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In this talk we review the important role played by chiral SU(3) sym-
metry in hadron physics. Exciting new results on the formation of baryon
resonances as implied by chiral coupled-channel dynamics are presented
and discussed. The results are the consequence of progress made in for-
mulating a consistent effective field theory for the meson-baryon scattering
processes in the resonance region. Strangeness channels are found to play
a decisive role in the formation of resonances. As a further application of
chiral coupled-channel dynamics the properties of antikaons and hyperon
resonances in cold nuclear matter are reviewed.

PACS numbers: 24.10.Eq, 24.10.Cn, 25.80.Nv, 11.80.Gw

1. Introduction

The meson–baryon scattering processes are an important test for effec-
tive field theories which aim at reproducing QCD at small energies, where
the effective degrees of freedom are hadrons rather than quarks and gluons.
In this talk we focus on the strangeness sectors, because here the acceptable
effective field theories were until recently much less developed and also the
empirical data set still leaves much room for different theoretical interpreta-
tions. In the near future the new DAΦNE facility at Frascati could deliver
new data on kaon–nucleon scattering [1] and therewith help to establish a
more profound understanding of the role played by the SU(3) flavor sym-
metry in hadron interactions. A reliable construction of the meson–baryon
scattering amplitudes is of major importance since they play a central role
in the study of meson properties in cold nuclear matter.

The task to construct a systematic effective field theory for the meson–
baryon scattering processes in the resonance region is closely linked to the
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fundamental question as to what is the ‘nature’ of baryon resonances. Here
we support the conjecture [2–5] that baryon resonances not belonging to
the large-Nc ground states are generated dynamically by coupled-channel
dynamics [6–11]. For a comprehensive discussion of this issue we refer to [5].
This conjecture was the basis of the phenomenological model [4], which
generated successfully non-strange s- and d-wave resonances by coupled-
channel dynamics describing a large body of pion and photon scattering data.
In recent works [2,3,12–14], which will be reviewed here, it was shown that
chiral dynamics as implemented by the χ-BS(3) approach [2,3,5] provides a
parameter-free prediction for the existence of a wealth of strange and non-
strange s- and d-wave baryon resonances.

In the second part of this talk the application of chiral coupled-channel
dynamics to nuclear matter properties of the antikaon, the Λ(1405) s-wave
resonance and the Σ (1385) p-wave resonance will we discussed. An attrac-
tive modification of the antikaon spectral function was already anticipated
in the 70’s by the many K-matrix analyses of antikaon–nucleon scattering
(see e.g. [15]) which predicted considerable attraction in the subthreshold
s-wave K− nucleon scattering amplitudes. In conjunction with the low-
density theorem [16] this leads to an attractive antikaon spectral function
in nuclear matter. As was pointed out first in [17] the realistic evalua-
tion of the antikaon self energy in nuclear matter requires a self consistent
scheme. The feedback effect of an attractive antikaon spectral function on
the antikaon–nucleon scattering process was found to be important for the
hyperon resonance structure in nuclear matter. We present and discuss up-
to-date results based on the chiral-coupled channel analysis of meson–baryon
scattering data that included s-, p- and d-wave contributions [3, 18].

2. Effective field theory of chiral coupled-channel dynamics

The starting point to describe the meson–baryon scattering process is
the chiral SU(3) Lagrangian (see e.g. [3, 19]). A systematic approximation
scheme arises due to a successful scale separation justifying the chiral power
counting rules [20]. Our effective field theory of the meson–baryon scattering
processes is based on the assumption that the scattering amplitudes are
perturbative at subthreshold energies with the expansion parameter Q/Λχ.
The small scale Q is to be identified with any small momentum of the system.
The chiral symmetry breaking scale is

Λχ ≃ 4πf ≃ 1.13 GeV

with the parameter f ≃ 90 MeV determined by the pion decay process. Once
the available energy is sufficiently high to permit elastic two-body scattering
a further typical dimensionless parameter m2

K/(8πf2) ∼ 1 arises [2, 3, 12].
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Since this ratio is uniquely linked to two-particle reducible diagrams it is
sufficient to sum those diagrams keeping the perturbative expansion of all
irreducible diagrams, i.e. the coupled-channel Bethe–Salpeter equation has
to be solved. This is the basis of the χ-BS(3) approach developed in [2,3,12].

