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FLUCTUATIONS IN HEAVY ION COLLISIONS*
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The physics of fluctuations in heavy ion collisions is discussed and a few
examples for actual measurements are presented.

PACS numbers: 25.75.—q

1. Introduction

The study and analysis of fluctuations are an essential method to char-
acterize a physical system. In general, one can distinguish between several
classes of fluctuations. On the most fundamental level there are quantum
fluctuations, which arise if the specific observable does not commute with
the Hamiltonian of the system under consideration. These fluctuations prob-
ably play less a role for the physics of heavy ion collisions. Second, there are
“dynamical” fluctuations reflecting the dynamics and responses of the sys-
tem. They help to characterize the properties of the bulk (semi-classical)
description of the system. Examples are density fluctuations, which are
controlled by the compressibility of the system. Finally, there are “trivial”
fluctuations induced by the measurement process itself, such as finite number
statistics, etc. These need to be understood, controlled and subtracted in
order to access the dynamical fluctuations which tell as about the properties
of the system.

Fluctuations are also closely related to phase transitions. The well known
phenomenon of critical opalescence is a result of fluctuations at all length
scales due to a second order phase transition. First order transitions, on the
other hand, give rise to bubble formation, i.e. density fluctuations at the
extreme. Considering the richness of the QCD phase-diagram as sketched in
Fig. 1 the study of fluctuations in heavy ions physics should lead to a rich
set of phenomena.
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Fig. 1. Schematic picture of the QCD phase-diagram.

The most efficient way to address fluctuations of a system created in
a heavy ion collision is via the study of Event-by-Event (E-by-E) fluctua-
tions, where a given observable is measured on an event by event basis and
the fluctuations are studied over the ensemble of the events. In most cases
(namely when the fluctuations are Gaussian) this analysis is equivalent to
the measurement of two particle correlations over the same region of accep-
tance [1]. Consequently, fluctuations tell us about the 2-point functions of
the system, which in turn determine the response of the system to external
perturbations.

In the framework of statistical physics, which appears to describe the
bulk properties of heavy ion collisions up to RHIC energies, fluctuations
measure so called susceptibilities of the system. These susceptibilities also
determine the response of the system to external forces. For example, by
measuring fluctuations of the net electric charge in a given rapidity interval,
one obtains information on how this (sub)system would respond to applying
an external (static) electric field. In other words, by measuring fluctuations
one gains access to the same fundamental properties of the system as “table
top” experiments dealing with macroscopic probes. In the later case, of
course, fluctuation measurements would be impossible.

In addition, the study of fluctuations may reveal information beyond
its thermodynamic properties. If the system expands, fluctuations may be
frozen in early and thus tell us about the properties of the system prior to
its thermal freeze out. A well known example are the fluctuations in the
cosmic microwave background radiation, as first observed by COBE [2].

The field of Event-by-Event fluctuations is relatively new to heavy ion
physics and ideas and approaches are just being developed. So far, most of
the analysis has concentrated on transverse momentum and charge fluctua-
tions.

Transverse momentum fluctuations should be sensitive to temperature/
energy fluctuations [3,4]. These in turn provide a measure of the heat ca-
pacity of the system [5]. Since the QCD phase transition is associated with
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a maximum of the specific heat, the temperature fluctuations should exhibit
a minimum in the excitation function. It has also been argued [6,7] that
these fluctuations may provide a signal for the long range fluctuations asso-
ciated with the tri-critical point of the QCD phase diagram. In the vicinity
of the critical point the transverse momentum fluctuations should increase,
leading to a maximum of the fluctuations in the excitation function.
Charge fluctuations [8,9], on the other hand, are sensitive to the frac-
tional charges carried by the quarks. Therefore, if an equilibrated partonic
phase has been reached in these collisions, the charge fluctuations per en-
tropy would be about a factor of 2 to 3 smaller than in an hadronic scenario.

