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The eight inequivalent spinorial double covers of the full Lorentz group
L are described explicitly. Two among them include the antilinear represen-
tations of space and time reflections on two-component spinors, discovered
in 1976 by Staruszkiewicz. The group of all inequivalent central extensions
of L by Z2 has 16 elements and contains an eight-element subgroup of ‘vec-
torial’ double covers, characterized by the property of being trivial when
restricted to the proper Lorentz group.
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1. Introduction

In a remarkable paper On two kinds of spinors, Andrzej Staruszkiewicz [1]
described two representations in the space of two-component spinors that
differ by their behavior under reflections. His approach was motivated by
the spinor flags of Roger Penrose, based on the relation between spinors
and null bivectors, and led to the conclusion that there is a kind of spinors
that cannot be conveniently represented on the Riemann sphere of complex
numbers.

Transformation properties of spinors under space and time reflections
interested physicists even before the discovery of parity violation in weak
interactions. As early as 1937, Racah [2] noticed that the action of space
reflections on Dirac spinors could be represented either by the matrices ±γ0

or by ±iγ0. Yang and Tiomno [3] extended Racah’s observation and consid-
ered possible physical consequences of the distinction between spinors and
‘pseudospinors’. Shirokov [4] pointed out that there may be as many as
eight double covers of the full Lorentz group L = O1,3, corresponding to the
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possible choices of signs λ, µ, ν ∈ {+,−} in the relations

PT = λTP, P 2 = µ1, T 2 = ν1 , (1)

where P and T are the elements of the group, covering the space and time
reflections, respectively. He also considered the possibility of using differ-
ent covers of the Lorentz group for the description of elementary particles.
Dąbrowski [5] extended Shirokov’s ideas to the general pseudo-orthogonal
group Om,n and outlined the construction of the double covers. Chamblin [6]
determined the topological obstructions, in terms of Stiefel–Whitney classes,
to the existence of the corresponding generalized pin structures on manifolds.
None of those authors seems to have shown that there are precisely eight
double covers of Om,n for m,n > 1. Moreover, for a long time, the only
explicitly known, non-trivial double covers were given by the groups Pinm,n

and Pinn,m. Some time ago, I determined the number of inequivalent central
extensions of Om,n by the two-element group Z2 = {1,−1}. To my surprise,
it turned out that L has as many as 16 such inequivalent extensions [7]. In
agreement with Shirokov and Dąbrowski, only eight among them are spino-
rial in the sense that, by restriction to the proper Lorentz group L

0 = SO0
1,3,

the extensions reduce to

Z2 → SL2(C)
ρ−→ L

0. (2)

The four spinorial extensions characterized by anticommuting P and T (λ =
−) are Cliffordian: the corresponding double covers of L can be realized as
subgroups of the Clifford group, as defined by Chevalley [8], associated with
the complexified Minkowski space C

4. Among them are the groups Pin1,3

and Pin3,1. The eight non-spinorial extensions are vectorial : by restriction
to L

0, they trivialize to

Z2 → L
0 × Z2

pr
1−−→ L

0 .

In this paper, I undertake the modest task of describing explicitly the
eight inequivalent spinorial double covers of L, relating them to the work
of Staruszkiewicz, and complementing the remarks by Chamblin and Gib-
bons [9] on this subject. To make the paper self-contained, in the next
section, I recall a few definitions from the theory of groups, their representa-
tions and extensions. Section 3 is the main part of the paper. It contains a
description of the spinorial double covers of L and of their spinorial represen-
tations. Two among them are of the real type: these are the ones discovered
by Staruszkiewicz. The last Section contains remarks on the vectorial double
covers and on the structure of the group Ext L.
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2. Preliminaries on groups

2.1. Central extensions

Mathematicians define a central extension of a (topological) group L
by the Abelian group Z2 to be an exact sequence of (continuous) group
homomorphisms,

Z2
i−→ H

p−→ L , (3)

such that i is injective, p is surjective and i(Z2) is contained in the center of
the group H. One identifies Z2 with its image by i so that ±1 ∈ H. Another
extension

Z2
i′−→ H ′ p′−→ L

is said to be equivalent to (3) whenever there is an isomorphism of groups
j : H → H ′ such that j ◦ i = i′ and p′ ◦ j = p. There is always the trivial
extension given as the direct product,

Z2 → L× Z2

pr
1−−→ L .