At leading order in the chiral expansion one encounters the famous
Weinberg–Tomozawa [21] interaction,

LWT =
i

8 f2
tr

(

(B̄ γµ B) · [Φ, (∂µΦ)]−

)

+
3 i

8 f2
tr

(

(B̄ν γµ Bν) · [Φ, (∂µΦ)]−

)

, (1)

where we dropped additional structures that do not contribute to the on-
shell scattering process at tree level. The terms in (1) constitute the leading
order s-wave interaction of Goldstone bosons (Φ) with the baryon-octet (B)
and baryon-decuplet (Bµ) states. The octet and decuplet fields, Φ, B and
Bµ, posses an appropriate matrix structure according to their SU(3) tensor
representation.

The scattering process is described by the amplitudes that follow as
solutions of the Bethe–Salpeter equation,

T (k̄, k;w) = V (k̄, k;w) +

∫

d4l

(2π)4
V (k̄, l;w)G(l;w)T (l, k;w) ,

G(l;w) = −iD(1
2 w − l)S(1

2 w + l) , (2)

where we suppress the coupled-channel structure for simplicity. The meson
and baryon propagators, D(q) and S(p), are used in the notation of [4]. We
apply the convenient kinematics:

w = p + q = p̄ + q̄ , k = 1
2 (p − q) , k̄ = 1

2 (p̄ − q̄) , (3)

where q, p, q̄, p̄ the initial and final meson and baryon 4-momenta. The
Bethe–Salpeter scattering equation is recalled for the case of meson baryon-
octet scattering. An analogous equation holds for meson baryon-decuplet
scattering process (see e.g. [4]). Referring to the detailed discussion given
in [3] we assume a systematic on-shell reduction of the Bethe–Salpeter in-
teraction kernel leading to the effective interaction V used in (2). The latter
is expanded according to chiral power counting rules. The scattering am-
plitude T (k̄, k;w) decouples into various sectors characterized by isospin (I)
and strangeness (S) quantum numbers. In the case of meson baryon-octet
and baryon-decuplet scattering the following channels are relevant
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(I, S)[8⊗8] = (0,−3), (1,−3), (1
2 ,−2), (3

2 ,−2), (0,−1),

(1,−1), (2,−1), (1
2 , 0), (3

2 , 0), (0, 1), (1, 1) ,

(I, S)[8⊗10] = (1
2 ,−4), (0,−3), (1,−3), (1

2 ,−2), (3
2 ,−2), (0,−1),

(1,−1), (2,−1), (1
2 , 0), (3

2 , 0), (5
2 , 0), (1, 1), (2, 1) . (4)

Following the χ-BS(3) approach developed in [3, 4] the effective interaction
kernel is decomposed into a set of covariant projectors that have well defined
total angular momentum, J , and parity, P ,

V (k̄, k;w) =
∑

J,P

V (J,P )(
√

s )Y(J,P )(q̄, q, w) . (5)

The merit of the projectors is that they decouple the Bethe–Salpeter equa-
tion (2) into orthogonal sectors labeled by the total angular momentum, J ,
and parity, P . We insist on the renormalization condition,

T (I,S)(k̄, k;w)
∣

∣

∣√
s=µ(I,S)

= V (I,S)(k̄, k;w)
∣

∣

∣√
s=µ(I,S)

, (6)

together with the natural choice for the subtraction points,

µ(I,+1) = µ(I,−3) = 1
2 (mΛ + mΣ ) , µ(I, 0) = mN ,

µ(0,−1) = mΛ, µ(1,−1) = mΣ , µ(I,−2) = µ(I,−4) = mΞ (7)

as explained in detail in [3]. The renormalization condition reflects the
basic assumption our effective field theory is based on, namely that at sub-
threshold energies the scattering amplitudes can be evaluated in standard
chiral perturbation theory. This is achieved by supplementing (2) with (6),
(7). The subtraction points (7) are the unique choices that protect the
s-channel baryon-octet masses manifestly in the p-wave J = 1

2 scattering
amplitudes. The merit of the scheme [2, 3, 12] lies in the property that for
instance the K Ξ and K̄ Ξ scattering amplitudes match at

√
s ∼ mΞ ap-

proximately as expected from crossing symmetry. In [3] we suggested to glue
s- and u-channel unitarized scattering amplitudes at subthreshold energies.
This construction reflects our basic assumption that diagrams showing an
s-channel or u-channel unitarity cut need to be summed to all orders at least
at energies close to where the diagrams develop their imaginary part. By
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construction, a glued scattering amplitude satisfies crossing symmetry ex-
actly at energies where the scattering process takes place. At subthreshold
energies crossing symmetry is implemented approximatively only, however,
to higher and higher accuracy when more chiral correction terms are con-
sidered. Insisting on the renormalization condition (6), (7) guarantees that
subthreshold amplitudes match smoothly and therefore the final ‘glued’ am-
plitudes comply with the crossing-symmetry constraint to high accuracy.
The natural subtraction points (7) can also be derived if one incorporates
photon–baryon inelastic channels. Then additional constraints arise. For
instance the reaction γ Ξ → γ Ξ , which is subject to a crossing symmetry
constraint at threshold, may go via the intermediate states K̄ Λ or K̄ Σ .

