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AN ATTEMPT TO CONSTRUCT PION DISTRIBUTIONAMPLITUDE FROM THE PCAC RELATIONIN THE NONLOCAL CHIRAL QUARK MODELAdam Bzdak and Mihaª PraszaªowizM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived May 9, 2003)Dediated to Jan Kwiei«ski in honour of his 65th birthdayUsing the PCAC relation, we derive a ompat formula for the pion de-ay onstant F� in the nonloal hiral quark model. For pratial alula-tions this formula may be used both in the Minkowski and in the Eulideanspae. For the pion momentum P� ! 0 it redues to the well known expres-sion derived earlier by other authors. Using a generalized dipole Ansatz forthe momentum dependene of the onstituent quark mass in the Minkowskispae, we express F 2� in terms of a single integral over the quark momen-tum fration u. We interpret the integrand as a pion distribution amplitude�(u). We disuss its properties and ompare with the �DA's obtained inother models.PACS numbers: 11.40.Ha, 11.30.Rd, 14.40.Aq1. IntrodutionReent data from CLEO [1℄ and E791 [2℄ experiments triggered a newwave of theoretial studies of the leading twist pion distribution amplitude(�DA). On one side the data have been reanalyzed taking into aount NLOperturbative QCD e�ets, as well as nonperturbative e�ets parameterizedwithin the QCD light-one sum rules [3,4℄. On the other hand nonperturba-tive models [5�13℄ and lattie QCD [14�17℄ have been employed to alulatethe �DA from the relatively nonrestritive physial assumptions. Here thedual nature of the pion, being the quark�antiquark bound state and theGoldstone boson of the broken hiral symmetry at the same time, makessuh alulations interesting by itself, even if the data is not yet deisiveenough to distinguish between di�erent models.(3401)



3402 A. Bzdak, M. PraszaªowizPion distribution amplitude is usually de�ned by means of the followingmatrix element (see e.g. [18℄):��(u) = 1ip2F� 1Z�1 d�� e�i�(2u�1)(nP )� 
0 �� �d(n�)/n5u (�n�)���+(P )� (1)in the light one kinematis where two quarks separated by the light onedistane z = 2� along the diretion n = (1; 0; 0;�1) are moving along thelight one diretion ~n = (1; 0; 0; 1) parallel to the total momentum P . HereF� = 93MeV. In this kinematial frame any four vetor v an be deomposedas: v� = v+2 ~n� + v�2 n� + v�? (2)with v+ = n � v; v� = ~n � v, and the salar produt of two four vetorsreads: v � w = 12v+w� + 12v�w+ � ~v? � ~w? : (3)In Eq. (1) the path ordered exponential of the gluon �eld, required by thegauge invariane, has been omitted sine we shall be working in the e�etivequark model where the gluon �elds have been integrated out.In the loal limit matrix element (1) redues toD0 ��Aa�(x)�� �b(P )E = �iP�F�Æabe�iPx ; (4)where Aa�(x) = � (x)�5 �a2  (x) (5)is the properly normalized axial vetor urrent.In Refs. [13℄ ��(u) has been alulated in the e�etive hiral quark modelin whih quarks interat nonloally with an external meson �eldU5(x) = ei5�a�a(x)=F� (6)and aquire a momentum dependent onstituent massM(k) =Mk =MF (k)2: (7)M is a onstituent quark mass of the order of 350 MeV and F (k) is a momen-tum dependent funtion suh that F (0) = 1 and F (k2 !1)! 0. FuntionF (k) embodies nonperturbative e�ets due to the nontrivial struture of the



