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AMORPHOUS THIN FILM GROWTHSIMULATION METHODS FORSTOCHASTIC DEPOSITION EQUATIONS�Martin Raible, Stefan J. Linz and Peter HänggiTheoretishe Physik I, Institut für Physik, Universität Augsburg86135 Augsburg, Germany(Reeived November 27, 2001)Di�erent methods for the numerial solution of a stohasti growthequation apturing the essene of amorphous thin �lm growth are presentedand ompared. We show numerially that the �nite di�erene approxima-tion and the spetral Galerkin method yield the same results within thesame auray and roughly omparable omputation time. We also explainhow stohasti �eld equations an be solved using �nite element approxi-mations.PACS numbers: 02.60.Cb, 02.60.Lj, 02.50.Ey, 68.55.�a1. IntrodutionThe topi of formation and spatio-temporal evolution of surfaes gen-erated by deposition proesses has reently developed into a highly ativeresearh area of statistial physis (see Ref. [1℄). Spei�ally, the growthproess of the surfae of the deposited �lm, as it appears in moleular beamepitaxy or physial vapor deposition experiments, is determined by the om-petition between roughening due to the deposition of partiles and smooth-ing due to surfae di�usion e�ets [2�6℄. Experimental studies on amorphous�lms deposited by eletron beam evaporation have revealed the formationof moundlike surfae strutures on a mesosopi length sale [7�10℄. Thisindiates that ontinuum models based on stohasti �eld equations of theform �tH = G(H) + � + F ; (1)an serve as a useful tool for the understanding of the growth dynamis.Here, H(~x; t) represents the height of the surfae above a given substrateposition ~x at time t, as shown in Fig. 1. G(H) represents a funtionalof the spatial derivatives of the height funtion H and inludes all surfae� Presented at the XIV Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 9�14, 2001.(1049)
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yFig. 1. Sketh of the vapor deposition of an amorphous �lm on a substrate.relaxation proesses and possible growth instabilities. F denotes the meandeposition rate, and � quanti�es the deposition noise that represents the�utuations of the deposition �ux around its mean F . These �utuationsare assumed to be Gaussian white, i.e.h�(~x; t)i = 0 ; h�(~x; t)�(~y; t0)i = 2DÆ2(~x� ~y)Æ(t � t0) ; (2)where the brakets denote ensemble averaging andD the �utuation strength.A transformation into a frame omoving with the deposition rate F , h(~x; t) =H(~x; t)�Ft, yields a orresponding evolution equation for the height pro�leh(~x; t) �th = G(h) + � : (3)A omparison with experimental data for amorphous Zr65Al7:5Cu27:5�lms deposited by eletron beam evaporation has reently evidened a goodquantitative agreement between numerial solutions of the model equation[11�13℄ �th = a1r2h+ a2r4h+ a3r2(rh)2 + a4(rh)2 + � (4)and experimental measurements up to the largest, experimentally observedlayer thikness of 480 nm [11℄. Moske [14℄ had already suggested the equa-tion �th = a2r4h+ a3r2(rh)2 + � as a model for amorphous �lm growth.This equation, however, is not able to apture the experimentally observedpattern-forming surfae struture. Based on mirosopi models [12�14℄ forthe governing surfae relaxation mehanisms, it has been found that theoe�ients a1, a2, and a3 in Eq. (4) are negative, whereas a4 is positive.The term a1r2h with negative a1 represents in ombination with the terma2r4h the same growth instability as in the Kuramoto�Sivashinsky equa-tion, that is known to trigger the formation of moundlike surfae strutures.For a mathematial proof of existene of a solution of Eq. (4) in the one-dimensional ase we refer to Ref. [15℄.



