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We compare the dynamics of nonlinear noisy oscillators near the two
types of the Hopf bifurcation. Prior to the bifurcation, in the regime of
damped oscillations around the stable focus, noise serves as a bifurcation
precursor: the power spectrum includes a peak at the frequency of the
self-sustained oscillations. Super- and sub-critical Hopf bifurcations differ
crucially in the noise dependence of the width of this spectral line. In
case of a super-critical bifurcation the width is a monotonically growing
function of the noise intensity. In contrast, for a sub-critical bifurcation,
growth of the intensity of the weak noise enforces a decrease of the peak
width; the width starts to grow only when the noise level exceeds a certain
threshold value. Since the inverse spectral width is a measure of coherence,
we conclude that true noise-induced coherence can be found only near the
sub-critical bifurcation.

PACS numbers: 05.40.Ca, 05.45.–a, 42.65.Sf

1. Introduction

For obvious fundamental and practical reasons, complicated interplay
of stochastics and dynamics near the onset of oscillations remains a highly
relevant topic [1–5]. Implications of noise affect dynamical aspects of many
phenomena in physics, chemistry and biology, from mechanisms behind the
climatic variability [6] to distinction of frequencies in mammalian auditory
systems [7,8]. The constructive role of noise is well seen in the phenomenon
of coherence resonance (CR) [9–11]: at a certain, finite noise level the noise-
induced oscillations attain a maximum degree of coherence.
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CR is enrooted in the interaction between nonlinearity and noise. Es-
pecially well this interaction has been examined theoretically and verified
in experiments for excitable systems [10, 11]: systems with stable steady
states, finite perturbation thresholds for “firing”, and refractory periods dur-
ing which they do not respond to perturbations. Under the action of noise,
such systems display quasi-regular spiking sequences; an adequate theory of
this effect neglects the amplitude fluctuations and reduces the description
to simple phase dynamics [12].

Another context in which CR plays an important role is the influence
of noise upon dynamics close to bifurcations. Here, noise manifests itself in
the form of “precursors” of bifurcations: additional peaks in the power spec-
tra. At a certain noise intensity such precursors become especially distinct;
this is often interpreted as increase in coherence. Numerically, this phe-
nomenon has been studied for the period-doubling bifurcation and the torus
birth [13]. Close to the onset of a super-critical Hopf bifurcation, resonance-
like behavior has been recovered in computer simulations [14–17], detected
in experiments on plasma waves [18,19] and electro-chemical reactions with
nickel and platinum [20]. Recently, CR in a semiconductor laser near the
Hopf bifurcations has been experimentally investigated in [21], where noise-
induced resonances occur for both the sub- and super-critical bifurcation
type. However, the specific response has been found to depend crucially on
the character of the bifurcation.

Below, we examine systematically the prototype case of the Hopf bifurca-
tion: the super- and the sub-critical one, and check whether one can indeed
speak about the improvement of coherence. Analysis of the noisy dynamics
in a simple canonical model discloses qualitative differences between the two
types of the bifurcation. Theoretical conclusions well match the results of
the numerical simulation and display a remarkable correspondence with the
experimental data.

2. Dynamical model and its power spectra

Onset and enhancement of self-sustained oscillations can be successfully
modeled by the complex differential equation

ż = −iω0z + zF (z) , (1)

used in many different contexts, e.g. to describe a self-sustained oscillator in
laser in the rotating wave approximation [22]. Here z = x + iy is a complex
amplitude, ω0 is the eigenfrequency. In fact, the model (1) is a normal
form for the Andronov–Hopf bifurcation, obtained from a generic dynamical
system near the bifurcation point by standard reduction technique (see [23]
for details); examples of applications range from the Van der Pol equation
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to the Lang–Kobayashi mean field equations with delay for lasers. The
bifurcation scenario depends on the non-linear function F (z). For the super-
critical Hopf bifurcation, F (z) takes the form

F (z) = F1(r) = a1 − r2 (2)

with r = |z| =
√

x2 + y2; at a1 = 0 the equilibrium at |z| = 0 gets destabi-
lized, and the stable limit cycle is born from it. Alternatively, the sub-critical
Hopf bifurcation is rendered by