An Attempt to Construt Pion Distribution Amplitude : : : 3403QCD vauum. Indeed, F (k) has been expliitly derived within the instan-ton model [19℄. In Refs. [13℄ where the alulations were performed in theMinkowski spae (instanton model is inevitably formulated in the Eulideanmetri) a onvenient Ansatz for F (k) was used:F (k) = � ��2k2 � �2 + i��n : (8)With this Ansatz ��(u) as well as higher twist �DA's were alulated inRefs. [13℄ and [20℄, respetively.The problem is, however, that in the model with the nonloal interation(and momentum dependent quark mass Mk) the axial urrent (5) does notexhibit PCAC [21�24℄. More drastially, a naive vetor urrentV a� (x) = � (x)� �a2  (x) (9)is not onserved. In order to restore these properties extra urrents haveto be added to Aa� and V a� [22, 23℄. These new piees modify both modelexpressions for F� and for ��(u). While the formula for F� is well known interms of the Eulidean integral [23, 25℄:F 2� = 4N Z d4kE(2�)4 M2k � k2EMkM 0k + k4EM 02k(k2E +M2k )2 ; (10)(here M 0k = dMk=dk2) the form of the wave funtion has been a subjetof di�erent studies with, however, ontraditory results. For example thedistribution amplitude obtained in Ref. [8℄ is very lose to the asymptotiform �as� (u) = 6u(1 � u) ; (11)where u = k+=P+ is the momentum fration arried by the quark, whereasin Refs. [9�11℄ ��(u) = 1.In the present work we derive the Minkowski spae formula for F 2� for themodi�ed axial urrent replaing the naive urrent in Eq. (4). Our formula,when ontinued to the Eulidean spae, redues to Eq. (10). However, whenevaluated in the Minkowski spae by methods developed in Refs. [13℄, it anbe represented as an integral over du from an integrand whih we interpretas ��(u). This funtion does not resemble (11) and is ompatible rather withthe onstant wave funtion of Refs. [9�11℄ than with the result obtained inthe same model [13℄, however, with the naive urrent (5).There are several omments whih are due at this point. First of allit is not lear how the modi�ed urrent an be generalized to the biloaloperator entering formula (1). That is why it was argued in Refs. [8�11℄ that



3404 A. Bzdak, M. Praszaªowizrather than onsidering matrix elements of the form (1) or (4), one shouldalulate the whole physial proess in the e�etive model, impose Bjorkenlimit to make ontat with the expressions known from QCD and extrat thedistribution amplitude. One has to note however, that the e�etive modelsare not valid at large momenta whih are needed to impose Bjorken limit.Moreover it is not lear whether the distribution amplitudes de�ned that wayare universal. Seondly, arguments may be given that it is not neessary toinsist that the biloals de�ning the distribution amplitudes must redue tothe proper urrents in the loal limit1. Indeed, as we shall show below thenaive biloal (1) reprodues the Pagels�Stokar formula [26℄ for F 2� :F 2� = 4N Z d4kE(2�)4 M2k � 12k2EMkM 0k(k2E +M2k )2 (12)whih was obtained from the Ward�Takahashi identities.2. Currents in the nonloal modelsLet us onsider the model de�ned by an ation [12, 13℄:S = Z (dk) � (k) ( 6 k �m) (k)�M Z (dk dl) � (l)F (l)U5 (l � k)F (k) (k) :Here, following [24℄ (dk) = d4k=(2�)4 et., and (dx) = d4x. Equations ofmotion for the quark �elds read/k (k) = M Z (dl)F (k)U5 (k � l)F (l) (l) +m (k);� (k)/k = M Z (dl) � (l)F (l)U5(l � k)F (k) +m � (k) : (13)To get the equation of motion for the U5 �eld let us expand (6)U5(l � k) = (2�)4Æ(4)(l � k) + iF� 5� �(l � k) + : : : (14)and the equation of motion gives a onstraintZ (dl) � (l + k)F (l + k)5�aF (l) (l) = 0: (15)1 By loal limit we understand the limit in whih the �elds in Eq.(1) are taken in thesame point x. There are still orretions due to the momentum dependent onstituentmass and nonloal interations.



