STUDIES OF ^{225,226}U ALPHA DECAY CHAINS* **

P. KUUSINIEMI^a, J.F.C. COCKS^a, K. ESKOLA^b, P.T. GREENLEES^a
K. HELARIUTTA^a, P. JONES^a, R. JULIN^a, S. JUUTINEN^a
H. KANKAANPÄÄ^a, A. KEENAN^a, H. KETTUNEN^a, M. LEINO^a
M. MUIKKU^a, P. NIEMINEN^a, P. RAHKILA^a, AND J. UUSITALO^a

 ^a Dept. of Physics, University of Jyväskylä FIN-40351, Jyväskylä, Finland
 ^b Dept. of Physics, University of Helsinki FIN-00014, Helsinki, Finland

(Received November 3, 2000)

Studies of 225,226 U α -decay chains produced via heavy ion induced fusion reactions of 22 Ne + 208 Pb \rightarrow 230 U and of 18 O + 208 Pb \rightarrow 226 Th were carried out using the JYFL gas-filled magnetic recoil separator RITU. The data obtained for α -decays of 225,226 U, 221,222 Th, 218 Ra and 213 Rn concerning their α -particle energies, half-lives and α -decay fine structures are compared to previous investigations.

PACS numbers: 23.60.+e, 27.90.+b

1. Experiments

Studies of 225,226 U α -decay chains were performed using two heavy ion induced fusion evaporation reactions, 22 Ne + 208 Pb and 18 O + 208 Pb. The first experiment was employed for the α -particle decay studies of 225,226 U and the second for their subsequent daughter α -decay chains. Both beams were delivered from the JYFL K130 heavy ion cyclotron and the separation of fusion products was performed using the gas-filled magnetic recoil separator RITU [1]. The detection of evaporation residues and their decay was based on the use of a position sensitive PIPS Si-detector, where the evaporation residues are implanted and their subsequent decays are measured. In the second experiment also a single Ge-detector was used at the focal plane of

^{*} Presented at the XXXV Zakopane School of Physics "Trends in Nuclear Physics", Zakopane, Poland, September 5–13, 2000.

^{**} This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2000-2005 (Project No. 44875, Nuclear and Condensed Matter Programme at JYFL).

RITU in order to obtain information about the short living α -active nuclei using the $\alpha - \gamma$ coincidence technique.

2. Results

In the data analysis the correlation method [2] was employed. The energy calibration was based on known α -activities produced in the reactions providing an energy resolution of about 35 keV (FWHM). The relatively poor energy resolution was due to weak cooling of the Si-detector, since with slow recoils it was not possible to use any foils to separate the Si-detector from He-filling gas. The half-life analysis was carried out using recoil- α (Fig. 1) or α - α correlations. There the correlated event pairs can have their origin either in true correlations or in accidental ones. Thus the decay curve for a single activity consists of two components, one for the real correlations (λ_{meas}) and one for the accidental correlations (r). The true decay constant is extracted using the formula $\lambda = \lambda_{\text{meas}} - r$ [3]. As an example, the decay curves of ²²²Th α -particle decays to both 0⁺ and 2⁺ states are shown in figure 1.

Fig. 1. (a) Recoil- α correlations for the ¹⁸O + ²⁰⁸Pb reaction at a projectile energy of 92 MeV. (b) Measured lifetime curves for ²²²Th alpha decays.

The experimental results of 225,226 U α -decay chains are expressed in Table I. The data for 226 U, 222 Th and 218 Ra are consistent with previously measured values reported in references [4–6]. In the case of 222 Th, a 389.5(5) keV γ -ray transition from 2⁺ to 0⁺ in 218 Ra was observed in coincidence with the known α -decay of 222 Th. This transition was also observed in an in-beam γ spectroscopy study [4]. The study of 218 Ra is interesting from the point of view of half-life since several values for 218 Ra have been published with relatively small error bars varying from 14(2) μ s and 15.6(10) μ s to the somewhat longer value of 26(2) μ s and 25.6(11) μ s reported in references [7–10], respectively. The measured half-life in this work is consistent with values reported in [8] and [9].

The data for ²²⁵U are consistent with data reported in [11]. Also a new alpha branch with an energy of 7630(20) keV was observed in recoil- α - α - α correlations. However, only two triple-chains assigned to ²²⁵U were observed, but the measured energy is consistent with known energy of (11/2⁺)-state of ²²¹Th observed in an in-beam experiment [12].