It is often convenient to say that the group H, appearing in (3), is the ex-
tension of L by Z2 or, simply, a double cover of L. Note, however, that the
groups H and H ′ may be isomorphic without the extensions being equiv-
alent, so that there is involved here an abuse of the language requiring
considerable attention; see Section 2.2 for an example.

The set ExtL of equivalence classes of all extensions of L by Z2 has the
structure of an Abelian group. Namely, the composition of the extensions

Z2
iα−→ Hα

pα−→ L, α = 1, 2 ,

is an extension (3), defined as follows. Let

H̃ = {(h1, h2) ∈ H1 ×H2 | p1(h1) = p2(h2)} . (4)

The injection Z2 → H̃, given by ±1 7→ (±1,±1), makes Z2 into a nor-

mal subgroup of H̃; let H be the resulting quotient group: [(h1, h2)] =
[(h′1, h

′
2)] ∈ H whenever either h′1 = h1 and h′2 = h2 or h′1 = −h1 and

h′2 = −h2. The map p : H → L given by p([(h1, h2)]) = p1(h1) is a surjec-
tive homomorphism and its kernel is the subgroup of H generated by the
element [(−1, 1)] ∈ H. This extension is denoted here by H1 • H2. One
easily checks that H2 • H1 is an extension equivalent to H1 • H2 and that
so defined composition of (equivalence classes of) extensions is associative.
The trivial extension, denoted in this context by I, is the neutral element
(H • I = H), and H •H = I for every extension H, so that ExtL is indeed
an Abelian group with composition of elements given by •.
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According to [7], the group Ext Om,n is isomorphic to the l(m,n)-fold
direct product Z2 × · · · × Z2, where

l(m, 0) = 2, l(1, 1) = 2, l(1, n) = 4, l(m,n) = 5 for m,n > 1 .

For n > 1, the connected groups SOn and SO0
1,n have each only one non-

trivial double cover given by the connected component of the spin group.

2.2. The eight double covers of Z2 × Z2

The group O1 = Z2 has two double covers: the trivial one and

Z4 = {±1,±i} → Z2, where i =
√
−1 .

The group Z2 × Z2 = {1, π} × {1, τ} has eight inequivalent double covers
that can be described as follows. Consider the group

Hλ,µ,ν = {±1,±P,±T,±PT} ,

where the element −1 is central, (−1)2 = 1 and, for every triple of signs
(λ, µ, ν), the elements P and T are subject to the relations (1). The covering
homomorphism is

η : Hλ,µ,ν → {1, π} × {1, τ}, η(−1) = 1, η(P ) = π, η(T ) = τ , (5)

and the groups are:

λ µ ν Hλ,µ,ν

+ + + Z2 × Z2 × Z2 = {1,−1} × {1, P} × {1, T}
+ + − Z2 × Z4 = {1, P} × {±1,±T}
+ − + Z2 × Z4 = {1, T} × {±1,±P}
+ −− Z2 × Z4 = {1, PT} × {±1,±P}
− + + D4 P 2 = 1, T 2 = 1, (PT )2 = −1
− + − D4 P 2 = 1, T 2 = −1, (PT )2 = 1
−− + D4 P 2 = −1, T 2 = 1, (PT )2 = 1
−−− Q the quaternion group

The dihedral group D4 is the group of all isometries of a square.