An Attempt to Construt Pion Distribution Amplitude : : : 3405It is easy to verify that the naive vetor urrent (9) is not onserved [23℄,[24℄. In order to restore urrent onservation, the following two urrentshave to be added to V a� (in momentum spae)~V a� (P ) = V a� (P ) +Ra�(P ) + La�(P ) (16)with left and right urrents de�ned asLa�(P ) = iM Z (dx dy dz) zZx ds�eiPs � (x)F (x� z)T aU5(z)F (z � y) (y) ;Ra�(P ) = iM Z (dx dy dz) yZz ds�eiPs � (x)F (x� z)U5(z)T aF (z � y) (y) ;(17)where T a = �a=2. Aordingly the modi�ed axial urrent reads:~Aa�(P ) = Aa�(P ) +Ra�(P )� La�(P ) (18)with T a = 5�a=2. The integral ds� should be understood as an integralover the path onneting points z and y or x. This presription makes theLa� and Ra� urrents path dependent [23℄ (stritly speaking the transversepart is not �xed).The divergene of the modi�ed vetor urrent is, however, path indepen-dent and takes the following form:P � ~V a� (P ) =M Z (dk dl) � (k)F (k) ��a2 ; U5(k � l + P )�F (l) (l) : (19)This is immediately zero for the baryon urrent (�a = 1). For the isospinurrent we an expand U5 (14)��a2 ; U5(k � l + P )� = 1F� 5�a�ab�(k � l + P ) + : : : (20)and (19) vanishes due to the onstraint (15). For the axial urrent we getP � ~Aa�(P ) = �mZ (dk) � (k)5�a (k + P )�M Z (dk dl) � (k)F (k)�5 �a2 ; U5(k � l + P )�+F (l) (l):(21)



3406 A. Bzdak, M. PraszaªowizBy expanding U5 (14) we arrive atP � ~Aa�(P ) = �mZ (dk) � (k)5�a (k + P )�M Z (dk) � (k)F (k)5�aF (k + P ) (k + P )�iMF� Z (dk dl) � (k)F (k)F (l) (l)�a(k � l + P ) + : : : (22)whih is the proper PCAC formula (note that the seond term vanishes dueto (15)).In order to alulate F� we an either use Eq.(4) with Aa� ! ~Aa� [27℄ oruse the PCAC relationD0 ���i�� ~Aa�(x)��� �b(P )E = �iP 2F�Æabe�iPx (23)whih is what we are going to do in this work. Notie, that we have toalulate the matrix element in Eq. (23) o�-shell, extrat the leading powerin P 2 and take the limit P 2 ! 0.3. Deay onstant and the distribution amplitude3.1. Matrix elements
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Fig. 1. Diagrams ontributing to the matrix element of Eq. (21). Blak squaresdenote �a;b5.There are three ontributions to the matrix element of Eq.(21) depitedin Fig. 1: one from the �rst term of expansion (14) and two (whih by theantiommutation rule redue to one term, see Eq. (22)) from the term in(14) involving one pion �eld. Adding all of them we getD0 ���i�� ~Aa�(z)��� �b(P )E = �8NF� Æabe�iPz�Z (dk)"MkMk�P k(P � k) +MkMk�P(k2 �M2k )((k � P )2 �M2k�P ) + M2kk2 �M2k # :(24)



An Attempt to Construt Pion Distribution Amplitude : : : 3407Symmetrizing the last term with respet to the hange of variables k ! k�P ,adding all terms and omparing with Eq. (23) we arrive atF 2� = �i4N 1P 2 Z (dk) [Mk(k � P )� �Mk�Pk�℄2(k2 �M2k )((k � P )2 �M2k�P ) : (25)By expanding Eq. (25) in powers of P 2 we reover the Minkowski version ofEq. (10). Indeed, by hanging the variables: k ! k + P=2 we getF 2� = �i4N 1P 2 Z (dk)12 �Mk+P=2(k � P2 )� �Mk�P=2(k + P2 )��2((k + P2 )2 �M2k+P=2)((k � P2 )2 �M2k�P=2) : (26)In fat an expression idential to Eq. (26) appears in the axial and pseu-dosalar orellators derived within the instanton model of the QCD va-uum [25℄.Noting that Mk�P=2 =Mk � (kP )M 0k + P 24 M 0k + : : : ; (27)where 0 denotes d=dk2 we haveF 2� = �i4N 1P 2 Z (dk) P 2M2k � 4(Pk)2MkM 0k + 4k2(kP )2M 02k((k + P2 )2 �M2k+P=2)((k � P2 )2 �M2k�P=2) : (28)Sine under the integral k�k� ! 14g��k2 (plus a term proportional to P�P�whih we may safely neglet) equation (28) transforms intoF 2� = �i4N Z (dk) M2k � k2MkM 0k + k4M 02k((k + P2 )2 �M2k+P=2)((k � P2 )2 �M2k�P=2)= �i4N Z (dk)M2k � k2MkM 0k + k4M 02k(k2 �M2k )2 : (29)On the other hand, matrix element of the naive urrent (5), gives [13℄F 2�P� = �i4N Z (dk)pMkMk�P Mk�Pk� +Mk(P� � k�)�k2 �M2k� �(k � P )2 �M2k�P � (30)whih by the same steps whih led from Eq. (25) to (29) redues equation(30) to the Minkowski version of the Pagels�Stokar formula (12).



