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status of individuals and their connections. The effectiveness of local (e.g.
ring vaccination or culling) vs global (e.g. random vaccination) control
measures is evaluated, with the aim of minimising the total cost of an epi-
demic. The costs include direct costs of treating infected individuals as
well as costs of treatment. We first consider a random (global) vaccina-
tion strategy designed to stop any potential outbreak. We show that if
the costs of the preventive vaccination are ignored, the optimal strategy
is to vaccinate the whole population, although most of the resources are
wasted on preventing a small number of cases. If the vaccination costs
are included, or if a local strategy (within a certain neighbourhood of a
symptomatic individual) is chosen, there is an optimum number of treated
individuals. Inclusion of non-local contacts (‘small-worlds’ or scale-free net-
works) increases the levels of preventive (random) vaccination and radius
of local treatment necessary for stopping the outbreak at a minimal cost.
The number of initial foci also influences our choice of optimal strategy.
The size of epidemics and the number of treated individuals increase for
outbreaks that are initiated from a larger number of initial foci, but the op-
timal radius of local control actually decreases. The results are important
for designing control strategies based on cost effectiveness.
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1. Introduction

One of the main goals of epidemiological modelling is to provide guide-
lines for controlling disease outbreaks [1]. Traditionally this has been un-
derstood in terms of reducing the number of infected individuals. Recent
outbreaks of large-scale epidemics like AIDS, malaria, foot-and-mouth, avian
influenza or rhizomania as well as a possibility of a smallpox pandemic have
brought a new dimension to the studies. Not only must the epidemic be
stopped as quickly as possible but also at manageable cost and with poten-
tially limited resources. The problem of minimising the number of infected
individuals becomes only a part of an optimisation problem in which infec-
tion on one side and control measures on the other side generate costs.

Typically two cases of disease spread are considered, with appropriate
control measures. Thus, for a purely local case, local measures like ring
culling, vaccination or quarantine are suggested [2]. At the other extreme,
when any individual can be in contact with any other individual in the
population (even if the number of contacts is limited), global measures like
a mass vaccination [1] seems to be a better option. More recently, attention
has been given to another mode of disease spread, in which the contact
structure presents a mixture of local and global links. Termed ‘small-world’
networks [3], the underlying structure of contacts potentially leading to a
disease advance, present an interesting and challenging case for the control of
diseases. While the choice between local and global control measures seems
to be clear for local and random networks, it is not clear how to design
control for ‘small-worlds’.

The modelling and prediction is made even more complicated by the fact
that not all information about disease dynamics and about the underlying
network structure is available. Among the epidemiological parameters and
processes, the key problem lies in a difference between the onset of infec-
tiousness and the earliest detectability of the disease and then application of
control measures. For the network structure, long-range links are notoriously
difficult to identify and to follow.

In this paper we compare the suitability of various control measures
designed for the spread of diseases on networks with local, global and ‘small-
world’ connectivity. We have recently shown [4] that under some conditions
it is possible to control disease spread by using purely local methods applied
in a neighbourhood centred around a detected infectious individual, even
for networks with non-local interactions. We have shown that if all costs
of disease are included, there exists an optimal radius for such a control
neighbourhood leading to the lowest severity of the epidemic in terms of
economic costs associated with disease and treatment [5]. The efficiency of
such a local control strategy is very sensitive to the choice of the radius.
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However, many unresolved issues remain. In this paper we extend the
analysis in [4] in several directions. First, in addition to local control strate-
gies, we also include a preventive random vaccination, in which susceptible
individuals are treated before any potential outbreak. Traditional modelling
concentrated on the potential risks and costs associated with the outbreak,
characterised by the total number of individuals who have been through
the disease progress by the end of the outbreak. However, in many cases
vaccination is in itself a source of costs and any potential strategy should
included this as well. In this paper we show that inclusion of vaccination
costs leads to an optimal control strategy that is different to the ‘traditional’
one, based on minimising disease risks.

