oupling (disordered) limit, e�etively suppressing quantum �utua-tion e�ets, and suggesting a �deon�nement of exitations� at suitably high�eld. Eq. (7) gives renormalisation of the �eld with dynamial exponentz = 1 from the �rst term, but with additional, logarithmi suppression ofthis �ow at strong �eld and oupling (seond term).Solution of the RG equations gives the �ow diagram in Fig. 3. The regime(i) of weak initial B-�eld is a strong-oupling phase, with on�nement of(gapped) exitations. Here, the assumption (underlying the perturbativeRG treatment) of small g beomes inonsistent, but the equations ontain aphysially meaningful ut-o� lengthsale L� = ae2�=g0(� �0), where in addi-tion the magnetisation M is zero. In this region O(3) symmetry is restoredby quantum �utuations, whih may thereby be onsidered as �sreening�the magneti �eld. In ontrast, the regime (ii) of strong initial B-�eld or-responds to weak oupling, where g and b= are only weakly renormalised.Here the exitations are deon�ned on a length sale ��(B) whose �ow isgoverned by B. In this region, quantum �utuations are suppressed by themagneti �eld, and the broken O(3) symmetry annot be restored. Theproperties of the broken- and unbroken-symmetry phases may be furtherontrasted by onsidering physial properties suh the orrelation length �or magnetisation M in eah regime [11℄.
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Fig. 3. RG �ow diagram for g and �b. Strong- and weak-oupling regimes areseparated by separatrix s.The NL�M treatment may be further employed to ompute the mag-netisation and ritial �elds, and extended to alulate spin orrelationfuntions, and deay exponents aessible by NMR experiments. Satura-tion of the spins, giving rise to a truly lassial magneti system, may beinorporated by a onstraint on the uniform omponent l. Comparison toexperiment is deferred until Se. 4, and additional details are ontained inRef. [11℄. To summarise this setion, the NL�M gives a good qualitative a-ount of the quantum phases of AF systems in an external �eld, whih maybe understood on the basis of symmetry-breaking due to the ompetition of�eld and quantum �utuation e�ets.3. Quantum phase transitions: bond operatorsThe NL�M employed in the previous setion is unable to provide quanti-tative information onerning spin gaps or exitations in the quantum phasesof the system, or onerning transitions between these phases. To obtainmore mirosopi insight, one may turn to the bond operator tehnique,whih unlike the NL�M is more restrited in its range of appliation. Thebond-operator method [14℄ may be applied for any S = 1=2 spin system witha unique dimer overing, and has been found [15℄ to give a good desriptionof the two-hain ladder (Fig. 1) for oupling ratios � = J 0=J � 1. It is mostappropriate for gapped spin systems, i.e. in the �quantum disordered� phaseof the anonial phase transition disussion [2℄. However, it has also beenshown to be appliable to the �renormalised lassial� regime, and thus tobe a suitable analytial method for quantum phase transitions indued byinterladder oupling [16℄.



Quantum Antiferromagnets in a Magneti Field 3011Here the bond-operator formalism is extended systematially to �nitemagneti �elds. It is shown to be a onsistent desription of all three quan-tum phases, and hene a most appropriate framework in whih to disusstransitions. For a dimer unit in a magneti �eld, the eigenstates are linearombinations of the Sz = 0 bond operators ty� (� = x; y; z) of Ref. [14℄,whih represent the spins aording toS1(2);� = 12 h+(�)(syt� + ty�s)� i"�� ty�ti ; (8)and whose bosoni ommutation relations reprodue the SU(2) spin algebra.The new operator ombinations arejt+i = 1p2(tyx + ityy)j0i � �j ""i ; (9)jt�i = 1p2(tyx � ityy)j0i � +j ##i ; (10)jt0i = tyzj0i � 1p2 (j "#i+ j #"i) ; (11)whene for terms in the transformation to followtyxtx + tyyty = ty+t+ + ty�t�and tyxtyx + tyytyy = ty+ty� + ty�ty+ ; (12)i.e. diagonal terms transform into diagonal ones, but o�-diagonal termstransform to mode-mixing ones. A magneti �eld term has a diagonal rep-resentation�b � (S1 + S2) = ibz �tyxty � tyytx� = b�ty+t+ � ty�t�� ; (13)ensuring that the operators ty0;�1 reprodue the energy levels of the �eldeigenstates Sz = 0;�1.Transformation of Eq. (1) into bond operators [14,15℄ leads to a Hamil-tonian with quadrati and quarti terms in operators (si; ti), from the rungand hain terms respetively, a quadrati �eld term, and a onstraint termwhih introdues a hemial potential �i to ensure the single oupany ofeah dimer i by states jsii or jtii: the bosoni operators have hard-ore na-ture. Treatment of this Hamiltonian follows by a mean-�eld approximationwith retention of quadrati terms, and di�ers in eah of the three regimes ofmagneti �eld.



