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This note is a short review of recent results concerning the fluctuation
behavior of the largest eigenvalue of a class of random covariance matrices.
We also present a concrete application of these results to a model checking
problem in time series analysis to highlight their practical relevance.

PACS numbers: 02.50.–r

1. Introduction

Sample covariance matrices are a fundamental tool of multivariate statis-
tics. After data collection, we get an n×p data matrix X. We will call n the
number of observations and p the number of predictors. The rows of X are
assumed to be realizations of a random variable whose covariance structure
is Σ p. For practical applications, one often wishes to estimate Σp in order to
understand the dependence structure of the predictors, do various tests etc.
Here the sample covariance matrix X∗X/n plays a key role. (Of course, in
practice, it is often computed as (X − X̄)∗(X − X̄)/(n−1), where X̄ stands
for the column-wise mean of the matrix X, but for the sake of this note we
will assume that the entries are centered.)

One most important statistical application in which eigenvalues of the
covariance matrix play a key role is Principal Component Analysis (PCA).
It is a linear dimensionality reduction procedure, which can also be thought
of as a model selection technique. The idea is as follows. We are interested
in recovering as much of the total variance in the data as possible while
reducing the dimensionality of the problem from p to k. In other words, we
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are looking for k vectors e1, . . . , ek in R
p such that

∑k
m=1

var(〈Xi, em〉) is
maximal. {Xi}i=1,...,n are assumed for simplicity to be i.i.d N (0,Σp). Of
course, it is easy to see that one should choose for em’s the eigenvectors
associated with the first k eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λk of Σp. The
main question becomes how to choose k. To this end, one popular method
in Statistics is the so-called “scree plot”. An illustration and explanations
follow. (The interested reader can find an interesting account on PCA in [19],
Chapter 8.)
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Scree Plot with n=500, p=50

True Covariance matrix:
10:−1:5 and 2−s 

Fig. 1. Scree Plot : we compute l1 ≥ l2 ≥ . . . ≥ lp the eigenvalues of X ′X/n,

where X is a 500 × 50 matrix whose rows are i.i.d N (0, Σp) and Σp is a diagonal

matrix with eigenvalues (10,9,8,7,6,5,2,2,. . . ,2). The eigenvalues of X ′X/n are

ordered. The scree plot is a plot of the pairs (51 − i, li) where i is the rank of the

corresponding eigenvalue. In general one looks for an “elbow" on this plot to decide

what k they should use in PCA. We would keep the first 6 eigenvalues by using the

scree plot shown above. In this example, it corresponds to what we would do if we

had perfect information, i.e. we knew the true covariance structure.

PCA has enjoyed wide popularity among practitioners of multivariate
statistics for a long time now. A key rationale is a set of results first obtained
by [1] regarding the asymptotic behavior of l1, . . . , lp, the eigenvalues of
X ′X/n. A good reference is the classic text [2], especially Chapters 7, 11
and 13. The asymptotic results presented in [2] are valid under the following
assumptions: (1) normality of the entries of X, (2) i.i.d-ness of its rows,
(3) the eigenvalues of Σp all have multiplicity one, (4) Σp and hence p are
fixed. Then [1] showed among many other things, that l1 is a

√
n-consistent

estimator of λ1, the largest eigenvalue of Σp. Namely, as n → ∞,
√

n
(

l1(X
′X/n) − λ1

)

=⇒ N (0, 2λ2
1) .
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We refer the reader to Theorem 13.5.1 in [2] for more details. Here “⇒”
stands for convergence in distribution. This result and the other ones given
in Theorem 13.5.1 of [2] mean, in particular, that the li’s are consistent
estimators of the λi’s (i.e. the former quantities converge in probability to
the latter ones). This is of course a desirable property and gives theoretical
ground for using PCA.