Second, we study the effect of initial conditions on the spread and control
of disease outbreaks on lattices including both local and non-local interac-
tions. In particular, we show that the size of potential outbreaks, the number
of treated individuals and the optimal radius of a local control, depend in a
non-trivial way on the number of initial foci.

Finally, we formulate the detailed mechanism responsible for a large
difference between regular networks and scale-free networks in the behaviour
of the control of epidemics at the optimum strategy. For scale-free networks
[6] that involve a lot of long-range contacts, it is necessary to treat almost
everybody in the population, even at the optimum [4]. This stands in a
contrast to local networks and small-world networks with a small number
of links. In this paper we show that this behaviour is caused directly by a
structure of the scale-free networks, whereby even a single neighbourhood of
an order larger than one, covers on average a large proportion of individuals
on the whole network.

Although our work deals mainly with the theory of networks, it has
important biological applications. Notable among these are SARS [7], seal
distemper virus (SDV) [8], foot-and-mouth disease (FMD) [2], Dutch Elm
disease [9], citrus canker [10], sudden oak death [11] and rhizomania [12].
The nodes on the networks are formed by individual people or groups of
people (SARS), animals or farms (seal distemper virus, FMD), fields or
farms growing sugar beet (rhizomania) or trees (Dutch Elm disease, citrus
canker and sudden oak death). The structure of network edges is dictated
by spread of infectious agents, either by a direct contact (SARS, SDV),
by sharing farm machinery (rhizomania, FMD), or by rain, wind or insect
vectors (Dutch Elm disease, sudden oak death, citrus canker).
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2. Model

2.1. Network structure

The structure of interactions between individuals in a population can be
captured by a network topology that includes short- and long-range links [4].
We consider two types of topologies, networks with short-range links only
and networks with a mixture of short- and long-range links. Most of the
time individuals are in a direct contact with their geographical neighbours,
leading to the following topological structures: a 1-dimensional chain with
periodic boundary conditions (ring) and a 2-dimensional regular lattice with
periodic boundary conditions. In addition to these local contacts, individ-
uals sporadically interact on longer distances. Thus, more realistic inter-
actions are implemented by adding a given number of shortcuts to these
structures. Addition of shortcuts results in the 1-dimensional small world
topology (SW1D) and the 2-dimensional small world topology (SW2D) re-
spectively [3]. Finally, we consider the scale-free topology (SF), characterised
by preferential attachment [6] whereby some individuals are very highly con-
nected, while most have only few links. The scale-free network is constructed
by adding nodes to the initially fully connected core, in such a way that the
probability that a new node is attached to a given node is proportional to
the number of nodes already attached to that node.

We also distinguish between an epidemic network and control network,
with the latter being a subset of the former, reflecting limited knowledge
about long-range contacts. For the SW1D topology, the disease spreads
on a ring with addition of shortcuts, whereas the basic control topology
encompasses the ring only, Fig. 1. The same mechanism is applied for the
SW2D topology, Fig. 2, where the control topology corresponds to a square
lattice with 4 nearest neighbours. For the SF network, a more complicated
algorithm is needed to reflect various levels of knowledge about the contact
structure. In this case, for nodes outside a fully connected core of size C, only
the first CI or C (whichever is smaller) links were chosen. This mechanism
reflects our limited ability to track contacts. For nodes from the core, every
node is connected to up to CI or C − 1 (whichever is smaller) older nodes.
Due to the fact that links are not directed, such a mechanism guarantees
that resulting control network is not disconnected and with increasing CI a
larger ratio of links from the full topology is included in the control topology,
Fig. 3. For CI = C, the control topology is equivalent to the disease spread
topology.