Amorphous Thin Film Growth: Simulation Methods : : : 1051Surfae growth equations of the form (3) and (4) are usually solved on aquadrati area [0; L℄2 subjet to periodi boundary onditions. The initialstate is given by h(~x; 0) = 0, orresponding to an initially �at substrate.In order to ompare the solutions of suh stohasti growth equations withexperimental results, experimentally aessible statistial quantities have tobe introdued. The orrelation length R(t) and the surfae roughness w(t)are suh harateristi quantities and are determined by the height�heightorrelation funtionC(r; t) = �� 1L2 Z d2x [h(~x; t)� h(t)℄[h(~x+ ~r; t)� h(t)℄��j~rj=r ; (5)where h(t) = (1=L2) R d2xh(~x; t) denotes the spatial average of the height,and hh: : :iij~rj=r denotes the ombined ensemble and radial average. Spei�-ally, R(t) is given by the radius r of the �rst maximum of C(r; t) ourringat nonzero values of r and the square of the surfae roughness results fromtaking the limit r = 0 in C(r; t), i.e. w2(t) = C(0; t). The quantities w(t)and R(t) haraterize the typial height and periodiity length sales of themoundlike surfae struture.The aim of this paper is twofold. First, using the spei� example ofEq. (4), we present three di�erent methods to numerially solve stohasti�eld equations: the �nite di�erene method, the spetral Galerkin method,and the �nite element method. Here, partiular fous is put on the inorpo-ration of the stohasti ontributions in these numerial shemes. Seond,by spei� alulations of the orrelation length R(t) and the surfae rough-ness w(t) arising from Eq. (4), we ompare the numerial e�ieny of the�nite di�erene and the spetral Galerkin method. The presented shemesan also serve as a guide for the numerial solution of stohasti growthequations with di�erent funtional struture.2. Finite di�erene methodThe most ommon method to numerially integrate stohasti �eld equa-tions suh as Eq. (3) is based on a diret spatio-temporal disretization ona ubi grid with a spatial lattie onstant �x = �y = L=N and a timestep �tn. The �nite di�erene disretization of the general form (3) of astohasti deposition equation readsh(n+1)i;j = h(n)i;j +�tnGi;j [h(n)k;l ℄ + Pn�(n)i;j (6)with Pn =p24D�tn=(�x)2 : (7)



1052 M. Raible, S.J. Linz, P. HänggiHere, h(n)i;j denotes the spatial average of the height funtion h at the timetn on one of N2 squares of a quadrati lattie on [0; L℄2, i.e.h(n)i;j = 1(�x)2 (i+1=2)�xZ(i�1=2)�x dx (j+1=2)�xZ(j�1=2)�x dy h(x; y; tn) (8)with i; j 2 Z. The quantity �tn = tn+1� tn denotes the size of the generallyvariable time step, and the quantities �(n)i;j are independent random numberstaken from a uniform distribution between �1=2 and 1=2. Gi;j [h(n)k;l ℄ is asuitable �nite di�erene approximation of the funtional G(h) at the timetn and at the position (i�x; j�y). Di�erent authors [16�18℄ have used �nitedi�erene shemes of the type (6) in order to numerially solve the Kardar�Parisi�Zhang-equation �th = �r2h+�(rh)2+� [19℄. The stohasti ontri-bution Pn�(n)i;j on the RHS of Eq. (6) represents the noise � integrated overthe time interval [tn; tn + �tn℄ and spatially averaged on the same squarearound the point (i�x; j�y) as in the de�nition of h(n)i;j , Eq. (8),q(n)i;j = 1(�x)2 tn+�tnZtn dt (i+1=2)�xZ(i�1=2)�x dx (j+1=2)�xZ(j�1=2)�x dy �(x; y; t) : (9)Here, q(n)i;j and the stohasti term Pn�(n)i;j in the numerial sheme (6) havethe same statistial mean