2. Fluctuations in a thermal system

To a good approximation the system produced in a high energy heavy
ion collision can be considered to be close to thermal equilibrium. Therefore
let us first review the properties of fluctuations in a thermal system. Most of
this can be found in standard textbooks on statistical physics such as e.g. [5]
and we will only present the essential points here.

Typically one considers a thermal system in the grand-canonical ensem-
ble. This is the most relevant description for heavy ion collisions since
usually only a part of the system — typically around mid-rapidity — is
considered. Thus the exchange of energy and conserved quantum numbers
with the rest of the system, which serves as a heat-bath, is possible. There
are, however, important exceptions when the number of conserved quanta
is small. In this case an explicit treatment of these conserved charges is
required, leading to a canonical description of the system [10] and to sig-
nificant modifications of the fluctuations, as we shall dicuss below. Let us
first discuss fluctuations based on a grand canonical ensemble and then later
point out the differences if a canonical treatment is called for.

2.1. Fluctuations in a grand canonical ensemble

Assuming we are dealing with a system with one conserved quantum
number (such as the electric charge, baryon number etc.) the grand canon-
ical partition function is given by!

Z="3" (ilexp(=BUH = pQ))i) =Tr [exp(=B(H = Q)| . (1)

states

! We restrict ourselves to one conserved charge. Of course the are several conserved
quantum numbers for a heavy ion collision. The extension of the formalism to multiple
conserved charges is straightforward.
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where = 1/T represents the temperature T' of the system and @ is the
conserved charge under consideration. Here the sum covers a complete set of
(many particle) states. The relevant free energy F is related to the partition
function via

F=-TlogZ. (2)

For a thermal system, typical fluctuations are Gaussian [5] and are char-
acterized be the mean dispersion

((0X)%) = (X*) = (X)”, (3)
with
(X) = v [ exp(—~8(H — uQ))] = Trl24],
(X2) = v [ exp(—B(H —nQ))] = Tr[%7]. (1)
where we have introduced the statistical operator
p= 7 exp(=HH — uQ)) = exp(~B(H — pQ ~ F) . 9

In the following, (...) will always refer to thermal averages if not noted
otherwise.

In particular fluctuations of quantities which characterize the thermal
system, such as the energy or the conserved charges, can be expressed in
terms of appropriate derivatives of the partition function. Of special interest
in the context of heavy ion collisions are energy/temperature fluctuations,
which are often related to the fluctuations of the transverse momentum as
well as electric charge/baryon number fluctuations.

2.1.1. Fluctuations of the energy and of the conserved charges

As already pointed out at the beginning of this chapter when analyzing
the system created in a heavy ion collisions, one usually studies only a small
subsystem around mid rapidity. In a statistical framework, this situation
is best represented by a grand canonical ensemble, where the exchange of
conserved quantum number with the rest of the system is taken into account.
The equilibrium state is then characterized by the appropriate conjugate
variables, namely the temperature and the chemical potentials for the energy
and the conserved quantities, respectively.

As a consequence, energy as well as the conserved charges may fluctuate
and the size of fluctuations reveals additional properties of the matter, the
so called susceptibilities, which characterize the response of the system to
external forces.
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For example, the fluctuation of the conserved charge in the subsystem
under consideration is given by

2

2
((5Q)2>:T288—M210gZ:—T oy (6)

op?
Similarly, fluctuations of the energy can be expressed in terms of derivatives
of the partition function with respect to the temperature
((6B)?) = > log Z = —T3a—2F =T%Cy (7)
0?2 oT? '

Note that the energy fluctuations are proportional to the heat capacity of the
system. Thus one would expect that these fluctuations obtain a maximum as
the system moves through the QCD phase-transition, which, among others,
is characterized by a maximum of the heat capacity.