The local control is performed onto another topology, which forms only
a subset of a full topology on which disease spreads. In our approach this
reflects our limited knowledge about interactions between individuals.
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2.2. Disease dynamics

Disease spreads on networks, changing status of individuals which are
placed on the nodes. The individuals can be in one of five exclusive states:

1. S — susceptible, can be infected with probability p by any infectious
or detected individual that is in its epidemic neighbourhood;

2. I — infectious (infected but pre-symptomatic), can infect other nodes
within its epidemic neighbourhood but cannot trigger a control mea-
sure; can spontaneously move with probability q to the detected class,
when symptoms become observable;

3. D — detected (infected and symptomatic), spreads disease in a similar
way as infectious nodes. Furthermore, it can spontaneously move to
the recovered class (with probability r) or can trigger a treatment
measure with probability v;

4. R — recovered. Individuals in this class can be treated but cannot
become re-infected, i.e. they do not return to S class;

5. V — vaccinated (treated). Individuals in this class are in a control
neighbourhood of a detected individual when the treatment event is
triggered. They cannot become re-infected, i.e. they do not return to
S class again.
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Fig. 1. SW1D network N = 16 with additional 8 shortcuts (left panel) and corre-

sponding control network (right panel). The pictures were created by use of [13].
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Fig. 2. SW2D topology: here a detected individual (black circle) is in contact with

its four nearest-neighbours on the disease network and to one node connected by

a shortcut (grey circles). The control might then be applied locally, i.e. in that

case all additional shortcuts are excluded from the control neighbourhood, limited

to the eight second-order neighbours (z = 2) and individual itself on a treatment

network. Different colours represent individuals in various states: white — S,

grey — I and black — D.
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Fig. 3. SF network N = 16, C = 3 (left panel) and corresponding control networks

CI = 2 (middle panel) and CI = 1 (right panel), number at nodes represent nodes’

degree, i.e. the number of links attached to the node. The pictures were created

by use of [13].

The model is a generalisation of the classical SIR models [1]. The fol-
lowing diagram lists all model transitions and probabilities:

R
r
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p
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q
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v

ց
V

. (1)
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2.3. Control strategies

We consider a range of control schemes, broadly divided into non-local
and local strategies. The simplest example of a non-local strategy is a ran-
dom vaccination of a given ratio of individuals in the population. The main
advantage of this strategy is that no information about social contacts and
state of individuals is required. This strategy can also be applied preven-
tively before epidemics outbreak. However, for highly infectious diseases,
a large proportion of the individuals needs to be vaccinated [1], and so it
is only optimal if the vaccination is cheap. We will discuss the choice of
optimal strategies in the next section.

The alternative group of strategies assumes that we possess some knowl-
edge about a location and timing of disease cases, at least for symptomatic
individuals. In our approach, an appearance of a symptomatic individual
may trigger a treatment ‘event’ with a certain probability v, and for local
strategies we assume that treatment is limited to the control neighbourhood
of the symptomatic individual, on a control network constructed as above.
The control neighbourhood of a given order, z, is constructed in an itera-
tive way. Starting from the infected (and symptomatic) individual all the
first order neighbours on its control network are allocated. Subsequently,
starting from the first order neighbours, the same procedure is applied in
order to find the second order neighbours. The whole procedure is repeated
z times. In a single control event, all (or only some) individuals in a con-
trol neighbourhood of a given range are treated, with the neighbourhood
centred on the symptomatic individual, Fig. 2. The diameter of vaccination
neighbourhood, z, is a parameter in the simulation.

2.4. Simulations

Simulations were performed for each topology consisting of N = 2500 in-
dividuals (for SW2D topology the starting point was a 2-dimensional square
lattice 50×50 with periodic boundary conditions). We also studied individ-
ual disease progress curves (see the next section) and used a larger system
(300 × 300) to decrease variability. All results were averaged over 50 reali-
sations. At t = 0, the system with a given proportion (0.005%, 0.1%, 0.5%
or 5% of the total population) of infectious symptomatic individuals (D) is
generated. The system is updated in a synchronous way till the time when
epidemic die out due to lack of infectious individuals, i.e. for t < Tmax such
that I(Tmax) + D(Tmax) ≡ 0. In every iteration the status of each node is
checked and all admissible transitions described by Eq. (1) performed.