hq(n)i;j i = hPn�(n)i;j i = 0 and the same varianeh(q(n)i;j )2i = h(Pn�(n)i;j )2i = 2D�tn=(�x)2. In pratie, it is not neessary toreplae the terms Pn�(n)i;j by the normally distributed random numbers q(n)i;jbeause their �rst and seond moments are equal and their higher momentsare small, i.e. of the order O(�t2n). This argument originates from the nu-merial integration theory of stohasti ordinary di�erential equations [20℄.It an also be used here beause, after �xing the noise strength D togetherwith all other possible oe�ients of Eq. (3) inluding the lattie spaing �xand then keeping only the size of the time step �tn variable, Eq. (6) onsti-tutes an expliit Euler sheme for a system of stohasti ordinary di�erentialequations.In order to derive a �nite di�erene approximation of Eq. (4) we deom-pose this equation into the system of equations�th = r2w + a3r2v + a4v + � ; (10)w = a1h+ a2r2h ; (11)v = (rh)2 : (12)



Amorphous Thin Film Growth: Simulation Methods : : : 1053By using entral di�erene approximations in spae and an expliit Eulersheme in time we obtain the numerial proedureh(n+1)i;j = h(n)i;j + �tn(�x)2 hw(n)i+1;j + w(n)i�1;j +w(n)i;j+1 + w(n)i;j�1 � 4w(n)i;j i+ �tn(�x)2 a3 hv(n)i+1;j + v(n)i�1;j + v(n)i;j+1 + v(n)i;j�1 � 4v(n)i;j i+�tna4v(n)i;j + Pn�(n)i;j ; (13)w(n)i;j = a1h(n)i;j + a2(�x)2 hh(n)i+1;j + h(n)i�1;j + h(n)i;j+1 + h(n)i;j�1 � 4h(n)i;j i ;(14)v(n)i;j = 13(�x)2 ��h(n)i+1;j � h(n)i;j �2 + �h(n)i+1;j � h(n)i;j ��h(n)i;j � h(n)i�1;j�+ �h(n)i;j � h(n)i�1;j�2 + �h(n)i;j+1 � h(n)i;j �2+ �h(n)i;j+1 � h(n)i;j ��h(n)i;j � h(n)i;j�1�+ �h(n)i;j � h(n)i;j�1�2� : (15)This numerial sheme is of the form (6). An alternative �nite di�ereneapproximation of v = (rh)2 would readv(n)i;j = 14(�x)2 ��h(n)i+1;j � h(n)i�1;j�2 + �h(n)i;j+1 � h(n)i;j�1�2� : (16)However, our numerial simulations have revealed that in the time range thatis dominated by the nonlinear terms of Eq. (4) the omputational proedure(13)�(15) possesses a better numerial stability than the numerial shemeomposed of equations (13), (14), and (16).As a spei� appliation, we have solved Eq. (4) using the �nite dif-ferene approximation (13)�(15). The hosen parameters were L = 200,a1 = �0:1045, a2 = �0:4044, a3 = �0:13, a4 = 0:07, and D = 0:022. Theseparameters are up to a resaling of time in agreement with the parametersthat resulted from a omparison with the experiments [11℄. In Fig. 2, wepresent the resulting surfae roughness w(t) and orrelation length R(t)for N2 = 2002 and N2 = 4002 grid points. Their di�erene is not largerthan 3.6%.
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Fig. 2. Correlation length R(t) and surfae roughness w(t) alulated from Eq. (4)using two di�erent numerial methods on an interval [0; L℄2 of the size L = 200subjet to periodi boundary onditions. The parameters were a1 = �0:1045,a2 = �0:4044, a3 = �0:13, a4 = 0:07, and D = 0:022. The results ensuing fromthe �nite di�erene method (13)�(15) with N2 = 2002 and N2 = 4002 grid pointsare depited by the dashed and the dash-dotted lines, respetively. The resultsthat were determined by the spetral Galerkin method (22)�(27), (29), (30) withN = 42 and N = 85 are represented by the dotted and the solid lines, respetively.Therefore, eah part of this �gure ontains four di�erent lines. As a result of thegood agreement between the di�erent simulation methods, the di�erene betweenmost of these lines is not visible.