1.1. The issue of large n, large p

Because of advances in data collection mechanisms, statisticians now
often encounter datasets for which both sample size and number of predictors
are large. In genetic studies, for instance, it is not uncommon to have p (the
number of genes in this context) of order a few 1,000’s and n (the number
of patients) of order 100. In financial applications, when working with a
year worth of say log-returns for companies belonging to the S&P 500, one
has n ≃ 250 (number of days) and p ≃ 500 (number of companies). See
also [13], pp. 485–493 for examples of applications to other fields, such as
image recognition.

In these situations, it is not so clear that classical results yield relevant
information. The fundamental assumption underlying the classical results,
namely p fixed and n going to infinity, does not seem to fit very well these new
practical situations. The potential pitfalls we face are depicted in figure 2.
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Fig. 2. Large n, large p problem: this picture represents a scree plot obtained

with the same parameters as in figure 1, except for n which is now 50. While the

covariance structure Σp is the same, we now have n = p = 50. The striking feature

is the disappearance of the “elbow”.
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In light of figure 2, we would therefore like to understand how the classi-
cal tools used in multivariate statistics behave under another type of asymp-
totics: a situation in which both p and n go to infinity. We will see that this
change of assumptions lead to a very different asymptotic behavior for the
largest eigenvalue of X∗X/n. Ideally, we would also like to have estimates of
distance between the finite p and n quantities of interest and their asymp-
totic counterparts so as to be able to meaningfully choose the relevant type
of asymptotics in a specific practical situation. At this point in time, this
type of estimates still seem to be a long way away.

2. Results about large random covariance matrices

The first results obtained under the “large p, large n” asymptotics frame-
work date back from work of Marčenko and Pastur [18]. The first statistical
application of these ideas, to which we will come back in Section 3, can be
found in [26]. These results were mostly concerned with the behavior of the
empirical spectral distribution of X∗X, i.e. the distribution that puts mass
1/p at all the eigenvalues of the p × p matrix X∗X.

2.1. Marčenko–Pastur law

The statement of this important result is the following (see [3]):

Theorem 1 (Marčenko–Pastur law) Let X be an n× p matrix with in-
dependent, identically distributed entries Xi,j . We assume that E(Xi,j) = 0
and var(Xi,j) = 1. Suppose l1 ≥ l2 ≥ ... ≥ lp are the p eigenvalues of 1

nX ′X.
Suppose ρn = p/n → ρ ∈ (0, 1].
If Fp(x) = 1

p{#li ≤ x}, then

Fp =⇒ Fρ almost surely (a.s) ,

where Fρ has a known density. (fρ(x) =
√

(b − x)(x − a)/(2πxρ), with

a = (1 − ρ1/2)2, b = (1 + ρ1/2)2) .

We refer to the review paper [3] for more details about ways of proving this
result and a complete description of the sequence of papers that led to this
stronger version of the original theorem found in [18].

While this is of course an extremely interesting result both from theo-
retical and practical standpoints (see e.g. [16]), it has possible drawbacks
when one considers using it, for instance, for hypothesis testing. First, the
Marčenko–Pastur result does not provide fluctuation information since it is
an almost sure result. Second, there is some extra difficulty encountered
in testing hypotheses about random measures as opposed to, say, real ran-
dom variables. Third, while we have some information about what happens
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when the covariance within a row is Σp and the rows are independent, the
results are quite subtle and not extremely explicit (see Theorem 3.4 in [3]
and [20, 21]). Moreover, the numerical inversion of the Stieltjes transforms
that appear there is in itself a difficult problem (see e.g. [5], p. 4; note that
equation (28) in [5] is equivalent to, for instance, equation 1.4 in [20]). These
are some of the problems that hinder the use of the Marcčenko–Pastur law
for hypothesis testing.

In other respects, a natural question stemming from the Marčenko–
Pastur law, in particular in light of applications to PCA, is to understand
how the largest eigenvalue of X∗X/n behaves, as opposed to its whole spec-
trum. The first result in this direction was obtained by Geman in [12], and
subsequently refined in a series of paper (see [3], Section 2.2.2). They state
that:

Theorem 2 (a.s limit of largest eigenvalue) Under the assumptions of
Theorem 1 and assuming that the entries of the matrix X have finite 4th
moment, we have

l1(X
∗X/n) → (1 +

√
ρ)2 , a.s .