3012 B. Normand3.1. B < B1For magneti �elds below the �rst ritial �eld B1, the system is inthe quantum disordered regime with a spin gap between the singlet andtriplet states on eah dimer. In the bond-operator tehnique this situationis represented [14℄ by replaing the operator si everywhere with its globalexpetation value hsii = s, orresponding to a Bose ondensation of thesinglet states. Quantum �utuations about this ground state of pure dimersinglets are ontained in the triplet operators tyi , and for a system withstrong rung oupling (� � 1) these are weak (few exited triplets). Re-plaing also the hemial potential with a global average value �i = �, theHamiltonian is [15℄H = N(�34Js2 � �s2 + �) +Xk �(14J � �� b)tyk�tk� + (14J � �)tyk0tk0�+12�Js2Xk os k �tyktk+ty�kt�k+tykty�k+tkt�k�+O(t4); (14)where  = �; 0;+ for modes  = +; 0;�. Diagonalisation of the Hamiltonianmatrix gives the three modes !k + b, !k and !k � b, where!k = �(14J � �)(14J � �+ 2�Js2 os k)�1=2 (15)is the dispersion relation for the �eld-free ladder [15℄. The triplet modesdo not interat, and are merely split by the magneti �eld, as shown inFig. 4(a). The parameters s = s1 and � = �1 are �xed only by the ratio �,and do not evolve with inreasing �eld below the lower ritial �eldb1 = �(14J � �1)(14J � �1 + 2�Js21 os k)�1=2 = �0; (16)the zero-�eld spin gap. The gap is a linearly dereasing funtion of �eld inthe entire range from 0 to b1, and the free energy is onstant.3.2. B > B2In the high-�eld regime the spins are fully polarised. In bond-operatornotation one may represent the ground state as a Bose ondensate of thetriplet mode tyi� favoured by the �eld, hti�i ! t. The quadrati Hamiltonianis H = N(14Jt2 � �t2 + �)�Nbt2 + 12N�Jt4+Xk �!sksyksk + !0ktyk0tk0 + !+k tyk+tk+� ; (17)
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Fig. 4. Magnon dispersion relations for (a) quantum disordered regime B < B1and (b) fully polarised, lassial regime B > B2.and ontains no remaining o�-diagonal terms. Solution of the mean-�eldequation in � returns the result t = 1: the polarised system is ompletelylassial in the sense that all quantum �utuations are suppressed by the�eld. The magnon energies in Eq. (17) are!+k = 14J � �� �J + b; (18)!0k = 14J � �+ 12�J os k ; (19)!sk = �34J � �+ �J os k ; (20)and are depited in Fig. 4(b). The upper triplet mode beomes ompletelynon-dispersive, while the remaining modes retain their minimum at the pointk = �. Although the system is ferromagneti, this on�guration is enforedby the �eld, and the lowest-lying exitations remain those of AF nature.These orrespond to the ation of the spin-raising operator S�i in a spin-wave desription, whih here is ompletely equivalent. The seond mean-�eld equation gives a ondition 14J � �� b+ �J = 0, showing that � varieslinearly with the �eld in this regime. In onjuntion with the ondition!s�jb=b2 = 0, that the lowest mode be massless at the transition, one maydedue the upper ritial �eldb2 = J + 2�J ; (21)whih has preisely the value expeted lassially from the AF ouplings toeah spin.



3014 B. Normand3.3. B1 < B < B2In the intermediate-�eld regime, the ground state of eah dimer an beonsidered as a partially polarised ferromagneti on�guration, or a antedAF. In the bond-operator formulation, this ordered ground state would berepresented by �nite expetation values s and t of both the singlet and t�triplet operators. However, from these two degrees of freedom there mayonly be one ground-state ondensate, with one gapless �utuation modeorthogonal to it. The initial states may be written as the sum of a ondensedpart and a �utuating omponent,jsii = s+ j~sii ; jtii = t+ j~ti�i (22)and transformed aording to� j�iij�ii � = 1p1 + �2 � 1 ��� 1 �� jsiijti�i � : (23)The requirement that j�ii be a pure �utuation mode sets the ondition� = t=s. The �utuating part of j�ii is then seen to vanish, as it is orthogonalto the sole �utuation j�ii, leaving j�ii = �i as the Bose ondensate. Thus�i =qs2i + t2i and j�ii = j~ti�i � �j~siip1 + �2 (24)are the appropriate linear ombinations with whih to desribe the interme-diate phase.The initial Hamiltonian in the intermediate-�eld regime may now bereexpressed in terms of operators �i, �i, ti0 and ti+. After ondensation of�i, the three exitation branhes separate into a oupled pair and a deoupledmode with dispersion relations!+k =q�+2k ��2k + ��k ; (25)!0k = h� 14J��+ 12�Jt2 os k��14J��+ (12�Jt2 + 2�Js2) os k�i1=2; (26)!�k =q�+2k ��2k � ��k ; (27)in whih ��k = 12 ��1k � �2k�, and the oe�ients�1k = 14J��+b��Jt2 + �Js2 os k ; (28)�2k = 14J���b+ t2(b�J) + �Js2t2 + �J os k(s4+ t4)s2+t2 ; (29)�k = �J os k s3ps2 + t2 (30)