The perturbative nature of subthreshold amplitudes, a crucial assump-
tion of the χ-BS(3) approach proposed in [2,3,12], is not necessarily true in
phenomenological coupled-channel schemes in [22–27]. Using the subtraction
scales as free parameters, as advocated in [25–27], may be viewed as promot-
ing the counter terms of chiral order Q3 to be unnaturally large. If the sub-
traction scales are chosen far away from their natural values (7) the resulting
loop functions are in conflict with chiral power counting rules [12]. Though
unnaturally large Q3 counter terms can not be excluded from first principals
one should check such an assumption by studying corrections terms system-
atically. A detailed test of the naturalness of the Q3 counter terms was
performed within the χ-BS(3) scheme [3] demonstrating good convergence
in the channels studied without any need for promoting the counter terms of
order Q3. Possible correction terms in the approach followed in [25–27] have
so far not been studied systematically for meson–baryon scattering. More-
over, if the scheme advocated in [25–27] were applied in all eleven isospin

strangeness sectors with JP = 1
2

−
a total number of 26 subtraction param-

eters arise. This should be compared with the only ten counter terms of
chiral order Q3 contributing to the on-shell scattering amplitude at that or-
der [3]. Selecting only the operators that are leading in the large-Nc limit
of QCD out of the ten Q3 operators only four survive [3]. We conclude that
it would be inconsistent to apply the approach used in [25–27] in all isospin
strangeness channels without addressing the above mismatch of parameters.
Our scheme has the advantage over the one in [25–27] that once the param-
eters describing subleading effects are determined in a subset of sectors one
has immediate predictions for all sectors (I, S). A mismatch of the number
of parameters is avoided altogether since the Q3 counter terms enter the
effective interaction kernel directly.

Given the subtraction scales (7) the leading order calculation is parame-
ter free. Of course, chiral correction terms do lead to further so far unknown
parameters which need to be adjusted to data. Within the χ−BS(3) ap-
proach such correction terms enter the effective interaction kernel V rather
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than leading to subtraction scales different from (7) as it is assumed in
[25–27]. In particular the leading correction effects are determined by the
counter terms of chiral order Q2. The effect of altering the subtraction scales
away from their optimal values (7) can be compensated for by incorporating
counter terms in the chiral Lagrangian that carry order Q3.

3. Baryon resonances from chiral SU(3) symmetry

There is a long standing controversy to what is the nature of s-wave
baryon resonances. Before the event of the quark model several such states
have been successfully generated in terms of coupled-channels dynamics
[6–10]. These early calculations are closely related to modern approaches
based on the leading-order chiral SU(3) Lagrangian. The interaction used
in [6–10] matches the Weinberg–Tomozawa interaction (1) if expanded in
a Taylor series [11]. The main difference of the early attempts from com-
putations based on the chiral Lagrangian is the way the coupled-channel
scattering equation is regularized and renormalized. The crucial advance
over the last years in this field is therefore a significant improvement of the
systematics, i.e. how to implement corrections terms into coupled-channel
dynamics. In the SU(6) quark-model approach s-wave resonances belong to
a 70-plet, that contains many more resonance states [28]. An interesting
question arises: what is the role played by the d-wave resonances belonging
to the very same 70-plet as the s-wave resonances. Naively one may expect
that chiral dynamics does not make firm predictions for d-wave resonances
since the meson baryon-octet interaction in the relevant channels probes a
set of counter terms presently unknown. However, this is not necessarily so.
Since a d-wave baryon resonance couples to s-wave meson baryon-decuplet
states chiral symmetry is quite predictive for such resonances under the as-
sumption that the latter channels are dominant. This is in full analogy to the
analysis of the s-wave resonances [3, 6–10,12, 13, 27] that neglects the effect
of the contribution of d-wave meson baryon-decuplet states. The empiri-
cal observation that the d-wave resonances N(1520), N(1700) and ∆(1700)
have large branching fractions (> 50%) into the inelastic Nππ channel, even
though the elastic πN channel is favored by phase space, supports our as-
sumption.