1516 B. Dybiec, A. Kleczkowski, C.A. Gilligan

2.5. Optimal strategy

In our paper we consider the existence and form of an optimal strategy
that allows to stop epidemics at a manageable cost. The economics of dis-
ease and its control are summarised here by introducing a severity index
X = aR(∞) + b V (∞). Thus, the severity index depends linearly on the
number of individuals that have been through the disease R(∞), with an
individual cost of each case a. The cost might include hospitalisation, drug
treatment and loss of work. The second term represents individuals that
have been treated preventively V (∞), for example by vaccination, with an
individual cost of b. In general, more sophisticated cost functions are pos-
sible, including non-linear terms. Our approach differs from the ‘usual’ one
used in epidemiology in designing vaccination strategies, in that we intend
to minimise X rather than R(∞).

3. Results

3.1. Epidemic outbreaks without control

The parameters for the disease spread are chosen in such a way that
this always leads to a major outbreak in the absence of any control mea-
sure. The course of an epidemic typically follows a rise-and-fall curve for
infected (I) and detected (D) individuals, and a sigmoidal curve for the
number of recovered individuals (R), Fig. 4 (z = 0, top panel). We show
results for SW2D only; the results for other topologies are similar. The left
panel of Fig. 4 corresponds to the epidemics outbreak on the regular lattice
(SW2D topology without additional shortcuts) while the right panel to the
regular lattice with 1000 additional shortcuts. The lattice size is 300 × 300
and initially 0.005% (i.e. about 5 from 9 × 104) of individuals were in the
symptomatic state (D). When local control is applied, the number of in-
fected (I), recovered (R) and detected (D) individuals becomes very small,
as most of the detected nodes are quickly treated, Fig. 4, middle and bottom
row. If the size of the control neighbourhood is small (z = 1, middle panel),
the number of treated individuals (V ) is comparable with the number of
infected individuals in the absence of any control. However, in this case the
outbreak is finished much earlier than when no control is applied (compare
top and middle panels). Even a small increase of z (from z = 1 to z = 4)
arrests the epidemics sooner, requiring treatment of a smaller number of
individuals (middle vs bottom panel). Addition of non-local interactions
changes the character of the epidemics outbreak, and not surprisingly in-
creases the prevalence and makes the local control mechanisms less efficient
(compare the right column with the left column in Fig. 4).
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Fig. 4. The epidemics outbreak for SW2D 300 × 300 topology without additional

shortcuts (left panel) and with 1000 shortcuts (right panel). In the top panel no

control action is taken (z = 0). In the middle panel z = 1 and z = 4 in the bottom

panel. Values of the other parameters p = 0.5, q = 0.09, r = 0.01, v = 0.1.

Initially, 0.005% of population was in the symptomatic state.

3.2. Preventive random blind vaccination

In this strategy, a given proportion of randomly chosen individuals is
vaccinated and afterwards no control mechanisms are applied. In Fig. 5
the severity index X = R(∞) + V (0) is plotted for various topologies and
for various infection probabilities (V (∞) = V (0) in this case). With the
increasing numbers of additional random shortcuts, the costs of the control
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mechanisms increase and a larger number of individuals need to be vacci-
nated preventively. The same effect is caused by the increasing infection
probability, p. There is an optimal vaccination proportion, which increases
with an infection probability and with an addition of shortcuts.