3408 A. Bzdak, M. Praszaªowiz3.2. Calulation of the loop integralIn order to alulate the loop integral in Eq. (25) with Mk given byEqs. (7), (8) we shall introdue the light-one parameterization of the mo-menta (2) with d4k = P+2 du dk�d2~k? ; (31)where k+ = uP+. The method of evaluating dk� integral, taking the fullare of the momentum mass dependene, has been given in [13℄. To evaluatedk� integral we have to �nd the poles in the omplex k� plane. It is im-portant to note that the poles ome only from the momentum dependenein the denominators of Eqs. (25), (30). This means that the position of thepoles is given by the zeros of denominator, that is by the solutions of theequation k2 �M2� �2k2 � �2 + i��4n + i� = 0 : (32)This equation is equivalent toG(z) = z4n+1 + z4n � r2 = 4n+1Yi=1 (z � zi) ; (33)with z = k2=�2 � 1 + i� and r2 =M2=�2. For r2 6= 0 (or �nite �) equation(33) has 4n+ 1 nondegenerate solutions whih we denote zi. Equation (32)should be understood as an equation for k�i = k�(zi). In general ase 4n ofzi's an be omplex and the are must be taken about the integration ontourin the omplex k� plane. Beause of the imaginary part of the zi's, the polesin the omplex k� plane an drift aross Re k� axis. In this ase the ontourhas to be modi�ed in suh a way that the poles are not allowed to ross it.This follows from the analytiity of the integrals in the � parameter andensures the vanishing of �DA's in the kinematially forbidden regions. Theresults are expressed as sums over zi's whih have to be found numerially.In order to avoid spurious divergenes oming from k� in the numeratorof Eq. (29) we shall make use of the Lorentz invariane, writingF 2� = �i4N 1P 2 I��g�� : (34)Sine I�� vanishes for P� ! 0 (see (25) and (29)) we have thatI�� = A(P 2)P�P� + 14B(P 2)P 2g�� (35)with A(P 2)! A ; B(P 2)! B for P 2 ! 0 : (36)



An Attempt to Construt Pion Distribution Amplitude : : : 3409Then F 2� = �i4N(A+B) : (37)Hene we have to alulate 2 integrals:A = 1P+2n�n�I�� ; B = � 4P 2 "�?"�?I�� : (38)The result readsA = � i16�2M2 1Z0 du 4n+1Xi;k=1 fifk(z2nk �u+ z2ni u)2 � ln (1 + zi�u+ zku) ;B = � i16�2 2M2�2P 2 1Z0 du 4n+1Xi;k=1 fifk(z2nk � z2ni )2�(1 + zi�u+ zku)� P 2�2 u�u�� ln�(1 + zi�u+ zku)� P 2�2 u�u� : (39)Here �u = 1� u andfi =Y4n+1k=1k 6=i 1zi � zk =Y4n+1k=1k 6=i 1zk � zi (40)for whih the following identities hold [13℄4n+1Xi=1 fizmi = 8<: 0 m < 4n1 m = 4n : (41)As seen from Eq. (39) the �rst term in B is singular as P 2 ! 0 in apparentontradition with the �niteness of F 2� . However, the funtion�inf(u) = �NM22�2 4n+1Xi;k=1 fifk(z2nk �z2ni )2(1+zi�u+zku) ln(1+zi�u+zku) (42)vanishes when integrated over du. Hene the �nite formula for F 2� readsF 2� = �NM24�2 1Z0 du 4n+1Xi;k=1 fifk �(z2nk �u+ z2ni u)2 � 2(z2nk � z2ni )2u�u�� ln (1 + zi�u+ zku) : (43)



