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1. Introduction

The construction and the function of ultra-small hybrid structures
present exciting challenges for future electronics which will build on cir-
cuits composed of mesoscopic and nano-elements. Such circuits consisting
of molecular wires and loops interrupted by junctions are promising for im-
plementation in a quantum computer [1]. They represent one of the currently
studied candidates for solid-state qubits [2]. The geometry of mesoscopic and
nano-systems plays a crucial role as it determines also their properties [3,4].
Typical examples that come to mind are the Bohm–Aharonov oscillations in
conductance [5], persistent currents [6–8] and the Fano antiresonances [9]. A
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topologically induced persistent current can occur in the presence of a mag-
netic flux in systems of a cylinder (ring, toroid) geometry. It is a consequence
of the phase coherence of electrons and the sensitivity of the wave function
to boundary conditions caused by a magnetic flux threading a cylinder or
ring. Various aspects of this phenomenon have been theoretically studied in
both, single and coupled as well as open and multichannel rings, including
the repulsive electron–electron interaction, spin–orbit scattering, equilibrium
or nonequilibrium fluctuations and noise [10, 11]. Several experiments con-
firmed the existence of persistent currents and, as well at least in parts, the
theoretical predictions [12]. However, plenty of questions and open prob-
lems still remain. One such prominent question is why the experimentally
observed currents are much larger than the theoretically predicted values.
In this context, it is worth to note that the above mentioned experiments
were performed in time-dependent periodic fields. For a non-zero frequency
of periodic fields, it is reasonable to expect some extra contribution to the
magnetic response of rings.

Motivated by the experimental findings, triggered us to study meso-
scopic, topologically induced currents that are driven by external, time-
periodic magnetic fields. Our model detailed in [13] reduces to a classi-
cal Langevin equation with a quantum-corrected effective potential, which
at sufficiently low temperatures can assume a multi-stable shape. In the
presence of periodic fields, we then can expect novel phenomena such as
the Stochastic Resonance phenomenon [14, 15], an enhancement of escape
rates [16,17] or the effect of resonant activation [18]. According to the ’com-
mon wisdom’, the non-linear behavior of the ensemble-averaged output of
the periodically driven system as a function of the temperature in the pres-
ence of both multi-stability of the potential and thermal fluctuations is at the
heart of the Stochastic Resonance effect [14], possessing many applications
also in biological physics [15]. We describe next our model which describes
the time-evolution of a magnetic flux threading a cylinder. A Fokker–Planck
equation corresponding to the Langevin equation is solved numerically and
the results are depicted. We analyze the response of the system to the
time-periodic magnetic field. A summary is given at the end of this work.

2. Evolution equation for the magnetic flux

Our model system consists of a cylinder which is formed by a collection of
rings — constituting the individual current channels. There are Nz channels
in the direction of the cylinder axis and Nr in the direction of the cylinder
radius. We assume that the thickness of the cylinder wall is small compared
with the radius of the cylinder. Because of the mutual inductance between
rings, the current in one ring induces a flux in the other rings. In turn,
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the flux induces a current. We assume that the rings are not contacted.
Therefore, there is no tunneling of electrons among the channels and the
charge carriers moving in the different rings are independent. It has been
shown [19] that the effective interaction between the ring currents, when
taken in the self-consistent mean field approximation, results in a magnetic
flux φind = LItot being felt by all electrons. Here, L denotes the cylinder
inductance and Itot is the total current in the cylinder. At temperatures
T > 0, the total magnetic flux φ consists of a sum of the external flux
φext and the flux φind stemming from the total current. The latter is a
sum of the dissipative ‘normal’ Ohmic current Inor and the non-dissipative
persistent current Icoh, resulting from the presence of the ‘phase-coherent’
electrons in the system [13,20], i.e. it assumes the form:

φ = φext + LItot = φext + L[Inor(φ, T ) + Icoh(φ, T )] . (1)

Note that φext ≡ φext(t) is induced by an external magnetic field and can
either take a fixed value or can be a time-dependent function. Taking into
account an explicit form of the “normal” current, as it follows from the Lenz’s
and Ohm’s rules complemented with the Johnson–Nyquist noise term [21],
Eq. (1) reads [13, 20]