 0

 25

 50

 75

 100

 0  20  40  60  80  100

X
 [%

]

V [%]

 0

 25

 50

 75

 100

 0  20  40  60  80  100

X
 [%

]

V [%]

 0

 25

 50

 75

 100

 0  20  40  60  80  100

X
 [%

]

V [%]

 0

 25

 50

 75

 100

 0  20  40  60  80  100
X

 [%
]

V [%]

 0

 25

 50

 75

 100

 0  20  40  60  80  100

X
 [%

]

V [%]

 0

 25

 50

 75

 100

 0  20  40  60  80  100

X
 [%

]

V [%]

Fig. 5. X = R(∞) + V (∞) as a function of proportion of initially vaccinated

individuals for SW1D topology (left panel) and SW2D topology (right panel) for

various values of infection probability, p: p = 0.01 (top panel), p = 0.05 (middle

panel) and p = 0.5 (lower panel). Other parameters: q = 0.5, r = 0.01. Different

symbols correspond to various numbers of additional shortcuts: + — 0 shortcuts,

× — 63 shortcuts, ∗ — 255 shortcuts, � — 1023 shortcuts and � for the SF

topology. Initially, at t = 0, 0.5% of all individuals were in the symptomatic class.

Because the treatment does not change in time, V (∞) ≡ V (0).

It is also easier to prevent the epidemic in the 1-dimensional case, even
though the number of neighbours in the first order epidemic neighbourhood
is the same (four nearest neighbours). These results are in contrast to the
‘usual’ approach in designing optimal vaccination strategies, where the final
size of an epidemic R(∞) is only being minimised (see Fig. 6). If X = R(∞)
only, there is no discernible minimum in the severity index (reflecting total
costs of the epidemic and its attempted control), so — formally speaking
— the optimal strategy in this case is to vaccinate the whole population.
However, in most cases, R(∞) is initially high, but drops rapidly to al-
most zero at a certain critical proportion of vaccinated individuals. This
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drop corresponds to a classical critical vaccination proportion, well known
in epidemiology [1, 14]. Thus, when this critical level of preventive treat-
ment is reached, increasing vaccination levels only marginally increases the
effectiveness of the control strategy (Fig. 6).

The difference is particularly clear for the SF topology. When the vac-
cination costs are included (X = R(∞) + V (0)), there is a clear optimal
vaccination strategy leading to a reduction in the severity index (Fig. 5).
However, no such threshold appears for the case when vaccination is as-
sumed to have no costs, i.e. X = R(∞), (Fig. 6).
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Fig. 6. X = R(∞) as a function of proportion of initially vaccinated individuals for

SW1D topology (left panel) and SW2D topology (right panel) for various values of

infection probability, p: p = 0.01 (top panel), p = 0.05 (middle panel) and p = 0.5

(lower panel). Other parameters as in Fig. 5. Different symbols correspond to

various numbers of additional shortcuts: + — 0 shortcuts, × — 63 shortcuts, ∗ —

255 shortcuts, � — 1023 shortcuts and � for the SF topology. Initially, at t = 0,

0.5% of all individuals were in the symptomatic class.

3.3. Vaccination of all individuals in a given neighbourhood

This strategy assumes that each symptomatic individual (D) triggers
a treatment ‘event’ with probability v. However, because it is only symp-
tomatic individuals that trigger such ‘events’, the disease can spread unde-
tected for a substantial time. How far it can proliferate, depends on the
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probability of detection q and the probability of treating once detected v.
To compensate for this cryptic spread, we extend the control neighbourhood
beyond the epidemic one, and assume that all individuals within the given
radius need to be treated. Fig. 7 shows that for all networks there is an
optimal control neighbourhood that minimises X = R(∞) + V (∞).
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Fig. 7. Severity index (X = R(∞) + V (∞)) as a function of the treatment neigh-

bourhood, z, for different values of the probability of infection, p, for (from

top to bottom) the SW1D, SW2D and SF topologies (averaged over 50 repli-

cates). There were no shortcuts for the SW1D and SW2D networks. p = 0.25,

0.5, 0.75 and 1 for curves from the bottom to the top. Other parameters are:

q = 0.5, r = 0.01, v = 0.1, C = 5, CI = 1.