F (z) = F2(r) = a2 + r2 − r4 . (3)

Here, the increase of the parameter a2 results, first, in the birth of the finite-
amplitude oscillatory state at a2 = −1/4 and, second, in the destabilization
of equilibrium at a2 = 0. The former event is the saddle-node (tangent)
bifurcation which creates on the phase plane two limit cycles: the stable and
the unstable one. The latter event is the Hopf bifurcation: the unstable limit
cycle shrinks to the equilibrium which, thereafter, inherits its instability. In
the parameter range between two bifurcations the system has two attractors:
the equilibrium and the stable limit cycle.

Certain experimental systems can be tuned close to a state in which
the branching coefficient vanishes and the onset of oscillatory mode changes
from super- to sub-critical; this behavior was reported e.g. for semiconductor
lasers with active feedback [24]. While modeling such situations, both of the
above types of nonlinearities should be treated1.

Below, we set ω0 = 1 and fix the values a1 = −0.01 and a2 = −0.3,
respectively. This choice adjusts the system before the birth of self-sustained
oscillations, z = 0 being a stable fixed point and dr/dt < 0 everywhere
outside this point. The latter inequality rules out excitability, since the
amplitude of any perturbation monotonically decays. Note that a reduced
phase description is not sufficient in the present case, and the full amplitude
dynamics has to be treated.

In the presence of noise the model turns into:

ż = −iω0z + zF (z) +
√

2Dξ(t) , (4)

here ξ(t) = ξx(t) + iξy(t) represents a complex white noise source with
intensity D and two independent components.

Though of general nature, the model (4) accounts, in particular, for
the essential features of a laser. Recently this has allowed us to relate our
results to experimental findings [21]. In the first operation point a stable

1 Qualitatively, both scenarios can be unified within a single two-parameter description;

for our current purposes, their separate treatment is sufficient.
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focus “almost” gives birth to a limit cycle, whereas, in the second case the
laser is close to a saddle-node bifurcation of periodic states, after which a
stable fixed point and a stable limit cycle coexist.
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Fig. 1. Power spectra Sx(ω) for different levels of noise. Data are normalized

to their maximal values. Dots: experimental points, solid lines: Lorentzian fits.

(a) Super-critical bifurcation. Curves: 1 — noise intensity beneath maximum of β,

2 — maximum of β, 3 — beyond maximal value of β. (b) sub-critical bifurcation.

Curves: 1 — noise intensity beneath minimum of width ∆ω, 2 — minimum of ∆ω,

3 — beyond minimal value of ∆ω.

In a noisy experimental setup, a precursor of the bifurcation manifests
itself as a noise-induced peak in the power spectrum of system response. In
the experimental data, the peaks in the power spectra were fitted through
Lorentzian line-shape function [21]. Several typical power spectra for numer-
ically computed trajectories of (4) are presented in Fig. 1. The computed
power spectra are also fitted by Lorentzian functions. Note, that these func-
tions approximate the noise-induced spectral peak quite accurately.

The quantitative characteristics of the spectral response are the peak
frequency ωP, the full width at half maximum 2∆ω, and the peak height
H. The Fourier transformation translates the width ∆ω into the correlation
time τc ∼ 1/∆ω. The quality factor Q = ωP /∆ω is an inverse function
of the width. A measure characterizing the noise-induced response is the
signal-to-noise ratio [9, 11, 13]

β = HQ =
HωP

∆ω
. (5)

Spectral characteristics obtained from numerical simulation of (4) are sum-
marized in Fig. 2. Resonance-type response is found for both kinds of bi-
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furcation and, even more strikingly, width and peak height exhibit the same
qualitative behavior for the sub- and super-critical type as observed in the
experiment.
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Fig. 2. Peak height H , width ∆ω, and signal-to-noise ratio β versus noise intensity

D. Left column: super-critical bifurcation, F = F1. Right column: sub-critical

bifurcation, F = F2. Empty circles represent the results of numerical simulations

of (4), curves are obtained from the analytical treatment.