An alternative way [3,4] is to study temperature fluctuations, which are
inversely proportional to the heat capacity [5]

TQ
2

<(5T) > - CV ' (8)
However, for situation at hand, which is best described by a grand canonical
ensemble, energy fluctuations appear to be the more appropriate observable.
The second derivatives of the free energy, which characterize the fluctu-
ations, are usually referred to as susceptibilities. Thus we have the charge

susceptibility

1 62
=——=-—F 9
and the “energy susceptibility”
1 92
XE:_VWF:cUa (10)

which is usually referred to as the specific heat. And just as the specific
heat determines the response of the (sub)system to a change of temperature
the charge susceptibility characterizes the response to a change of chemical
potential. In case of electric charge, this would be the response to an exter-
nal electric field. Consequently, by measuring the fluctuations one obtains
information about some fundamental properties of the system, the suscep-
tibilities, .e. the responses to external forces.

In thermal field theory these susceptibilities are given by correlation func-
tions of the appropriate operators. For example the charge susceptibility is
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given by the space-like limit of the static time—-time component of the elec-
tromagnetic current—current correlator [11-14]

xqQ = Iyo(w =0,q = 0), (11)

with
M, (k) =i / dz exp(—ikz) (T* (ju(2)7u 0))) - (12)

It is interesting to note, that the charge susceptibility is directly propor-
tional to the electric mass [11]

md = —e’xq - (13)

Equation (11) allows to calculate the electric mass in any given model (see
e.g. [13-17] and in particular in Lattice QCD [18,19|. Since dilepton and
photon production rates are given in terms of the imaginary part of the
same current—current correlation function — taken at different values of w
and ¢ — model calculations for these processes will also give predictions
for the charge susceptibility, which then can be compared with lattice QCD
results. As shown in [13] an extraction of the xg from Dilepton data via
dispersion relations, however, is not possible. For that one needs also infor-
mation for the space-like part IIyy which is not easily accessible by heavy
ion experiments.

Charge fluctuations are of particular interest to heavy ion collisions, since
they provide a signature for the existence of a de-confined Quark Gluon
Plasma phase [8,9]. Let us, therfore, discuss charge fluctuations in more
detail.

Consider a classical ideal gas of positively and negatively charged parti-
cles of charge +¢. The fluctuations of the total charge contained in a sub-
system of N particles is then given by

((6Q)*) = ¢*{(6(N4 = N_))*)
= ¢ [{(6N1)?) + ((ON-)?) — 2(§(N_N,))] . (14)

Since correlations are absent in an ideal gas, (6(N_N,)) = 0. Furthermore,
for a classical ideal gas

((BN)?) = (N) (15)
and, therefore,

((0Q)*) = ¢° (N4 + N_) = ¢* (Na) , (16)
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where Ng, = N4+ N_ denotes the total number of charged particles. Taking
quantum statistics into account modifies the results somewhat, since the
number fluctuations are not Poisson anymore (see e.g. [20])

3

(5(N?) = (N) (1 = [ (;‘Tf;ni@)) = ws (V). (a7

Here, (+) refers to Bosons and (—) to Fermions, and ny(p) represents the
respective single particle distribution functions. For the temperatures and
densities reached in heavy ion collisions, however, the corrections due to
quantum statistics are small. For a pion gas at temperature T' = 170 MeV
wr = 1.13 [21].

Obviously, charge fluctuations are sensitive to the square of the charges of
the particles in the gas. This can be utilized to distinguish a Quark Gluon
Plasma, which contains particles of fractional charge, from a hadron gas
where the particles carry unit charge. Charge fluctuations per particle should
be smaller in a Quark Gluon Plasma than in a hadron gas. The appropriate
observable to study is the charge fluctuations per entropy. To illustrate this
point let us consider a noninteracting pion gas and Quark—Gluon gas in the
classical approximation. Corrections due to quantum statistics and due to
the presence of resonances are discussed in detail in [8,9,22]. In a neutral
pion gas the charge fluctuations are due to the charged pions, which are
equally abundant

<(5Q)3r7gas> = <N7r+> + <N7r*> ) (18)

whereas in a Quark Gluon Plasma the quarks and anti-quarks are responsible
for the charge fluctuations