Hence, l1(X
∗X/n) is an inconsistent estimator of λ1 in the large p,

large n setting. This is very markedly different from the classical situation
(p fixed, n goes to ∞) that we recalled in the introduction. Following recent
developments in random matrix theory (RMT), there has been an important
renewed focus in recent years on understanding the behavior of the largest
eigenvalue of random covariance matrices. As we will see, these new results
allow us to address the three points that we raised above about the difficulty
of doing hypothesis testing when using only the Marčenko–Pastur law. At
this point in time, most of these recent results are formulated in the case
where the entries of X are complex normal random variables.

2.2. Fluctuation behavior of the largest eigenvalue
of random covariance matrices

The results of the previous subsection showed that we have a lot of
information about the almost sure behavior of the largest eigenvalue of large
covariance matrices. For a number of practical applications, we often would
like to be able to build confidence intervals, and hence a good understanding
of the fluctuation behavior of the statistics of interest is required. This is
the topic to which we now turn.

A note on notation before we proceed. In what follows, we will say
that a vector is distributed as complex normal with covariance Σp and write
V ∼ NC(0,Σp), to say that V = Y +iZ, where Y and Z are independent real
multivariate normal variables with Y ∼ N (0,Σp/2) and Z ∼ N (0,Σp/2).
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2.2.1. The case of Σp = Idp

The first result in this direction was obtained by Forrester in [11] (in the
case n − p = C, where C is a constant), and later extended by Johansson
in [14]. The latter showed that:

Theorem 3 (Johansson) Let us assume that Xi,j , the entries of the n×p
matrix X are i.i.d NC(0, 1). Then, if ρ ∈ (0, 1], and as n → ∞, p/n =
ρ + O(n−2/3), and l1 is the largest eigenvalue of X∗X/n, we have

n2/3 l1 − (1 +
√

p/n)2

(1 +
√

p/n)(1 +
√

n/p)1/3
⇒ TW2 ,

where TW2 has the Tracy–Widom distribution appearing in the study of the
Gaussian Unitary Ensemble (GUE).

Turning to the real case, Johnstone [15] then showed that:

Theorem 4 (Johnstone) Let us assume that Xi,j are i.i.d N (0, 1). Then,
if p/n → ρ ∈ (0, 1], as n → ∞, and if l1 is the largest eigenvalue of X ′X/n,
we have

n2/3 l1 − (
√

1 − 1/n +
√

p/n)2

(
√

1 − 1/n +
√

p/n)(
√

1 + 1/(n − 1) +
√

n/p)1/3
⇒ TW1 ,

where TW1 has the Tracy–Widom distribution appearing in the study of the
Gaussian Orthogonal Ensemble.

Note that Johnstone also showed that Johansson’s result held when assuming
only that n/p → ρ. For information about Tracy–Widom distributions, we
refer the reader to [23, 24] and [7].

One naturally wonders about whether the somewhat restrictive Gaussian
assumption can be removed. Soshnikov showed in [22] that assuming that (a)
n − p = O(p1/3), (b) Xi,j are symmetric random variables and (c) a growth
condition on the moments of Xi,j , the Tracy–Widom limit was universal. In
other words, one could remove the normality assumption in the Johansson–
Johnstone theorem (and replace it by the three conditions (a), (b) and (c)).

Note that because X and X∗ have the same singular values (up to a
number of 0’s), the previous results also hold in the case p/n → ρ ∈ (0,∞).
(For centering and scaling purposes, one just needs to invert the roles of p
and n.) A natural question was therefore to try to understand the situation
in the case p/n → 0. From a practical standpoint, this is interesting since
if the result were to break down for natural relationships between n and
p (for instance, p = n1−β, β > 0), and other limiting distributions were
to appear in these situations, the practical relevance of the Tracy–Widom
approximation would be reduced. In [8], it is shown that:
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Theorem 5 (NEK) The Johansson-Johnstone theorem holds even when
p/n → 0, as long as both n and p go to ∞. Since X and X∗ have the same
largest singular value, it is also the case when p/n → ∞.