Quantum Antiferromagnets in a Magneti Field 3015allow one to make ontat with previous results [15,16℄. The Sz = 0 branh,!0k, remains independent of the magneti �eld, while the oupled branhes,!�k , are �eld-dependent. The most important feature of these mode energiesis that they interpolate smoothly from the forms in the low- and high-�eldregimes when t and s, respetively, are taken to zero at the phase transitionsb1 and b2. The dispersion relations are shown in Fig. 5(a).
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b bFig. 5. (a) Magnon dispersion relations in quantum ritial regime B1 < B < B2.(b) Evolution with �eld b of order parameters s and t, hemial potential � andspin gap � over the �eld range spanning all three quantum phases.The quadrati Hamiltonian in the intermediate-�eld regime is thenH = N h(�34J � �)s2 + (14J � �)t2 + �� bt2 + �Js2t2 + 12�Jt4�12(14J � �)� 12(14J � �+ b� �Jt2)�12 �14J � �� b+ �t2(b� J) + �Js2t2� =(s2 + t2)�i+Xk h!�k �~� yk~�k + 12�+ !0k �tyk0tk0 + 12�+ !+k �~tyk+~tk+ + 12�i:(31)Minimisation of the orresponding zero-temperature free energy gives theself-onsistent solutions for the order parameters s and t for all values of the�eld. This minimisation is performed subjet to the physial onstraint that!�� = 0, i.e. that the lowest exitation mode be massless throughout this�eld regime, as in Fig. 5(a). The gapless exitation mode is the de�ning fea-ture of the physis at intermediate �elds, and the appliation of the physialonstraint represents a partially-ontrolled means of taking the treatmentbeyond quadrati order [16℄. As noted above, the dispersion minimum al-ways ours at k = �, and there are no inommensurate exitations in thebond-operator onstrution.



3016 B. NormandThe solutions for s and t quantify the piture of a partially polarisedmagneti state on every rung. The deviation of (s2 + t2) from unity an betaken to haraterise the e�et of quantum �utuations, and shows as in theprevious setion that inreasing �eld suppresses these (ompletely at B2).The �eld tunes the system from a quantum, dimerised phase to a lassial,ordered one.After this analysis, the issue of quantum phase transitions is easy tostudy in suh a uni�ed framework for all three phases: the ontinuity of allproperties at the phase boundaries ensures seond-order transitions, and onemay onsider further the ritial exponents of stati and dynami quantitiesaround the ritial points. The most important of these is that the magneti-sationM / t2 [16℄ is expeted to have the �eld dependeneM / pb� b1 asb! b1 from above, and M / pb2 � b as b! b2 from below. In the bond-operator desription for small �, where quantum �utuations are alwayssmall, these square-root regimes are found to be rather narrow (Fig. 5(b)).To onlude this part of the disussion, the bond-operator approah ispartiularly suitable for the strongly dimerised system CuHpCl, and in fatrenders quantum �utuation e�ets beyond the singlet ground state rathersmall even in the �quantum disordered� regime. The method gives a miro-sopi desription of the ground states and exitations in all three phases.Most importantly, the uni�ed formulation aross the full �eld range makesthis tehnique uniquely suitable for disussing the quantum phase transi-tions, whih by suitable hoie of the ondensate are quite straightforwardfound to be ontinuous. The bond-operator formalism is readily extended tohigher-dimensional problems, alternating hains and systems with frustrat-ing ouplings, subjet to the requirement that the geometry allow a uniquedimerisation. 4. ExperimentSpeialising to the parameters of CuHpCl, the NL�M approah requiresthe exhange onstants dedued from magnetisation and suseptibility mea-surements [3, 4℄, J=kB = 13:2 K and J 0=kB = 2:4 K, whene B1 = 6:6 Tand B2 = 13:3 T [11℄. The bond-operator tehnique allows an indepen-dent �t to the data, from whih the dedued zero-temperature ritial �elds,B1 = 7:1 T and B2 = 13:6 T, give the exhange onstants J=kB = 12:5 Kand J 0=kB = 2:9 K. The bond-operator oupling ratio is then � = 0:23. Theresults of these �ts are shown in Fig. 6; both give the same, predominantlylinear magnetisation observed in experiment, whih however is not in fullaord with numerial simulations of the minimal model [7, 10℄.The other ategory of experiments performed on CuHpCl is the mea-surement of NMR spin relaxation rates, whih probe spin�spin orrelation
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