We also examined the influence of additional random shortcuts on the
severity index X for SW1D and SW2D topologies. Simulation were per-
formed for various numbers of additional shortcuts {0, 3, 15, 63, 255, 1023}.
The addition of random shortcuts increases the duration of the epidemic,
epidemic severity (as measured by X = R(∞) + V (∞)) and also the opti-
mal range of vaccination zc (Fig. 8). Increasing the number of shortcuts for
SW1D or SW2D topologies produces results that approach those obtained
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for the SF topology (Fig. 8). This convergence is faster in the case when
the cryptic period is longer (smaller q) or when the control mechanisms are
applied later (higher ratio of initially infected individuals).
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Fig. 8. Optimal range of vaccination zc and severity index X = R(∞) + V (∞) for

SW1D topology (left panel) and SW2D topology (right panel) for q = 0.2, v = 0.1

and ratio of initially detected individuals 0.5%. Different symbols represent various

numbers of additional shortcuts: + — 0, × — 63, ∗ — 255, and � — 1023

additional shortcuts. The control strategy does not utilise any information about

non-local links. Results for SF topology are marked with �. Values of the severity

index X correspond to the optimal range of vaccination zc.

Higher ratio of initially detected individuals increase severity of the epi-
demic as measured by X, but at the same time decrease the optimal range
of vaccination (compare Fig. 8 with Fig. 9). In general, epidemics are more
severe on the SF topology than on SW2D and SW1D topologies and control
measures have to be applied in larger neighbourhoods (larger zc), even in
the case of SW1D and SW2D with shortcuts. However, for networks with
as many as 1023 shortcuts in a system size of 2500 (corresponding to about
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Fig. 9. The same as in Fig. 8. All parameters as in Fig. 8, except the ratio of

initially detected individuals is now 5%.

10% increase in the number of links), the optimal range is smaller than for
SF topology. The link between the severity of epidemics, the optimal range
of control and the neighbourhood size for different network topologies is
explored below.

3.4. Neighbourhood size

The addition of long-range interactions generally renders the local control
less effective. The natural way to compensate for this is to increase the
size of the control neighbourhood. This leads, however, to a fast increase
in the number of individuals treated in a single ‘event’. In our model, the
neighbourhood order z is a measure of how far the disease can spread (for the
epidemic neighbourhood), or how far the control measures can extend in a
single ‘event’ (for the control neighbourhood). Two factors are of importance
here, the number of the individuals that are added to the neighbourhood
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if the order increases by 1 (the size of a ‘shell’) and the total size of the
neighbourhood of a given order. Tables I, II and III list both characteristics
in absolute numbers or as the ratio of the total population size. Results for
the SW1D and SW2D topologies were calculated analytically, while for the
SF topology we used a Monte Carlo method [15].

TABLE I

Number of individuals and percentage of the whole population in neighbourhoods
of order z and in the neighbourhood up to order z for the SW1D topology with
2500 nodes.

z in z up to z

# indv. % of pop. # indv. % of pop.

1 4 0.2 4 0.2
2 4 0.2 8 0.3
3 4 0.2 12 0.5
4 4 0.2 16 0.7
5 4 0.2 20 0.8
6 4 0.2 24 1.0
7 4 0.2 28 1.2
8 4 0.2 32 1.3
≥9 2468 98.7 2500 100

TABLE II

Number of individuals and percentage of the whole population in neighbourhoods
of order z and in the neighbourhood up to order z for the SW2D topology with
2500 nodes.

z in z up to z

# indv. % of pop. # indv. % of pop.

1 4 0.2 4 0.2
2 8 0.3 12 0.5
3 12 0.5 24 1.0
4 16 0.6 40 1.6
5 20 0.8 60 2.4
6 24 1 84 3.4
7 28 1.1 112 4.5
8 32 1.3 144 5.8
≥9 2356 94.2 2500 100
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TABLE III