3. Explicit estimates and discussion

Some more insight into the nature of the observed effects can be obtained
by analytical treatment. Rewritten in terms of the variable w = u + iv =
z exp(iω0t), Eq. (4) turns into

ẇ = wF (w) +
√

2Dξw(t) , (6)

where the noise ξw(t) shares the properties with ξ(t). The spectrum S of
the variable x (or y) at ω > 0 is related to the spectrum of the variable u
(or v) by Sx(ω) = Su(ω + ω0)/2. Experimental and numerical data suggest
usage of the Lorentzian ansatz

Su(ω) =
2D

π(∆2
ω + ω2)

. (7)

For this parameterization, width and peak height are interrelated by
H = 2D/(π∆

2
ω). The width is determined by the Parseval theorem, which
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provides in combination with a Lorentzian spectrum

∞
∫

−∞

Su(ω)dω =
2D

∆ω
= 〈u2〉 =

〈r2〉
2

,

hence

∆ω = 2
D

〈r2〉 , (8)

〈r2〉 =

∞
∫

0

r2P (r)dr . (9)

The amplitude r has a Rayleigh-like distribution [1, 22]

P (r) = Nr exp

(

−U(r)

D

)

, (10)

N being a normalization constant. The potential U(r) = −
∫

rF (r)dr is
given by U1(r) = −a1r

2/2 + r4/4 for the super-critical bifurcation and by
U2(r) = −a2r

2/2− r4/4+ r6/6 for the sub-critical case. For U1(r), the inte-
gral (9) can be written explicitly in terms of exponential and error functions:

∆
(1)
ω =

2
exp(−a2

1
/8D)

√
Dπ[1−erf(−a1/

√
8D)]

+ a1

2D

. (11)

In the relevant range of D, a sufficiently accurate approximation for the
spectral width is

∆
(1)
ω

∼= −a1

2
+

√

a2
1 + 12D

2
. (12)

Accordingly, ∆
(1)
ω stays practically constant for small noise and increases as√

D at larger D (Fig. 2(a)). The peak height, on the other hand, grows
initially like H ∼ D and saturates for stronger noise (Fig. 2(b)). This
behavior of the width and the height results in a maximum of β at certain
D (Fig. 2(c)).

In the sub-critical case, the integral (9) has to be evaluated numeri-
cally. Since the maximum of the distribution (10) shifts to larger r with the
growth of D, the level of noise determines the range of the function U2(r)
which makes the crucial contribution into the integral. For small noise lev-

els, the term ∼ r2 dominates and, consequently, ∆
(2)
ω is nearly constant as
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in the super-critical case. For moderate noise, the second term acquires im-
portance, and the potential becomes almost a linear function U2 ∼ r so that

∆
(2)
ω ∼ D−1 decreases when the noise grows. Eventually, the third term in

U2 takes over, producing again an increase ∆
(2)
ω ∼ D2/3. In this way, the

spectral width turns out to be a non-monotonic function with a distinct min-
imum at certain noise level. The correlation time of the system in this case
possesses a maximum. This manifestation of coherence resonance reminds
the system response for the excitable CR [10], with an important distinction:
here the noise-induced peak appears at infinitely small noise level, whereas
at CR in an excitable system it requires a finite noise intensity, that leads
to a sharp transformation of the spectrum.

Apparently, this effect is not restricted to the particular form of F2 used
above. Its mechanism — competition between the destabilizing term ∼ r2

and a higher-order stabilizing term — is generic for sub-critical bifurcations.
We explain the differences between super- and sub-critical cases by the

following arguments. First, we note that the damping of (4), function F (r),
is related to the value of the second derivative of the amplitude potential:

d2U(r)

dr2
= −F (r) − r

dF

dr
; (13)

locally, d2U(r)/dr2 defines a relaxation time of the system (4). Second,
since the amplitude r is distributed according to (10), its mean value 〈r〉,
as a function of D, moves from small to large values when the noise be-
comes stronger (see Fig. 5). In other words, for different intensities of noise,
oscillations occur in regions with different local curvature of the potential
U(r).