2.3. Homomorphisms of semi-direct products

To define the double covers, it is convenient to use the notion of a semi-
direct product of groups. Let k : H → AutG be a homomorphism of a
group H into the group of automorphisms of the group G. If h, h′ ∈ H and
g, g′ ∈ G, then the composition law

(h, g) · (h′, g′) = (hh′, gk(h)(g′))
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defines the semi-direct product H ×kG of the groups H and G with respect
to k. The maps h 7→ (h, 1) and g 7→ (1, g) make H and G into subgroups of
H ×k G. Let L be another group and consider homomorphisms

η : H → L and ρ : G→ L .

One easily proves the following fact:

Lemma. If

η(h)ρ(g) = ρ(k(h)(g))η(h) for every g ∈ G and h ∈ H , (6)

then the map

H ×k G→ L, given by (h, g) 7→ ρ(g)η(h) ,

defines a homomorphism from the semi-direct product to L.

2.4. Complex conjugate representations

Given a representation κ of a group H in a complex vector space S,

κ : H → GL(S) ,

one can form the complex conjugate representation,

κ̄ : H → GL(S̄) .

The representations κ and κ̄ are complex-equivalent if there is an isomor-
phism of complex vector spaces

C : S → S̄

such that
κ(h)C = Cκ(h) for every h ∈ H .

The representation κ is said to be of complex type if κ and κ̄ are not complex-
equivalent. If the representation κ is irreducible and complex-equivalent to κ̄,
then, by Schur’s lemma, C can be normalized so that either (i) C̄C = − idS

(quaternionic type) or (ii) C̄C = idS (real type).
In the last case, the real vector space

ReS = {ψ ∈ S | ψ̄ = Cψ} (7)

is of real dimension equal to the complex dimension of S. For every h ∈ H
one then has κ(h)ReS ⊂ ReS. The representation κ is given by real ma-
trices in ReS.

In spinor algebra, the intertwiner C defines the charge conjugate C−1ψ̄
of the spinor ψ. The equivalence of the representations κ and κ̄ is essential
for the construction, from complex spinors, of real ‘covariant’ quantities,
such as currents. If κ is of real type, then the elements of ReS are called
Majorana spinors.
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3. Spinorial double covers of the full Lorentz group

3.1. Preliminaries on the Lorentz group and spinors

The full Lorentz group L, considered as a manifold, has four connected
components: (i) the proper Lorentz group L

0, (ii) a component consist-
ing of products of all proper Lorentz transformations by the space reflec-
tion π(t, x, y, z) = (t,−x,−y,−z), (iii) a component consisting of products
of all proper Lorentz transformations by the time reflection τ(t, x, y, z) =
(−t, x, y, z), and (iv) a component consisting of products of all proper Lorentz
transformations by the total reflection πτ .

Let g be a complex 2 by 2 matrix. Recall that

if ε =

(

0 −1
1 0

)

then gεgT = εdet g ,

where gT denotes the transpose of g. Complex conjugation is denoted with
a bar and g† = ḡT. If X = (t, x, y, z) ∈ R

4, then the matrix

σ(X) =

(

t+ z x− iy
x+ iy t− z

)

is Hermitian and det σ(X) = t2−x2−y2−z2. Let g ∈ SL2(C); the equation

σ(ρ(g)X) = gσ(X)g†

defines ρ(g) and can be used to justify the exact sequence (2) which estab-
lishes SL2(C) as the connected spin group Spin0

1,3. The map g 7→ ḡ is an
automorphism of SL2(C) that is not inner. The equations

σ(π(X)) = εσ(X)ε−1 and σ(τ(X)) = −εσ(X)ε−1 (8)

are important for the construction of spinorial double covers and their rep-
resentations.

3.2. Construction of the spinorial double covers

The eight spinorial double covers of L are labeled by the triples (λ, µ, ν)
of + and − signs, as in (1), and denoted here by Pinλ,µ,ν , so that there are
exact sequences

Z2 → Pinλ,µ,ν

ρλµν−−−→ L , λ, µ, ν ∈ {+,−} .