3410 A. Bzdak, M. PraszaªowizThis allows us to de�ne the distribution amplitude~��(u) = �NM24�2F 2� 4n+1Xi;k=1 fifk �(z2nk �u+ z2ni u)2 � 2(z2nk � z2ni )2u�u�� ln (1 + zi�u+ zku) : (44)Let us reall that the distribution amplitude de�ned by means of the naiveaxial urrent (5) reads [13℄��(u) = �NM24�2F 2� Xi;k fifk (zni z3nk �u+ z3ni znku) ln (1 + zi�u+ zku) : (45)3.3. Numerial resultsCondition (10), or equivalently (43) provide a relation between parame-ter �, onstituent massM and power n from Eq. (8). Throughout this paperwe shall useM = 350 MeV. The value of parameter � = �(n) obtained fromEq. (43), or from Eq. (10) after ontinuation of the uto� formula (8) to theEulidean metri, is depited in Fig. 2(a). It is interesting to note, that ourformula (43) for F 2� , unlike equation (30), does allow for half integer n's. Anapproximate relation, depited by a dashed line in Fig. 2(a) holds�[MeV℄ = 432:82 + 444:61n � 28:02n2:The loal urrent (5) ontributes, through Eq. (12), approximately 70% tothe total normalization.
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An Attempt to Construt Pion Distribution Amplitude : : : 3411the formally divergent part, given as an integral over u from the funtion�inf(u); vanishes. We have heked numerially that this is indeed the ase.Funtion �inf(u) is plotted in Fig. 2(b) for n = 3=2; 3 and 5.Next, in Fig. 3 we plot the distribution amplitude ~��(u) for n = 3=2and n = 5 (solid lines) together with the ontributions from integrals Aand B (37). We see that the ontribution from A is relatively �at and doesnot vanish at the end points. The ontribution from B vanishes at the endpoints and is even negative in their viinity. There is not muh di�erenebetween the two ases n = 3=2 and n = 5, although one may say that thesmaller n the �atter ~��.
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An Attempt to Construt Pion Distribution Amplitude : : : 3413Unfortunately, the �DA derived here and in Refs. [9�11℄ is probablyphenomenologially unaeptable. That is beause the detailed analysis ofthe CLEO data indiates that the oe�ient a4(2:4 GeV) is negative [3, 4℄and possibly as large as a2(2:4 GeV) [4℄. In our ase, however, a4 is alwayspositive. The same onerns the onstant �DA. In this respet �DA derivedin by the same methods in Refs. [13℄ using the biloal operator (1) with noextra piees orresponding to the nonloal urrents (17) �ts the data muhbetter. That is beause, similarly to the results of Refs. [5℄, it exhibits ashallow minimum around u = 1=2 whih generates negative a4:As already mentioned above, there is a problem how to de�ne the dis-tribution amplitudes in the e�etive models of QCD. This is due to the fatthat the QCD urrents and the model urrents are not the same. One waywould be to perform fatorization and large Q2 expansion in QCD and thenparameterize the nonperturbative matrix elements by a set of unknown dis-tribution amplitudes. To alulate these matrix elements an e�etive model,like the one disussed here, is used. Considering operators as obtained fromQCD leads to the violation of PCAC and, in the worse ase, to the vio-lation of the gauge invariane at the level of the e�etive model. Anothermethod onsists in performing fatorization and large Q2 expansion diretlyin the e�etive model. This is possible, sine the degrees of freedom of thee�etive models disussed here are, at least as the quantum numbers areonerned, idential to the degrees of freedom of QCD (exept for gluons,whih are not present in the former ase). This means, however, that thelow energy model has to be applied to the proesses with large momentumtransfer. Sine the urrents of the e�etive models are not the same as inQCD, extra piees ontributing to the DA's, as ompared to the previousmethod, are present. Although in this work we have not alulated the phys-ial proess and have not implemented the Bjorken limit, our approah isin our opinion equivalent, sine we have onsidered the matrix element (4)of the full urrent (18). Our results indiate that these two methods leadto ompletely di�erent DA's . The �rst method gives the �DA resemblingthe asymptoti distribution, whereas the seond approah generates the DAwhih is ompatible with a onstant.It is a pleasure to dediate this work to Jan Kwiei«ski.We would like to thank A. Rostworowski for omments and for readingthe notes. M.P. would like to thank W. Broniowski and E. Ruiz-Arriolafor omments and disussion. Speial thanks are due to K. Goeke and allmembers of Inst. of Theor. Phys. II at Ruhr-University where part ofthis work was ompleted. M.P. aknowledges support of the Polish StateCommittee for Sienti� Researh (KBN) under grant 2 P03B 043 24.
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