We begin with a discussion of the s- and d-wave baryon resonance spec-
trum that arises in the SU(3) limit. The latter is not defined uniquely
depending on the magnitude of the current quark masses, mu = md = ms.
We consider two scenarios [13, 14]. In the ‘light’ SU(3) limit the current
quark masses are chosen such that one obtains mπ = mK = mη = 140 MeV.
The second case, the ‘heavy’ SU(3) limit, is characterized by mπ = mK =
mη = 500 MeV. In the SU(3) limit meson baryon-octet scattering is classified
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according to,

8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1 . (8)

The leading order chiral Lagrangian predicts attraction in the two octet
and the singlet channel but repulsion in the 27-plet and decuplet channels.
As a consequence in the ‘heavy’ SU(3) limit the chiral dynamics predicts
two degenerate octet bound states together with a non-degenerate singlet
state [6–10, 13, 13, 14, 27]. In the ‘light’ SU(3) limit all states disappear

leaving no clear signal in any of the speed plots. In the JP = 3
2

−
sector

the Weinberg–Tomozawa interaction is attractive in the octet, decuplet and
27-plet channel, but repulsive in the 35-plet channel,

8 ⊗ 10 = 35 ⊕ 27 ⊕ 10 ⊕ 8 . (9)

Therefore one may expect resonances or bound states in the former channels.
Indeed, in the ‘heavy’ SU(3) limit we find 72 = 4× (8 + 10) bound states in
this sector forming an octet and decuplet representation of the SU(3) group.
We do not find a 27-plet-bound state reflecting the weaker attraction in
that channel. However, if we artificially increase the amount of attraction
by about 40% by lowering the value of f in the Weinberg–Tomozawa term, a
clear bound state arises in this channel also. A contrasted result is obtained
if we lower the meson masses down to the pion mass arriving at the ‘light’
SU(3) limit. Then we find neither bound nor resonance octet or decuplet
states. This pattern is a clear prediction of chiral couple-channel dynamics
which should be tested with unquenched QCD lattice simulations [29].

Using physical meson and baryon masses the bound-state turn into reso-
nances as shown in Figs. 1, 2. In [14] we generalized the notion of a speed [30]
to the case of coupled-channels in way that the latter reveals the coupling
strength of a given resonance to any channel, closed or open. If a resonance
with not too large decay width sits in the amplitude a clear peak struc-
ture emerges in the speed plot even if the resonance structure is masked
by a background phase. In the case of s-wave resonances thresholds induce
square-root singularities which should not be confused with a resonance sig-
nal.

The speed plots of Fig. 1 show evidence for the formation of the Ξ (1690),
Λ(1405), Λ(1670) and N(1535) resonances close to their empirical masses.
An additional (I, S) = (0,−1) state, mainly a SU(3) singlet [13, 27], can be
found as a complex pole in the scattering amplitude close to the pole implied
by the Λ(1405) resonance. There is no clear signal for (I, S) = (1,−1)
resonances at this leading order calculation. However, chiral corrections lead
to a clear signal in this sector [3] suggesting a state that may be identified
with the Σ (1750) resonance, the only well established s-wave resonance in
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this sector. The fact that a second resonance with (I, S) = (1
2 , 0) is not seen

in Fig. 1, even though the ‘heavy’ SU(3) limit suggests its existence, we take
as a confirmation of the phenomenological observation [4] that the N(1650)
resonance couples strongly to the ωµ N channel not considered here.
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In Fig. 2 speed plots of the JP = 3
2

−
sector are shown for all channels

in which octet and decuplet resonance states are expected. It is a remark-
able success of the χ-BS(3) approach that it predicts the four star hyperon
resonances Ξ (1820), Λ(1520), Σ (1670) with masses quite close to the empir-
ical values. The nucleon and isobar resonances N(1520) and ∆(1700) also
present in Fig. 2, are predicted with less accuracy. The important result
here is the fact that those resonances are generated at all. It should not be
expected to obtain already fully realistic results in this leading order calcu-
lation. For instance chiral correction terms are expected to provide a d-wave
π ∆-component of the N(1520). We continue with the peak in the (0,-3)-
speeds at mass 1950 MeV. Since this is below all thresholds it is in fact a
bound state. Such a state has so far not been observed but is associated with
a decuplet resonance [28]. Further states belonging to the decuplet are seen
in the (1

2 ,−2)- and (1,−1)-speeds at masses 2100 MeV and 1920 MeV. The
latter state can be identified with the three star Ξ (1940) resonance. Finally
we point at the fact that the (0,−1)-speeds show signals of two resonance
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states consistent with the existence of the four star resonance Λ(1520) and
Λ(1690) even though in the ‘heavy’ SU(3) limit we observed only one bound
state. It appears that the SU(3) symmetry breaking pattern generates the
‘missing’ state in this particular sector by promoting the weak attraction of
the 27-plet contribution in (9).