One interesting aspect of the previous result is that it is independent of the
speed of convergence of p/n to 0 (or ∞).

A remarkable aspect of these convergence results is that they provide
very good approximations to the finite-dimensional distributions of interest.
This was first remarked by Johnstone in [15]. The following table illustrates
this claim:

TABLE I

Quality of Tracy–Widom approximation, real case: each column is gen-
erated by simulating 10,000 matrices X , with entries i.i.d N (0, 1), of dimensions
n × p indicated at the top of the column. For each matrix, we extract the largest
eigenvalue of X∗X/n, recenter and rescale it according to Theorem 4. We then
compute the percentage of data points that are to the left of a given quantile of
the limiting Tracy–Widom distribution (1st column) and compare it to the theo-
retical prediction (2nd column). The last column is twice the standard error of the
binomial distribution with probability according to the 2nd column and number of
repetitions 10,000. (Quantiles courtesy of Iain Johnstone).

Qtiles TW 10 × 103 10 × 4000 10 × 104 100 × 4000 30 × 5000 2*SE

−3.9 .01 0.009 0.010 0.015 0.012 0.013 .002
−3.18 .05 0.047 0.050 0.060 0.053 0.055 .004
−2.78 .10 0.102 0.107 0.112 0.103 0.105 .006
−1.91 .30 0.303 0.308 0.316 0.304 0.303 .009
−1.27 .50 0.506 0.506 0.522 0.508 0.503 .010
−0.59 .70 0.705 0.704 0.723 0.706 0.702 .009
0.45 0.9 0.904 0.904 0.913 0.901 0.904 .006
0.98 .95 0.953 0.951 0.958 0.951 0.953 .004
2.02 .99 0.992 0.990 0.992 0.991 0.991 .002

It is natural to try to understand why this approximation is so good and
to see if one can improve upon it in practice. This is one of the reasons for
which the centering and scaling in Theorem 4 differ from that in Theorem 3,
as Johnstone found empirically that the centering and scaling of Theorem 4
improved the numerical quality of the approximation. This sort of consider-
ation is of course of interest to anyone who uses the asymptotic distribution
as a proxy for the finite dimensional one (for e.g. confidence interval building
or hypothesis testing), because the greater the quality of the approximation
the greater the accuracy of our conclusions or inferences.
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Some theoretical results driven by these practical considerations were
obtained in [9]. These results concern the rate of convergence of the finite
dimensional distributions to their asymptotic limit, which is shown to be at
least 2/3. More precisely, it is shown in [9] that:

Theorem 6 (NEK) Denote by F2 the cumulative distribution function of
TW2. When the entries of the matrix X are i.i.d NC(0, 1), let l1 denote the
largest eigenvalue of X∗X/n. Then, there exists µ̃n,p, σ̃n,p, and a function
M such that as n, p tend to +∞, and n/p → ρ ∈ R

∗

+ we have: for all s0,
there exists N(s0), such that for all s ≥ s0, and n ≥ N(s0),

(n ∧ p)2/3

∣

∣

∣

∣

P

(

n2/3 l1 − µ̃n,p

σ̃n,p
≤ s

)

− F2(s)

∣

∣

∣

∣

≤ M(s0)

M can be chosen to be non-increasing.

The centering and scaling sequences µ̃n,p and σ̃n,p have explicit expressions.
Since they are quite involved and we will not be using them, we refer the
interested reader to [9] for the details. The main feature we would like to
mention is that they are easy to implement on a computer and are therefore
practically very usable. Note that the 2/3 rate obtained in the previous
theorem is better than the traditional 1/2 rate obtained in the Berry–Esséen
theorem, a rate of convergence result for the classical central limit theorem.
This “good” rate and properties of the function M (see [9]; the article is
currently under final revision before publication and will contain a better
bound than M(s0) on the right hand side of the inequality) help explain, at
least at an intuitive level, why the approximation works well in practice.