5

((0Q)*)qap = Qi (Nu) + Q7 (Na) = 5 (Na) , (19)

where N, = N, = Ny denotes the number of quarks and anti-quarks. For
a classical ideal gas of mass-less particles the entropy is given by

S =4(N) (20)

and thus we have for a pion gas
Spion—gas = 4 ((Nr+) + (Nz-) + (Nyo)) , (21)

and for a Quark Gluon Plasma

Sqap = 4 ((Nu) + (Na) + (Ng)) = 4(2(Ny) +(Nyg)) , (22)



4226 V. KocH

where N, denotes the number of gluons. Therefore, the ratio of charge
fluctuation per entropy in a pion gas is

((0Q)%) 1

</ =, 23
S pion—gas 6 ( )
whereas for a 2-flavor Quark Gluon Plasma it is
S 2
(@) 1 (24)
S qcpr 24

Consequently, the charge fluctuations per degree of freedom in a Quark
Gluon Plasma are a factor of four smaller than in a pion gas. Hadronic
resonances, which constitute a considerable fraction of a hadron gas reduce
the result for the pion gas by about 30 % [9,22], leaving still a factor 3 signal
for the existence of the Quark Gluon Plasma.

The above ratio, ((5Q)2>/5’ can also be calculated using lattice QCD [18],
and, above the critical temperature, the value agree rather well with that
obtained in our simple Quark Gluon Plasma model here [9]. More recent
calculations for the charge susceptibility [19] give a somewhat smaller value,
which would make the observable even more suitable.

Unfortunately, present lattice calculation are not available for this ratio
below the critical temperature. Here one has to resort to hadronic model
calculations. This has been done in [14,15] using either a virial expansion, a
chiral low energy expansion or an explicit diagrammatic calculation. In all
cases, the ratio is slightly increased due to interactions, thus enhancing the
signal for the Quark Gluon Plasma.

The question then remains, how to measure this ratio in an actual ex-
periment. This has been discussed in [9], where is was proposed to study
the fluctuations of the ratio of positively over negatively charged particle

2 2
o3 ) )L

S

For a pion gas, Dpion—gas = 4 whereas for a QGP, Dqgp ~ 1-1.5, where the
uncertainty arises from relating the entropy S with the number of charged
particles (N, ). Hadronic resonances introduce additional correlations, which
reduce the value of the pion gas to Dyadron—gas = 3, but still a factor of 2
larger then the value for the QGP.

The key question of course is, how can these reduced fluctuations be
observed in the final state which consists of hadrons. Should one not expect
that the fluctuations will be those of the hadron gas? The reason, why it
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should be possible to see the charge fluctuations of the initial QGP has to
do with the fact that charge is a conserved quantity. Imagine one measures
in each event the net charge in a given rapidity interval Ay such that

Aycoll < Ay < Ayr’nam 3 (26)

where Aymax is the width of the total charge distribution and Ay is the
typical rapidity shift due to hadronization and re-scattering in the hadronic
phase. If, as it is expected, strong longitudinal flow develops already in
the QGP-phase, the number of charges inside the rapidity window Ay for
a given event is essentially frozen in. And if Ay > Ay neither hadroniza-
tion nor the subsequent collisions in the hadronic phase will be very effective
to transport charges in and out of this rapidity window. Thus, the E-by-E
charge-fluctuations measured at the end reflect those of the initial state,
when the longitudinal flow is developed. Ref. [23] arrives at the same conclu-
sion on the basis of a Fokker—Planck type equation describing the relaxation
of the charge fluctuation in a thermal environment.