4. Selfconsistent strangeness propagation in cold nuclear matter

We turn to antikaon and hyperon resonance propagation in cold nuclear
matter. The quantitative evaluation of the antikaon spectral function in
nuclear matter is a challenging problem. It should be based on a solid un-
derstanding of the antikaon–nucleon scattering process in free space. Based
on a description of the data set one obtains a set of antikaon–nucleon scat-
tering amplitudes. The present data set for antikaon–nucleon scattering
leaves much room for different theoretical extrapolations to subthreshold
energies [15]. Thus it is of crucial importance to apply effective field the-
ory methods in order to control the uncertainties. In particular constraints
from crossing symmetry and chiral symmetry should be taken into account.
Since the accuracy of the data improves dramatically as the energy increases
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it is desirable to incorporate contributions from higher partial waves into the
analysis. Important information on the p-wave dynamics is provided by an-
gular distributions for the inelastic K−p reactions. The available data are
represented in terms of coefficients An characterizing the differential cross
section dσ(cos θ,

√
s ) as functions of the center of mass scattering angle θ

and the total energy
√

s:

dσ(
√

s, cos θ)

d cos θ
=

∞
∑

n=0

An(
√

s )Pn(cos θ) . (10)

In Fig. 3 we compare the empirical ratios A1/A0 and A2/A0 with the re-
sults of the χ-BS(3) approach. A large A1/A0 ratio is found only in the
K−p → π0

Λ channel demonstrating the importance of p-wave effects in the
isospin one channel. The dashed lines of Fig. 3, which are obtained when
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switching off d-wave contributions, illustrate the importance of the Λ(1520)
resonance for the angular distributions in the isospin zero channel. Note
also the sizeable p-wave contributions at somewhat larger momenta seen in
the charge-exchange reaction of Fig. 3.

In Fig. 4 we present the antikaon spectral function together with the
antikaon–nucleon scattering amplitudes of selected channels at various nu-
clear matter densities. The results are based on antikaon–nucleon scattering
amplitudes obtained within the chiral coupled-channel effective field the-
ory [3], where s-, p- and d-wave contributions were considered. The many-
body computation [18] was performed in a self consistent manner respecting
in addition constraints arising from covariance. The antikaon spectral func-
tion exhibits a rich structure with a pronounced dependence on the antikaon
three-momentum. That reflects the coupling of the Λ(1405) and Σ (1385)
hyperon states to the K̄N channel. Typically the peaks seen are quite broad
and not always of quasi-particle type. The figure illustrates that at zero mo-
mentum the spectral function acquires a rather broad distribution as the
nuclear density increases, with support significantly below the free-space
kaon mass. At moderate momenta q = 400 MeV the spectral function looks
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significantly different as compared to the one at q = 0 MeV. It is character-

ized by a peak at close to ω =
√

m2
K + q2 and a pronounced low-energy tail.

As the density increases the strength in the peak diminishes shifting more
and more strength into the low-energy tail. As was emphasized in [17,18] the
realistic evaluation of the antikaon propagation in nuclear matter requires
the simultaneous consideration of the hyperon resonance propagation. The
most important contributions, the s-wave Λ(1405) and p-wave Σ (1385) res-
onances, experience important medium modifications as demonstrated in
Fig. 4. The results at 2 ρ0 should be considered cautiously because nuclear
binding and correlation effects were not yet included in [18].

5. Summary

In this talk we reported on recent progress in the understanding of baryon
resonances based on chiral-coupled channel dynamics. The reader was in-
troduced to an effective field theory formulation of chiral coupled-channel
dynamics. Leading order results predict the existence of s- and d-wave
baryon resonances with a spectrum remarkably close to the empirical pat-
tern without any adjustable parameters. The formation of resonances is a
consequence of the chiral SU(3) symmetry of QCD, i.e. in an effective field
theory, that was based on the chiral SU(2) symmetry only, no resonances
would be formed.

As a further application of chiral coupled-channel dynamics results for
antikaon and hyperon resonance propagation in cold nuclear matter were
presented. Realistic scattering amplitudes that are consistent with empiri-
cal differential cross sections were obtained after including chiral corrections
terms systematically. The spectral function of the antikaon shows a strong
momentum and density dependence. For the Λ(1405) and Σ (1385) reso-
nances attractive mass shifts are predicted.
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