While it is important to understand the situation in the case where the
covariance structure of the data is the identity matrix, it is clear that in
practice this is rarely the case. To compute the power of our tests, or to
understand how biased our statistics might be, we need to investigate the
case where the covariance is not Id.

2.2.2. The case of Σp 6= Idp

Investigations of this situation have only started recently, the first results
being obtained by Baik, Ben Arous and Péché in [4]. The only known
results assume that the entries of the matrix X are complex normal. Note
that even this situation is not fully understood as there is a wide range of
possible behavior for Σp. [4] investigates the situation where Σp is a finite
perturbation of Idp. By this we mean that the eigenvalues of Σp are all equal
to 1, except for a finite number, k, that is fixed in the asymptotic analysis.
In other words, we have λ1(Σp) ≥ λ2(Σp) ≥ . . . ≥ λk(Σp) > λk+1(Σp) =
. . . = λp(Σp) = 1.
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The authors of [4] discovered — among many other things — a very
interesting phase transition picture for the behavior of the largest eigenvalue
of X∗X/n under the aforementioned assumptions. Essentially, when λ1 is
“far enough” from 1, l1, properly centered and scaled, behaves like the largest
eigenvalue of a matrix belonging to the m1×m1 Gaussian Unitary Ensemble,
where m1 is the multiplicity of λ1. When λ1 is “close enough” to 1, then
l1 is asymptotically Tracy–Widom, with the same centering and scaling as
in Theorem 3. In between, it behaves according to new distributions found
in [4]. To make this statement precise, we present a simple version of the
main theorem in [4]. We focus only on the case where m1 = 1, as it leads
to the most familiar distributions. (It is a very reduced version of the main
theorem in [4], where more information can be found.)

Theorem 7 (Baik–Ben Arous–Péché) Let the rows of the n× p matrix
X be i.i.d NC(0,Σp). Let l1 be the largest eigenvalue of X∗X/n. Assume
that Σp is a finite perturbation of Idp.
Assume that λ1(Σp), the largest eigenvalue of Σp has multiplicity 1. Let us
call ρn = p/n and assume that, as n goes to ∞, η ≤ ρn ≤ 1, for some η > 0.
If for some ε > 0, λ1 > 1 +

√
ρn + ε, and λ1 is uniformly bounded as p and

n go to ∞,
√

n
l1/λ1 − (1 + p/(n(λ1 − 1)))
√

1 − p/(n(λ1 − 1)2)
⇒ N (0, 1) .

If for some ε > 0, λ1 < 1 +
√

ρn − ε,

n2/3 l1 − (1 +
√

p/n)2

(1 +
√

p/n)(1 +
√

n/p)1/3
⇒ TW2 .

If λ1 = 1 +
√

ρn, then

n2/3
l1 − (1 +

√

p/n)2

(1 +
√

p/n)(1 +
√

n/p)1/3
⇒ F1 ,

where F1 is a generalized Tracy–Widom distribution.

This result raises many questions: how “natural” is the Tracy–Widom limit
for the largest eigenvalue of random covariance matrices? In other words,
when the limit is Tracy–Widom, does the large amount of symmetry still
found in the problem when assuming that the covariance structure is a finite
dimensional perturbations of Id play an important role? Naturally, we may
also wonder how important is the assumption that Σp is a finite perturba-
tion of Idp. Or try to understand the bias in l1 when Σp is not a finite
perturbation of Id. These types of questions are investigated in [10]. The
main result of this paper can be stated as follows:
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Theorem 8 (NEK) Let us consider X, an n × p matrix whose rows are
i.i.d NC(0,Σp). Let λ1 be the largest eigenvalue of Σp and λp the smallest
one. Let Hp be the spectral distribution of Σp. Let c be the unique solution
in [0, 1/λ1(Σp)) of the equation

c = c(Σp, n, p) , c ∈ [0, 1/λ1(Σp)) :

∫
(

λc

1 − λc

)2

dHp(λ) =
n

p
.