Amorphous Thin Film Growth: Simulation Methods : : : 10553. Spetral Galerkin methodThe spetral Galerkin method is a numerial method to solve the spa-tial evolution of partial di�erential equations in Fourier spae. It is espe-ially e�ient in the time interval where the linear parts of the equationdominate. For analytial and numerial results on the onvergene of thespetral Galerkin method for the one-dimensional version of Eq. (4) we referto Ref. [15℄. In this paper, we fous on stohasti growth equations in twospatial dimensions. Then, Eq. (4) reads in Fourier spae�t~h(~k; t) = �(k)~h(~k; t) + (�a3k2 + a4)~v(~k; t) + ~�(~k; t) (17)with �(k) = �a1k2 + a2k4 ; (18)~h(~k; t) = Z d2xh(~x; t) exp(�i~k � ~x) ; (19)~v(~k; t) = Z d2x [rh(~x; t)℄2 exp(�i~k � ~x) ; (20)~�(~k; t) = Z d2x �(~x; t) exp(�i~k � ~x) : (21)For the time disretization usually a semi-impliit Euler sheme is applied~h(n+1)(~k) = ~h(n)(~k) + �tn�(k)~h(n+1)(~k)+�tn(�a3k2 + a4)~v(n)(~k) + ~q(n)(~k) ; (22)where ~h(n)(~k), ~v(n)(~k), and ~q(n)(~k) are a short hand notation for ~h(~k; tn),~v(~k; tn), and the noise ontribution: ~q(n)(~k) = R tn+�tntn dt ~�(~k; t). The wavevetor ~k is of the form ~k = 2�L (nx; ny) with nx; ny 2 Z. The semi-impliittime disretization has the advantage that larger time steps �tn are allowedin omparison to an expliit sheme if the linear terms of Eq. (4) dominate.The ontributions ~q(n)(~k) from the deposition noise are omplex randomnumbers whose real and imaginary parts are up to the identities Re ~q(n)(~k) =Re ~q(n)(�~k) and Im ~q(n)(~k) = �Im ~q(n)(�~k) independent, normally dis-tributed random numbers. Their �rst and seond moments readhRe ~q(n)(~k)i = 0 ; (23)hIm ~q(n)(~k)i = 0 ; (24)h[Re ~q(n)(~k)℄[Re ~q(n)(~k0)℄i = 8<: 2D�tnL2 if ~k = ~k0 = 0 ;D�tnL2 if � ~k = ~k0 6= 0 ;0 otherwise , (25)



1056 M. Raible, S.J. Linz, P. Hänggih[Re ~q(n)(~k)℄[Im ~q(n)(~k0)℄i = 0 ; (26)h[Im ~q(n)(~k)℄[Im ~q(n)(~k0)℄i = 8<: D�tnL2 if ~k = ~k0 6= 0 ;�D�tnL2 if � ~k = ~k0 6= 0 ;0 otherwise . (27)Here, it is interesting to note that the disrete Fourier transform of thestohasti ontribution to the �nite di�erene sheme (6)~q(n)�x(~k) = (�x)2Xj;l Pn�(n)j;l exp[�i(kxj�x+ kyl�x)℄ (28)has the same �rst and seond moments (23)�(27) if the wave vetors ~k =(kx; ky) are in the range ��=�x < kx < �=�x and ��=�x < ky < �=�x.This also on�rms that the deposition noise � has been given the orretweight in the �nite di�erene method (6).Equation (22) an only be solved in a �nite area A of the Fourier spaethat onsists of wave vetors ~k = 2�L (nx; ny) with �N � nx; ny � N whereN is a su�iently large integer number. If ~k lies outside of the area A weset ~h(n)(~k) = 0. Therefore, we atually ompute (2N + 1)2 modes. It isneessary to determine the ~v(n)(~k) from the ~h(n)(~k). For this, we determinerh(~x; tn) in real spae byrh(~x; tn) = 1L2 X~k i~k~h(n)(~k) exp(i~k � ~x) (29)on M2 equidistant grid points in [0; L℄2 that have the distane �x = L=M .Then, we alulate [rh(~x; tn)℄2 on the M2 grid points and �nally transformit bak into the Fourier spae:~v(n)(~k) = (�x)2X~x [rh(~x; tn)℄2 exp(�i~k � ~x) : (30)Note that M must be a power of 2 beause we use the fast Fourier transfor-mation [21℄. In addition, M must also ful�ll the ondition M � 3N + 1, inorder to take are of the known �aliasing� problem. The sumP~k in Eq. (29)is restrited to wave vetors that lie inside the area A. Therefore, the sumin the relation [rh(~x; tn)℄2 = 1L2 X~k ~v(n)(~k) exp(i~k � ~x) (31)refers to a larger area B of wave vetors ~k = 2�L (nx; ny) with integer numbersnx and ny between �2N and 2N . However, two di�erent Fourier modes with