This notation differs mainly graphically from that of references [5,6] and [9].
Note that Dąbrowski’s signs are related to mine by a = −µ, b = ν and



On Eight Kinds of Spinors 127

abc = λ. Every group Pinλ,µ,ν has four simply connected components, each
doubly covering the corresponding connected component of L. In particu-
lar, the reflections π and τ are covered, respectively, by the pairs (P,−P )
and (T,−T ) of elements of Pinλ,µ,ν . The element P can be continuously
deformed to −P and one can not give preference to one or the other as
providing the representation of the action of π on spinors. Similar remarks
apply to τ .

Let Hλ,µ,ν be the eight-element group described in Section 2.2. Define
the homomorphism

k : Hλ,µ,ν → AutSL2(C)

so that
k(−1)g = g, k(P )g = k(T )g = εḡε−1 (9)

for every g ∈ SL2(C). Let I ∈ SL2(C) be the unit matrix. The map
−1 7→ (−1,−I) makes Z2 into a normal subgroup of Hλ,µ,ν ×k SL2(C).
Following Dąbrowski (see p. 11 in [5]), one defines

Pinλ,µ,ν = (Hλ,µ,ν ×k SL2(C))/Z2

so that [(h, g)] = [(−h,−g)] in Pinλ,µ,ν . The covering homomorphism is
given by

ρλµν([(h, g)]) = ρ(g)η(h) , (10)

where η is as in (5). To check that equation (10) defines a homomorphism,
one uses the Lemma of Section 2.3 and (8). The kernel of ρλµν is seen to be
Z2 generated by the element [(1,−I)].

3.3. Spinorial representations of the groups Pinλ,µ,ν

In view of (8), to represent the groups Pinλ,µ,ν complex-linearly and
faithfully upon restriction to SL2(C), it is necessary to double the dimension
of the space of (Weyl) spinors. One puts

γ(X) =

(

0 σ(X)ε
−σ(X)Tε 0

)

∈ C(4)

so that

γ(X)2 = (t2 − x2 − y2 − z2) id , where id =

(

I 0
0 I

)

∈ GL4(C) .

Embedding SL2(C) in GL4(C) by putting

κ(g) =

(

g 0
0 ḡ

)

for g ∈ SL2(C) ,
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one obtains
γ(ρ(g)X) = κ(g)γ(X)κ(g)−1 .

The matrix κ(g) acts on the Dirac spinor

ψ =

(

u
v̄

)

∈ C
4 . (11)

The components of its Weyl (chiral) parts v̄ and u are traditionally labeled
by dotted (Penrose: primed) and undotted (unprimed) indices, respectively.

To complete the spinorial representation

κλµν : Pinλ,µ,ν → GL4(C), κλµν(g) = κ(g) for g ∈ SL2(C) ,

one has to specify the matrices κλµν(P ) and κλµν(T ) ∈ GL4(C), so as to
satisfy

κλµν(PT ) = λκλµν(TP ), κλµν(P )2 = µ id, κλµν(T )2 = ν id ,

and, in view of (6) and (9), the equation

κλµν(P )κ(g) = κ(εḡε−1)κλµν(P ) ,

and a similar equation with P replaced by T .
Let

E± =

(

0 ε
±ε 0

)

,

so that E2
± = ∓ id. The matrices E+ and E− anticommute.

For every pair (µ, ν) of signs, define pµν and tµν ∈ {1, i},

µ ν = + + +− −+ −−
pµν = 1 1 i i
tµν = i 1 i 1

(12)

and put

κ−µν(P ) = pµνE−, κ−µν(T ) = tµνE+ (13)

κ+µν(P ) = pµνE−, κ+µν(T ) = −itµνE−. (14)

For the Cliffordian groups (λ = −), the representation ρ−µν , defining the
action of Pin−,µ,ν on vectors, can be described by

γ(ρ−µν(a)X) = κ−µν(a)γ(X)κ−µν (a)−1 for every a ∈ Pin−,µ,ν (15)

or by the definition (2).
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In the non-Cliffordian case (λ = +), there is no analog of formula (15).
The spinorial representations of the groups Pin+++ and Pin+−− are not
faithful.