We assume that n/p ≥ 1 is uniformly bounded, and that lim supλ1 < ∞,
lim inf λp > 0, and lim sup λ1c < 1. We denote by G the class of models
{(Σp, n, p)} for which these conditions hold. We call

µ =
1

c

(

1 +
p

n

∫

λc

1 − λc
dHp(λ)

)

, and

σ3 =
1

c3

(

1 +
p

n

∫
(

λc

1 − λc

)3

dHp(λ)

)

.

Let l1 be the largest eigenvalue of X∗X/n. Then we have, when the covari-
ance model is in G and n goes to ∞,

n2/3 l1(X
∗X/n) − µ

σ
⇒ TW2 .

(Both µ and σ are functions of (Σp, n, p) but we dropped this dependence
for the sake of clarity.)

The relevance of this result depends, of course, on how large G is. As
shown in [10], G contains a large number of models found in applications.
Among others, the situation where Hp is a finite sum of atoms (i.e. diracs)
having a mass that does not go to 0 when p tends to ∞ is covered by the
theorem. This means that the Σp = Idp is a subcase of Theorem 8.

It also means that asymptotics done at “fixed spectral distribution” are
in the realm of application of the theorem. By asymptotics at fixed spectral
distribution we mean that Hp is fixed in the asymptotic analysis. (Con-
cretely, in this situation, we assume that Σ2p has the same eigenvalues as
Σp, and their multiplicity in Σ2p is twice what it is in Σp. It is then clear
that H2p(Σ2p) = Hp(Σp).) This type of procedure is practically appealing
as it is a minimal assumption made about the sequence Hp and one that,
practitioners hope, lead to good approximations to the finite dimensional
behavior of the statistics of interest. In particular, this assumption is often
made, at least implicitly, in numerical implementations of results in [18,20],
and [21] relating the Stieltjes transform of the limiting spectral distribution
of X∗X/n to certain integrals computed against the limit H of Hp as p tends
to ∞.
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Another class of covariance models often found in applications that be-
longs to G is that of well-behaved Toeplitz matrices. A Toeplitz matrix T
is a matrix for which Ti,j = t(i − j), for a certain function t. It is shown
in [10] that finite order Toeplitz matrices, i.e. Toeplitz matrices for which
t = 0 is |i − j| > l0 for a certain l0, generally belong to G. One can also
check that AR(1) matrices, i.e. t(k) = rk for a certain r are also in G, if
|r| 6= 1. Finally, a number of finite perturbations of matrices in G are also
in G. For more general criteria for belonging to G and more details, we refer
the reader to [10].

Statistically speaking, the last theorem gives us a way to compute the
power of tests based on the largest eigenvalue of sample covariance matri-
ces for a large class of alternatives. Note that at this point, the theorem is
restricted to the complex case situation. Nevertheless, simulations seem to
indicate that the same results might hold in the real case for normal vari-
ables, after we replace TW2 by TW1 as the limit appearing in the theorem.
The centering and scaling sequences should be left unchanged.

3. A statistical application

In this last section, we revisit a fairly classical statistical problem by
making use of the theoretical results we presented above. The problem we
will look at from this new perspective is that of testing for white Gaussian
noise in time series analysis.

White Gaussian noise is an essential driving element of most time series
models. Often, the last step of a model building process will be to check
whether residuals are white noise. Numerous approaches exist. A basic and
often advocated one is the Ljung–Box statistic.

Let us describe the problem in slightly more detail. We call {εt} the
white noise time series, and ρk the lag k autocorrelation of the abstract time
series we are considering. We have T points. To test the null hypothesis
H0 : ρ1 = ρ2 = . . . = ρm = 0, Ljung and Box [17] (see [25], p. 25) propose
to use the statistic

Q(m) = T (T + 2)

m
∑

k=1

ρ̂2
k

T − k
.

Under the assumption that the series at stake is i.i.d and satisfies certain
moment condition, it can be shown that Q is asymptotically chi-squared.
According to [25], choosing m ≃ ln(T ) gives better power in simulation
studies. Note also that Q arose historically from modification of another
statistic and was supposed to increase the power in small sample sizes.