In Fig. 2 we show the results of an URQMD calculation [24], where
the variable D is plotted versus the size of the rapidity window Ay. For
large Ay the results have to be corrected for charge conservation effects;
if all charges are accepted, global charge conservation leads to vanishing
fluctuations (open symbols in Fig. 2). This can be easily corrected for
(for details see [24]). The resulting values for D are shown as full sym-
bols in Fig. 2. They agree nicely with the prediction for the resonance gas,

50 2
| ] <Nep> <5R2>/(C“ Cy
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Fig. 2. Charge fluctuations as for different rapidity windows. Open symbols: with-
out correction for global charge conservation; full symbols: with correction for
global charge conservation.
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as the should, since the URQMD model does not contain any partonic de-
grees of freedom. For small Ay the correlations imposed by the resonances
are lost, because only one of the decay products is accepted. As a result
we see an increase of D. For very small Ay, when (N) ~ 1, the ratio D
is not well defined for events with (N_) = 0, and, therefore, cannot serve
as a observable. Alternative observables, measuring the same quantity have
been proposed and studied in [25].

First results from experiments have been reported. Phenix [26], which
measures with a small rapidity acceptance, finds charge fluctuations con-
sistent with a resonance gas. Also, CERES, NA49 as well as STAR have
reported preliminary results [27]. All are consistent with either a pion gas
or a resonance gas. No indication for a QGP so far. These findings have
prompted ideas, that possibly a constituent quark plasma, without gluons,
has been produced [28]. However, the measurement of additional observables
would be needed in order to distinguish this from a hadronic gas.

But maybe the present range of Ay is so small, that the charge fluctua-
tions have time to assume the value of the resonance gas. Thus a detailed
analysis of D as a function of Ay is needed, before any firm conclusions can
be drawn.

2.2. Fluctuations in a canonical ensemble

As pointed out in the beginning of this chapter, once the number of
conserved quanta is small, i.e. of the order of one per event, the grand
canonical treatment, where charges are conserved only on the average, is
not adequate anymore. Instead the description needs to ensure that the
quantum number is conserved explicitly in each event. Since the deposited
energy is still large and is distributed over many degrees of freedom, the
canonical ensemble is the ensemble of choice.

Obviously the fluctuations of the energy is identical to the grand canon-
ical ensemble, but fluctuations of particles which carry the conserved charge
are affected. As an example, let us consider the fluctuations of Kaons in low
energy heavy ion collisions. At 1-2 AGeV bombarding energy, only very few
kaons are being produced (Ng) ~ 0.1 [29], which makes an explicit treat-
ment of strangeness conservation necessary. For simplicity, let us consider
Kaons and Lambdas/Sigmas? as the only particles carrying strangeness. In
the canonical ensemble, where strangeness is conserved explicitely, the par-
tition function is given by [10]

% In the following we will denote both Lambdas and Sigmas as Lambdas, but include
the appropriate degeneracy factor to take the sigmas into account.
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Ze = Z rest Z ZKZA ’ (27)

where Z0, is the standard (grand canonical) partition for all the other non
strange particles and Z9 | Z?l are the single particle partition functions for

Kaons and Lambdas, respectively,

3

2% = [ (;lT’;?,exp(—ﬁEK) = N, (28)
3

25— av [ (;ﬁf)’g exp(—B(Es — up) = NY. (29)

Here, the degeneracy factor of d = 2,4 for Kaons and Lambdas, respectively,
take into account the presence of the K" and ¥ particles. Note that Z° is
simply the number of particles in the grand canonical ensemble in the limit
of vanishing strange chemical potential. Given the above partition function,
the probability P, to find “n” Kaons is given by [30-32]

6”
P=—— 30
" LA (30)
where I is the modified Bessel function and
e=2%79. (31)

Given the probabilities Eq. (30), one can easily calculate the fluctuations

\/—11(2\/5)

N =
WK = Ve
(N%) = e, (32)
so that the second factorial moment
(N(N-1) 1 ¢ _ 1 (Ng)
=X 4 — MR 33
h )2 + 5 +. =3 + : +. (33)

This is to be contrasted with the grand canonical result, which follows in
the limit of € > 1. In this case,

(N?) e = {N)ge. = (N, (34)

g.c.
so that

Frgee =1. (35)
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Thus for (N) < 1 the effect of explicit strangeness conservation reduces
the second factorial moment by almost a factor of two. This suppression of
the factorial moment due to explicit charge conservation can be utilized to
measure the degree of equilibration reached in these collisions.