For super-critical case d2U(r)/dr2 is a monotonically increasing function
of r and, consequently, of the noise intensity D. In the region of weak
noise, it almost does not grow, and we observe noise-induced oscillations
with larger amplitude and nearly the same coherence properties (compare
Fig. 3(a) and (b)). This can be related to phase dynamics via the number
and statistics of the zero-crossings of the trajectory. After d2U(r)/dr2 is
noticeably increased, the coherence gets lost (Fig. 3(c)), i.e. zero-crossings
become rather disordered.

For sub-critical case the damping d2U(r)/dr2 is a non-monotonic func-
tion of r: in the range of moderate amplitude r it is decreasing. Accordingly,
when the trajectory of the system visits the region with low damping, we
observe time intervals of oscillations with high coherence (compare Fig. 4
(a) and (b)). For large noise intensity, d2U(r)/dr2 is significantly increased,
and coherent oscillations do not occur.

Nonlinearity in the amplitude equation is related to nonlinearity in damp-
ing. Before the super-critical Hopf bifurcation the damping is minimal in the
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Fig. 3. Numerical trajectories for different levels of noise in the case of super-critical

bifurcation. Panel (a) corresponds to noise intensity beneath the maximum of β,

(b) — maximum of β, (c) — beyond maximal value of β.
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Fig. 4. Numerical trajectories for different level of noise in the case of sub-critical

bifurcation. Panel (a) corresponds to noise intensity beneath minimum of the width

∆ω, (b) — minimum of ∆ω, (c) — beyond minimal value of ∆ω.

fixed point, whereas before the sub-critical bifurcation the minimal damping
values take place outside the fixed point, in the region where a limit cycle
arises. Consequently, the main ingredient for the differences between the
manifestations of CR is the difference in the form of dependence of damp-
ing on the coordinate. It means, that similar effects can be observed in
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Fig. 5. Normalized distribution P (r) for different levels of noise. Left panel: super-

critical case. Solid curves: 1 — D=0.0001, 2 — D=0.001, 3 — D=0.01, 4 — D=0.1.

Right panel: sub-critical case. Solid curves: 1 — D=0.0001, 2 — D=0.0006,

3 — D=0.004, 4 — D=0.025, 5 — D=0.04. Dashed lines: shapes of potentials

U1,2(r) (arb. units). Dotted lines: profiles of d2U1,2/dr2 (arb. units). Maxima of

distributions are marked by circles.

oscillators with particular form of nonlinear damping term, whereby such
oscillators may not demonstrate bifurcations and regimes of self-oscillations.

In conclusion, we have demonstrated that resonance phenomena driven
by noise are general concomitant features of a Hopf bifurcation. However,
while the existence of an optimum noise level is a common feature for both
types of bifurcations, the physics behind the resonance effect is qualitatively
different. In the super-critical case, the increase of the signal-to-noise ratio
is produced by the spectral peak height, that is by an increase of the oscil-
lation amplitude. The width is initially only slightly affected, but increases
steeply for stronger noise, weakening the coherence. Resonance-like behav-
ior originates from the competition between the growth rates for the height
and the width. In contrast, for the sub-critical type, the spectral width it-
self exhibits a minimum. Here, the noise improves indeed the quality factor
as well as the temporal coherence of the oscillatory transients. In a strict
sense, only this kind of response should be termed “coherence resonance”.
These qualitative differences between the sub- and super-critical case are re-
lated to amplitude dynamics, whereas the effect of noise on the frequencies
is insignificant. The degree of coherence depends on the effective damp-
ing, determined by the local value of d2U(r)/dr2 at the maximum of the
amplitude distribution. Growth of the noise shifts this maximum towards
larger r. In the super-critical case, the damping is a monotonic function of
the amplitude and, hence, of the noise. The sub-critical case is distinguished
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by a non-monotonic relation between the local slope of the potential and the
noise intensity. Accordingly, in a certain intermediate range of noise, weakly
damped coherent oscillations with moderate amplitudes are excited.
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