Even though the Ljung–Box statistic is a basic tool and is widely used, it
is also known to be rife with problems. For a quick introductory discussion
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and the opinion of a practitioner, the reader is referred to [6], Section 4.7
on residual analysis, pp. 67–70. In his words, “[. . . ] these tests have rather
poor power properties and in my experience rarely give significant results
[. . . ]”. The situation is strikingly well-suited for the tools we talked about
in the previous two sections.

To check whether or not the residuals ǫt are effectively a sample from
Gaussian white noise, we propose to use the methodology described in Ta-
ble II.

TABLE II

Methodology for white noise test.

1. Organize the ǫt’s in an n × p matrix, X, in row-major order

2. Compute l1, the largest eigenvalue of X̃ ′X̃ , where X̃ is a matrix derived
from X(see below)

3. Estimate the variance σ̂2 of the ǫt’s

4. Compare the behavior of l1 with the one expected under the Tracy–Widom
approximation, and use the Tracy–Widom rejection region

The description given in Table II is a little vague so let us make it more
precise.
• Choice of n and p. There are two issues we need to pay heed to. First,
it is clear that the procedure we propose will lead to discarding some data.
Our first objective is to discard as few data points as possible. So np should
be close to T , the total number of observations. Second, the ratio p/n (as-
suming from now on that p < n) will affect the power of our test. This is
clear from either Theorems 7 or 8. Note that Theorem 7 essentially asserts
that the indifference zone of a test of the type we propose is (in the complex

case and finite perturbation of Id setting)
√

p/n. In other words, if the

largest eigenvalue of the true covariance matrix is smaller than 1 +
√

p/n,
the fluctuation of the largest eigenvalue of the empirical covariance matrix is
asymptotically indiscernible from its counterpart when the true covariance
matrix is Idp. So we want np close to T and p/n small.

• Choice of X̃. If we kept X and there was correlation in the data, we
would be at risk of having correlation across both rows and columns. Since
it is unclear at this point how correlation between rows would affect the
results, we prefer to be safe and hence we choose to discard, say, one out of
two rows when going from X to X̃. This way it is unlikely that for a rea-
sonable (i.e. large enough) choice of p, we will encounter correlation within
one column. Of course, discarding so many data points is questionable if
one does not have much data, but it will not be a problem in the example
we give below.
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• Estimation of the variance of the ǫt’s. We can try at least two
simple approaches. The first one, and the least favored, would be to com-
pute the empirical variance of the ǫt’s. This is a problem if one column
has significantly more variance than others, or if there are big outliers. A
more robust approach (if the user has reasonable confidence in the Gaus-
sian and mean 0 assumptions) is to use a robust estimator of the type
σ̂ = median(|ǫt|)/0.6745.
• Comparison of behavior with Tracy–Widom approximation.

Once we have l1 and σ̂, we can make a one sided test at level α (=5%,
for instance) to check how likely it is that one would observe such a value
of l1 under the null hypothesis that the covariance matrix of the data is
Idp. The choice of the one-sided test is based on the fact that the quality of
the Tracy–Widom approximation is really excellent in the upper tail of the
distribution, whereas the lower tail match is not as good.

3.1. A worked-out example

Here we present an application of the methodology outlined above on
a real dataset. We fit a Gaussian innovation-GARCH (1,1) model to daily
Hewlett–Packard log returns and check one aspect of the adequacy of the
model by looking closely at the standardized residuals, which, of course, are
supposedly i.i.d N (0, 1). The data was found through [25]; it is provided
on the book web site, datasets corresponding to Chapter 2. The range
is January 1980 to December 1999 and we have 5056 observations. We
obtained the standardized residuals through the Matlab commands given in
the Appendix.

The standardized residuals are plotted in figure 3. Beside a few big
outliers, it is visually not clear whether one should reject the null hypothesis
that this series is actually i.i.d Gaussian noise. The standard procedure is
then to check the Ljung–Box statistic, which we did through the Matlab

commands given in the Appendix. Based on this analysis, it would seem
that the model is adequate: we could not reject the hypothesis that there
was no correlation in the data.