To determine the type of the spinorial representations of the groups
Pinλ,µ,ν , one notes that if there is an intertwiner C connecting the represen-

tation with its complex conjugate, then from κ(g)C = Cκ(g), g ∈ SL2(C),
one obtains

C =

(

0 αI
βI 0

)

, where α, β ∈ C . (16)

From this and by inspection of (12)–(14), one proves

Proposition 1. The spinorial representations of the groups
Pin±+− and Pin±−+ are of complex type,
Pin−−− = Pin3,1 and Pin+−− are of real type,
Pin−++ = Pin1,3 and Pin+++ are of quaternionic type.

The spinorial representations of the groups Pin+++ and Pin+−− have a ker-
nel generated by PT ; the spinorial representations of the six other spinorial
double covers are faithful.

Whenever the spinorial representation is of real type, one can choose the
intertwiner (16) to be such that α = β = 1. The reality condition (7) applied
to the Dirac spinor (11) gives then v = u. Following Staruszkiewicz, using
(13) and (14), one can represent space and time reflections ‘anti-linearly’:

in Pin−−− by P : u 7→ iεū, T : u 7→ εū,
in Pin+−− by P : u 7→ iεū, T : u 7→ −iεū.

The last line differs from the corresponding entry in Table III of [1], but the
4 by 4 matrix

(

(1 + i)I 0
0 (1 − i)I

)

can be easily seen to intertwine the representation κ+−− and the one used
by Staruszkiewicz.

4. Vectorial double covers and the structure of the group Ext L

The eight vectorial double covers of L can be obtained by a construction
similar to the one for the spinorial covers. One defines the homomorphism

l : Hλ,µ,ν → Aut L
0 so that l(−1)A = A, l(P )A = l(T )A = πAπ

for every A ∈ L
0. The vectorial double covers are Lλµν = Hλ,µ,ν ×l L

0.
The map Lλµν → L is (h,A) 7→ Aη(h) with kernel generated by (−1, id).
Every group Lλµν has eight connected components, each diffeomorphic to L

0.
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Every connected component of L is covered by two copies of L
0: the vectorial

extensions are topologically trivial, but among them only I = L+++ is trivial
as an extension of L by Z2.

To describe the composition law • of the group Ext L, consider the ex-
tension H = Pinλ,µ,ν •Pinλ′,µ′,ν′ . According to (4), if g, g′ ∈ SL2(C) and
[(g, g′)] ∈ H, then ρ(g) = ρ(g′) and the map [(g, g′)] 7→ (g′g−1, ρ(g)) ∈
Z2 × L

0 shows that H → L is a vectorial double cover. If P ∈ Pinλ,µ,ν and
P ′ ∈ Pinλ′,µ′,ν′ , then ([(P,P ′)])2 = ([(µ1, µ′1)]) = ([(µµ′1, 1)]), where it is
understood that signs multiply in the natural manner, − ·− = +, etc. This
and similar computations prove

Proposition 2. The composition law in the group Ext L is given by

Pinλ,µ,ν •Pinλ′,µ′,ν′ = Lλλ′,µµ′,νν′ ,

Pinλ,µ,ν •Lλ′,µ′,ν′ = Pinλλ′,µµ′,νν′ ,

Lλ,µ,ν • Lλ′,µ′,ν′ = Lλλ′,µµ′,νν′ .

The vectorial extensions form a subgroup of Ext L. The spinorial extensions
generate the group Ext L.

To conclude, one can say that physicists have been wise to restrict their
attention to the groups Pin1,3 = Pin−++ and Pin3,1 = Pin−−− as these
are the only double covers of L that admit faithful irreducible spinorial
representations and allow the construction of real invariants and covariant
currents.

This research was supported in part by the Polish State Committee for
Scientific Research (KBN) grant No. 2 PO3B 12724.
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