In Fig. 3, the time evolution of Fj is shown for several initial kaon num-
bers. In all cases, F5 quickly rises close to F5 ~ 1 before it settles at the final
equilibrium value of F;,* ~ 1/2. Thus, by measuring F, one can directly de-
termine how close to chemical equilibrium the system has developed, before
it freezes out. In principle a similar measurement can also be done at higher
energies for charmed mesons. To which extent this is technically feasible is
another question.

1 ‘ T ‘ T ‘ T ‘ T

—_ N0/<N>Eq_: 0.01
.. N0/<N>eq_: 0.1
— Ny<N>, =02

F,(0)

o2k i €=0.1

Fig. 3. Time evolution of F, for various initial kaon numbers.

2.8. Phase transitions and fluctuations

As already mentioned in the introduction, the QCD phase diagram is
expected to be rich in structure. Besides the well known and much stud-
ied transition at zero chemical potential, which is most likely a cross over
transition, a true first order transition is expected at finite quark number
chemical potential. It has been argued [6] that the phase separation line
ranges from zero temperature and large chemical potential to finite temper-
ature and smaller chemical potential where it ends in a critical end-point
(E) (see Fig. 1). Here the transition is of second order. There is also a first
attempt to determine the position of the critical point in Lattice QCD [33].

As discussed in [6], the associated mass-less mode carries the quantum
numbers of o-meson, ¢.e. scalar iso-scalar, whereas the pions remain massive
due to explicit chiral symmetry breaking as a result of finite current quark
masses.
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Fluctuations are a well known phenomenon in the context of phase tran-
sitions. In particular, second order phase transitions are accompanied by
fluctuations of the order parameter at all length scales, leading to phenom-
ena such as critical opalescence [5]. However, since the system generated in
a heavy ion collision expands rather rapidly, critical slowing down, another
phenomenon associated with a second order phase transition, will prevent
the long wavelength modes to fully develop. In [34] these competing effects
have been estimated and authors arrive at a maximum correlation length of
about ¢ ~ 3fm if the system passes through the critical (end) point of the
QCD phase diagram.

In [7] the authors argue that if the system freezes out close to the critical
end-point, the long range correlations introduced by the mass less o-modes
lead to large fluctuations in the pion number at small transverse momenta.
In the thermodynamic limit, this fluctuations would diverge, but in a realistic
scenario, where the long wavelength modes do not have time to fully develop,
the fluctuations a limited by the correlation length. In [34] it is estimated
that a correlation length of ¢ ~ 3fm will result in ~ 5-10% increase in
fluctuations of the mean transverse momentum, which should be observable
with present day large acceptance detectors such as STAR and NA49. Since
the precise position of the critical point is not well known, what is needed
is a measurement of the excitation function of these fluctuations.

If the system undergoes a first order phase transition, bubble formation
may occur. Since each bubble is expected to decay in many particles this
leads to large multiplicity fluctuations in a given rapidity interval [35,36].

Fluctuations of particle ratios, on the other hand, should be reduced due
to the correlations induced by bubble formation [22].

3. Conclusions

In this contribution we have discussed in some detail the physics of fluc-
tuations in the context of heavy ion collisions. As this is a developing field,
this should be considered as a snapshot of our present understanding rather
then a balanced review. We have argued that fluctuations are indeed a new
tool to investigate the properties of the matter created in these collisions.
As an example we have shown how charge fluctuations can be utilized to
detect the presence of a Quark Gluon Plasma. The fluctuations of kaons
at low energy collisions, on the other hand, may help us to pin down the
question of equilibration in these systems.

With the availability of large acceptance detectors, the measurement of
many fluctuating quantities will become possible providing novel insights
into the properties of the systems created in these collisions.
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