Motivated by the doubts raised in [6] and elsewhere, we performed an
alternative analysis, using our random matrix methodology. We chose n =
561 and p = 9, as the Ljung–Box heuristic for choosing m (and described at
the beginning of the section) seemed to indicate that p = 9 was a reasonable

choice. We then discarded the even rows from X to get X̃.

The first diagnostic is then to look at the Wachter plot (first proposed
in [26]): we plot the values of the ordered eigenvalues against the quantiles
of the Marčenko–Pastur law. If the data were i.i.d, i.e. the covariance matrix
was Id9, we should observe a straight line. What we see in figure 4 is, again,
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Fig. 4. Wachter plot for the HP residuals data.

hard to judge by Wachter-plot standards, and fluctuation behavior is really
needed here to help us decide whether or not the model is acceptable. We
therefore proceeded to compute the value of the natural test statistic under
the Tracy–Widom approximation. Given the presence of two huge outliers
that might have contributed up to 5% of the value of σ2, we decided to use
the median rule to measure σ̂. We did this knowing that the innovations had
to be Gaussian, and so it was consistent with our model building procedure.
It also provided an independent “verification” of σ̂ since the GARCH (1,1)
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model forces a value of σ̂ ≃ 1 (using the standard estimate of variance),
by construction of the fitting algorithm. We found that, for our data,
σ̂ = 0.8642, and hence the “Tracy–Widom” score was 9.9554, while the 99-th
percentile of the distribution is only 2.0234. Concerned that we might have
been too harsh on the data, we also used the standard estimate of variance,
found σ̂ = 0.9822 and a Tracy–Widom score of 1.1895. The 95-th percentile
is at .9793, so we again would reject at level α = 5%. We arrived at the
same conclusion when we re-centered the columns of the matrix (which, by
standard statistical arguments found in [2], p. 76 does not change the na-
ture of the covariance matrix and just requires adjusting the parameters
in the test). This is in stark contrast with the conclusions reached by the
Ljung–Box statistic.

A thorough statistical analysis would require further investigation about
this discrepancy. In the absence of universality result in the case of Σp = Idp,
we would have to look at departure from normality problems for the stan-
dardized residuals. Stationarity issues would also have to be investigated.
A detailed statistical analysis is nevertheless not the point of this example;
what we saw is that simple random matrix methodology was able to ring
a warning bell about the adequacy of the model, in a situation where the
classical procedures seemed to indicate that the model was acceptable.

While this is in some sense an isolated data analytic example, we hope
that it will help convince the reader of the real world relevance of the re-
sults obtained recently about the behavior of the largest eigenvalue of large
covariance matrices.

The author wishes to thank the organizers of the conference for their
invitation. He is also grateful to Iain Johnstone, David Donoho, Persi Dia-
conis and Alice Whittemore for help, advice and support at different stages
of the projects that are presented here. This work started when the author
was a graduate student at the Department of Statistics, Stanford University
and was supported in part by NSF grants DMS-0077621, ANI-008584(ITR)
and DMS-0140698.

Appendix A

Matlab commands for data analysis

For the sake of reproducibility, we provide the simple commands we used to
get the plots (and statistics) mentioned in Section 3. As we said earlier, the
raw data is available online.

We got the standardized residuals by using the standard GARCH pack-
age in Matlab. The session reads:
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>> load hpLogReturns

>> [Coeff,Errors,LLF,Innovations,Sigmas,Summary]

= garchfit(hpLogReturns);

>> plot(Innovations./Sigmas,’.’)

>> stdRedHP=Innovations./Sigmas;

We then computed the Ljung–Box statistics, also using the standard
Matlab functions. Here is the command and its output: (an H — read on
even lines — of 0 corresponds to non rejection)

>> [H,P]=lbqtest(stdRedHP,[6:15]’);

>> [H,P]’

ans =

0 0 0 0 0

0.1451 0.1776 0.2479 0.3154 0.3455

0 0 0 0 0

0.3486 0.4235 0.5041 0.5659 0.6284
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