Amorphous Thin Film Growth: Simulation Methods : : : 1057wave vetors ~k = 2�L (nx; ny) and ~k0 = 2�L (n0x; n0y) annot be distinguished onthe M2 grid points if n0x � nx and n0y � ny are divisible by M . In that asethe RHS of Eq. (30) would only yield the sum of their Fourier oe�ients.Sine we only need the oe�ients ~v(n)(~k) with ~k 2 A, it is su�ient andneessary that all Fourier modes with wave vetors in A an be distinguishedfrom di�erent non-vanishing Fourier modes whose wave vetors lie inside thearea B. Therefore, �N +M � 2N + 1 must hold, yielding the onditionM � 3N + 1. Note that in the presene of a third order nonlinearity likee.g. r� (rh)3 the ondition M � 3N +1 had to be replaed by M � 4N +1and that in the presene of a tenth order term like e.g. (rh)10 M had toful�ll the ondition M � 11N + 1, and so on. On the other hand, if wehad to alulate a non-polynomial nonlinearity like e.g. 1=p1 + (rh)2, the�aliasing� of di�erent Fourier modes ould not be ompletely avoided. In thatase, we had to rely on the damping of Fourier modes with large wave vetors~k resulting from stabilizing terms like e.g. a2r4h in Eq. (4) that smooth theheight pro�le h(~x; t), so that also nonlinearities like 1=p1 + (rh)2 basiallyonsist of Fourier modes from a �nite area of the Fourier spae.As a spei� appliation, we have solved Eq. (4) using the spetralGalerkin method (22)�(27), (29), (30) and using the same parameters asin the previous setion. Fig. 2 shows the resulting surfae roughness w(t)and orrelation length R(t) for N = 42 and N = 85. Their di�erene isnot larger than 5.6% for t =5, 15, 30, and 60 and not larger than 0.69% fort 2 [100; 480℄. Therefore it seems that our numerial results arising from the�nite di�erene method as well as from the spetral Galerkin method are ofsu�ient preision. The CPU-times required for one simulation run on thesame omputer were 1h 6min for the �nite di�erene method with N2 = 2002grid points, 1h 27min for the spetral Galerkin method with N = 42, 11h29min for the �nite di�erene method with N2 = 4002 grid points, and 37h36min for the spetral Galerkin method with N = 85. As a onsequene,the spetral Galerkin method appears to be omputationally less e�ient ifhigh preision of the numerial solution of Eq. (4) is demanded.4. Finite element methodIn this setion, we explain how the deposition noise � an be taken intoonsideration in a third numerial simulation method, the �nite elementsolution of Eq. (4). To that end, Eq. (4) is deomposed into the system ofequations �th = r2w + a4(rh)2 + � ; (32)w = a1h+ a2r2h+ a3(rh)2 : (33)



1058 M. Raible, S.J. Linz, P. HänggiThese equations are multiplied with test funtions �i from the Sobolev spaeH1per([0; L℄2) and then integrated on [0; L℄2 [22℄. In order to simulate thetime evolution an impliit Euler sheme an be applied. The resulting om-putational sheme then readsZ �ih(n+1) = Z �ih(n) ��tn Z (r�i) � (rw(n+1))+�tna4 Z �i(rh(n+1))2 + Z(n)i ; (34)Z �iw(n+1) = a1 Z �ih(n+1) � a2 Z (r�i) � (rh(n+1))+a3 Z �i(rh(n+1))2; (35)Z(n)i = tn+�tnZtn dtZ d2x�i(~x)�(~x; t) ; (36)where h(n) and w(n) denote the funtions h and w at the time tn. Theequations (34)�(36) an atually only be solved for a �nite number of linearlyindependent test funtions �1; : : : ;�N 2 H1per([0; L℄2). Therefore, we try to�nd the solutions h(n+1) and w(n+1) in the subspae VN being spun by thefuntions �1; : : : ;�N .In order to �nd the test funtions �1; : : : ;�N we subdivide the area[0; L℄2 into triangles. The triangulation omplies with the periodi bound-ary onditions and the following rules. Two di�erent triangles should shareeither one edge or one orner or not a single point. Two mesh points ofthe triangulation should not be onneted by more than one edge. The testfuntions �i are de�ned by the properties, that (i) they are ontinuous fun-tions on [0; L℄2 and ful�ll periodi boundary onditions, (ii) they are linearfuntions on eah triangle, and (iii) that �i assumes the value 1 at the meshpoint Pi and the value 0 at all other mesh points Pk. As a result of thisde�nition, �i di�ers from zero only on the triangles that surround the meshpoint Pi.Before one an solve the system of the equations (34)�(35), the randomnumbers Z(n)i have to be generated. These random numbers are normallydistributed and have the momentsDZ(n)i E = 0; (37)DZ(n)i Z(n)k E = 2D�tn Z �i�k (38)