TABLE I

	Present data			Previous data			
Nuclide	E_{α} [keV]	I_{lpha} [%]	$T_{1/2} \ [\mathrm{ms}]$	E_{α} [keV]	I_{lpha} [%]	$T_{1/2} \; [\mathrm{ms}]$	Ref.
225 U	$7867(6) \\7820(20) \\7630(20)$	$83(7) \\ 15(7) \\ 2(1)$	84(4)	$7879(15) \\ 7821(15)$	$\begin{array}{c} 85\\ 15\end{array}$	95(15)	[11]
226 U	7566(4) 7384(7)		260(20)	$7570(20) \ 7420(20)$	$85(5) \\ 15(5)$	200(50)	[4]
$^{221}\mathrm{Th}$	8469(4) 8142(3) 7732(4)	21^{*} 72^{*} 7^{*}	1.73(3)	8472(5) 8146(5) 7733(8)	$39(2) \\ 56(3) \\ 6(1)$	2.8(3)	[12]
222 Th	7980(2) 7599(2)	$97.7(9) \\ 2.3(2)$	2.237(13)	7982(8) 7600(15)	$97(1) \\ 3(1)$	2.8(3)	[5]
218 Ra 213 Rn	(**) 8090(3) 7555(4) 7254(4)		0.0252(3)	$8389(6) \\ 8088(8) \\ 7553(15)$	$100 \\ 99.0(5) \\ 1.0(5)$	$0.0256(11) \\ 25.0(2)$	[6] [13]

 α particle energies, intensities and half-lives of ^{225,226}U α -decay chains.

* Errors in intensities are not determined because of high uncertainty due to internal conversion electron summing (see figure 2 and text for details). ** α -particle energy and intensity were not determined because of pile-up of

daughter (214 Rn, $T_{1/2} = 0.27(2) \ \mu s$ [7]) pulses.

The nuclide ²²¹Th is somewhat difficult from point of view of fine structure studies due to rather strong internal conversion. This causes summing of energies of conversion electrons and emitted α -particles. Thus alpha branches for ²²¹Th reported in [12] are difficult to verify from data measured in this work, but α -particle energies can be easily identified (see figure 2, solid line). Possible α -particle energies observed between the known peaks with energies 8142(3) keV and 8469(4) keV can be also explained by sum energy of emitted α -particle and conversion electron. This interpretation is actually supported by Ra X-ray gated recoil- α correlations (dashed line) shown in figure 2. There counts for X-ray gated α -particles are expressed on the right hand side and counts for recoil- α - α correlated ²²¹Th (solid line) are shown on the left hand side. Thus the origin of the α -peaks around 8250 keV and 8375 keV shown in figure 2 remains unverified from the data obtained from these experiments. However, two alpha branches are indeed reported in [14] with energies of 8265(10) keV and 8375(10) keV and intensities of 4 % and 11 %, respectively.

Alpha– γ coincidences were also observed for ²²¹Th. In this study the γ -ray transitions from excited $(7/2^+)$ and $(11/2^+)$ states in ²¹⁷Ra fed by 8142(3) keV and 8469(4) keV α -particles, respectively, to the ground state were observed. However, γ -ray coincidences with the α -particle decay with energies around 8250 keV and 8375 keV were not observed. This could also mean that the origin of the α -particle decay with energies around 8250 keV and 8375 keV are a result of conversion electron summing.

Fig. 2. Recoil- α - α correlated ²²¹Th (solid line) and recoil- α gated by Ra X-rays (dashed line).

The decay of the nuclide ²¹³Rn is more straightforward and the data obtained in this work are consistent with previously published data. Also a new alpha branch with α -particle energy of 7254(4) keV was observed in coincidence with known γ -rays from the $3/2^-$ state of ²⁰⁹Po. Finally, it is worth noting that the α -particle decay properties of ²¹⁷Ra, ²¹⁴Rn and ^{209,210}Po which also belong to the decay chains studied were not possible to study because of their unsuitable half-lives from the point of view of electronics or correlation method.

REFERENCES

- [1] M. Leino et al., Nucl. Instrum. Methods Phys. Res. B99, 653 (1995).
- [2] K.-H. Schmidt et al., Nucl. Phys. A318, 253 (1979).
- [3] M. Leino et al., Phys. Rev. C24, 2370 (1981).

- [4] Y.A. Akovali, Nucl. Data Sheets 77, 271 (1996).
- [5] Y.A. Akovali, Nucl. Data Sheets 76, 457 (1995).
- [6] Y.A. Akovali, Nucl. Data Sheets 76, 127 (1995).
- [7] K. Valli et al., Phys. Rev. C1, 2115 (1970).
- [8] K.S. Toth et al., Phys. Rev. Lett. 56, 2360 (1986).
- [9] M. Wieland *et al.*, *Phys. Rev.* C46, 2628 (1992).
- [10] A.N. Andreyev et al., Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk 1991, p. 120.
- [11] K.S. Toth et al., Phys. Rev. C45, 856 (1992).
- [12] Y.A. Akovali, Nucl. Data Sheets 61, 623 (1990).
- [13] Y.A. Akovali, Nucl. Data Sheets 66, 237 (1992).
- [14] A.N. Andreyev et al., Z. Phys. A337, 229 (1990).