Average number of individuals and percentage of the whole population in neigh-
bourhoods of order z and in the neighbourhood up to order z for the SF topology
with 2500 nodes, C = 5 and CI = 1.

z in z up to z

# indv. % of pop. # indv. % of pop.

1 1.9 0.1 1.9 0.1
2 8.8 0.4 10.7 0.4
3 31.0 1.2 41.8 1.7
4 77.2 3.1 119.0 4.8
5 148.6 5.9 267.6 10.7
6 235.3 9.4 502.9 20.2
7 322.2 12.9 825.1 33.0
8 375.0 15.0 1200.0 48.0
≥9 1300.0 52.0 2500 100

For the SW1D topology (Table I), the number of individuals in the ‘shell’
is constant and equal to four. It is caused by the fact that SW1D is a 1D
ring. For the other topologies, the number of individuals in the ‘shell’ is
an increasing function of the neighbourhood order z. Due to the clustered
character of the SF topology (Table III), the size of the neighbourhood grows
very fast and quickly extends to the whole population.

4. Discussion

In this paper we have analysed a spatially-extended, modified SIR model
for disease spread with varying network complexity and with different spa-
tial control strategies. The goal is to find an optimal strategy, leading to
a minimal combined cost of treatment and disease [4]. Search for such a
strategy is complicated because of uncertainty caused by our limited knowl-
edge about the status of individuals (whether infectious or not) and their
interactions (not all contacts are known). We considered two contrasting
cases. In the first one, the population is treated to a random vaccination
applied before any potential outbreak. In the second case, treatment is ap-
plied locally around each individual that has been detected at the onset of
symptoms. We have shown that an optimal strategy exists in both cases, and
studied its dependence on a range of factors. We found that the proportion
of treated individuals (for the global strategy) and the radius of treatment
neighbourhood (for the local strategy) increase with the probability of dis-
ease transmission and the number of shortcuts.
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However, increased number of initial foci increases the number of treated
individuals, but decreases the optimal range of treatment. Decrease in the
optimal range of vaccination reflects two possible ways in which an optimal
strategy can be constructed. For a small number of initial foci, it is more
efficient to apply control within a larger neighbourhood, and less frequently.
For a large number of initial foci, when the disease has already spread very
far, control can be applied within a smaller neighbourhood, but has to be
applied in many initial places.

Interesting difference in designing control strategies have been noticed
for the random vaccination applied in order to prevent any potential out-
break. The traditional approach is to try to minimise the final size of the
epidemic [1, 14]. However, this leads to a strategy in which a large propor-
tion of individuals is treated. If we define an optimal strategy as the one
that minimises the total size of an outbreak, the whole population must
be treated regardless of the disease parameters. In this approach, most of
the resources are spent on an attempt to prevent disease spreading to very
few individuals. However, when the cost of the treatment is included, it is
preferable to lower the vaccination level, even though this will allow some
limited disease spread, in order to minimise the total costs of containing the
outbreak.

There are several ways in which the search for improved control strate-
gies can be extended. One possibility is to vaccinate up to a given number
of randomly chosen individuals in a given control neighbourhood, or to treat
individuals at the perimeter of the control neighbourhood only (ring vaccina-
tion). This kind of strategy can be applied when the number of individuals
in a single control neighbourhood is large and it is impossible to treat all
of them, due to lack of time or resources. Nevertheless, such strategies, due
to the fact that not all information about contacts between individuals is
recognised, are less efficient that a treatment of all individuals in the local
control neighbourhood.

We have found that small-world shortcuts have a major impact on the
size and duration of epidemics and on the effectiveness of control strategies,
both local and global. It is possible to extend control strategies to include
contact tracking [16] and to include some of long-range links in the control
network. For the scale-free networks, control targeted at highly connected
individuals has been shown to be a promising strategy [17].

Our approach is based on a linear relationship between a number of
infected or treated individuals and associated costs. This might not be
always true, and nonlinear relationships might change the particular choice
of an optimal strategy.
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