Amorphous Thin Film Growth: Simulation Methods : : : 1059for all i; k = 1; : : : ; N . This yields in ase i = k��Z(n)i �2� = 2D�tn16Xii A� ; (39)where PiiA� denotes the sum of the areas of the triangles that surroundthe mesh point Pi. If i 6= k, but Pi and Pk are neighbouring points, i.e. theyare onneted by a triangle edge, Eq. (38) yieldsDZ(n)i Z(n)k E = 2D�tn 112Xik A� ; (40)where Pik A� denotes the sum of the areas of the two triangles that haveone orner in Pi and one orner in Pk. If i 6= k, and Pi and Pk are notneighbouring points, Eq. (38) yieldsDZ(n)i Z(n)k E = 0 : (41)In order to get suh random numbers, one an generate for eah triangleedge PiPk an independent, normally distributed random number Y (n)ik , thatpossesses the moments DY (n)ik E = 0 ; (42)��Y (n)ik �2� = 2D�tn 112Xik A� : (43)Then the random numbers Z(n)i an be determined by [23℄Z(n)i = XPk 6= Pi is a neighbouring point of Pi Y (n)ik : (44)An alternative possibility to get the random numbers Z(n)i is to generatefor eah mesh point Pi an independent, normally distributed random num-ber ~Z(n)i and for eah triangle PiPkPl an independent, normally distributedrandom number X(n)ikl , that have the momentsD ~Z(n)i E = 0 ; (45)�� ~Z(n)i �2� = 2D�tn 112Xii A� ; (46)DX(n)ikl E = 0 ; (47)��X(n)ikl �2� = 2D�tn 112Aikl ; (48)



1060 M. Raible, S.J. Linz, P. Hänggiwhere Aikl is the area of the triangle PiPkPl. Then the random numbersZ(n)i an be alulated byZ(n)i = ~Z(n)i + XPiPkPl has one orner in PiX(n)ikl : (49)Sine the number of triangle edges is equal to the number of mesh points plusthe number of triangles in [0; L℄2 (beause the periodi boundary onditionsare onsidered), the two alternatives (42)�(44) and (45)�(49) require thesame number of independent random numbers and therefore have the samee�ieny. 5. ConlusionsIn this paper we have presented a detailed aount of three di�erentnumerial simulation methods for the solution of a stohasti �eld equationfor amorphous thin �lm growth. We have shown, that the �nite di�erenemethod and the spetral Galerkin method yield the same surfae roughnessw(t) and the same orrelation length R(t) and that these two methodspratially have the same auray and e�ieny. It remains to show, thatalso the method using �nite element approximations yields the same results.A further mathematial hallenge presents the lak of rigorous proofs ofthe onvergene of the di�erent numerial approximations of Eq. (4) andeven a mathematial proof of existene of a solution of Eq. (4) in the two-dimensional ase.This work has been supported by the DFG-Sonderforshungsbereih 438Münhen/Augsburg, TP A1. We thank E. Nash for helpful disussions andan introdution to the non-stohasti Galerkin and �nite element methods.REFERENCES[1℄ A.L. Barabasi, H.E. Stanley, Fratal Conepts in Surfae Growth, CambridgeUniversity Press, Cambridge, UK 1995; W.M. Tong, R.S. Williams, Annu.Rev. Phys. Chem. 45, 401 (1994); J. Krug, Adv. Phys. 46, 139 (1997); M. Mar-sili, A. Maritan, F. Toigo, J.R. Banavar, Rev. Mod. Phys. 68, 963 (1996).[2℄ D.E. Wolf, J. Villain, Europhys. Lett. 13, 389 (1990).[3℄ J. Villain, J. Phys. I 1, 19 (1991).[4℄ S. Das Sarma, P. Tamborenea, Phys. Rev. Lett. 66, 325 (1991).[5℄ Z.-W. Lai, S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).[6℄ M. Siegert, M. Plishke, Phys. Rev. E50, 917 (1994).
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