1

R

dφ

dt
= − 1

L
[φ − φext(t)] + Icoh(φ, T ) +

√
2kBT

R
Γ (t) , (2)

where R is the resistance of the cylinder, kB is the Boltzmann constant
and Γ (t) denotes a zero-mean Gaussian delta-correlated white noise of unit
intensity; i.e., 〈Γ (t)Γ (s)〉 = δ(t − s), modeling the Nyquist equilibrium
current noise. This equation takes the form of a classical Langevin equation.
The dimensionless form of (2) reads [13]

ẋ = −V ′(x, t̃) +
√

2D Γ̃ (t̃) , (3)

where the dot denotes a derivative with respect to the re-scaled time t̃ = t/τ0

with τ0 = L/R being the relaxation time of the averaged, normal current.
The prime denotes a derivative with respect to the dimensionless flux x =
φ/φ0, where the flux quantum φ0 = h/e is the ratio of the Planck constant h
and the elementary charge e. The generalized potential reads

V (x, t̃) =
1

2
x2 − λ(t̃)x − i0F (x, p, T ) , (4)

where λ(t̃) = φext(t = τ0t̃)/φ0 is the re-scaled flux induced by an exter-
nal magnetic field. The function F (x, p, T ) =

∫
f(x, p, T )dx characterizes

the coherent current and f(x, p, T ) = pfe(x, T ) + (1 − p)fo(x, T ), where
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fe(x, T ) =
∑∞

n=1
An(T ) sin(2nπx) = fo(x − 1/2, T ). The functions fe and

fo describe the coherent current flowing in the channel with an even and odd
number of electrons, respectively [8]. The amplitudes An(T ) are decreasing
functions of the temperature. Their explicit forms are presented in [8, 13].
The quantity p ∈ [0, 1] denotes the probability of the occurrence of the sin-
gle current channel with an even number of electrons. In the following we
consider the most natural case p = 1/2.

The dimensionless intensity D of re-scaled Gaussian white noise Γ̃ (t̃) ≡√
τ0 Γ (τ0t̃) is

D = D(T ) =
kBT

2ǫ0δ0

=
δ0T

T ∗
, (5)

where the characteristic magnetic energy ǫ0 = φ2
0/2L and the characteristic

noise intensity δ0 = kBT ∗/2ǫ0. The characteristic temperature T ∗ is defined
by the relation kBT ∗ = ∆F/2π2, where ∆F is the energy gap at the Fermi
level. Moreover, the prefactor i0 in (4) depends on the geometry and the ma-
terial properties of the sample [22]. Although formally the above equations
can also be applied to a single mesoscopic ring or toroid, we consider here
a cylinder because in this case the prefactor i0 can assume sufficiently large
value (because i0 ∝ N = NzNr). We choose the parameters of the system
in such a way that the diffusion coefficient D ∼ δ0T/T ∗ for δ0 ∈ [10−3, 10−2]
and i0 = 1. The values of parameters which occur in the amplitudes An(T )
are the same as in [13, 22]. We note that the resistance R does not enter
into the re-scaled equation (3).

As it follows from (1), the total current Itot is linearly related to the
magnetic flux φ, i.e., to the dimensionless flux x. As a consequence, the
properties and behavior of the current follow from the properties and be-
havior of the magnetic flux. From now on, we will use only the dimensionless
variables and omit the ‘tilde’ for the re-scaled time, t̃ ≡ t. The temperature
is measured throughout in units of T ∗.

3. Fokker–Planck equation

The Langevin equation (3) defines a Markovian stochastic process x(t).
Its probability density p(x, t) obeys the Fokker–Planck equation [23]; i.e.,

∂

∂t
p(x, t) =

∂

∂x
V ′(x, t)p(x, t) + D

∂2

∂x2
p(x, t) (6)

with an arbitrary initial condition p(x, 0) and the natural boundary condi-
tions, reading lim|x|→∞ p(x, t) = 0 (this is so because the potential V (x, t)
tends to infinity for |x| → ∞). In the case of a time-independent exter-
nal flux, λ(t) = λ, the corresponding stationary solutions were investigated
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Fig. 1. The generalized potential V (x, t) ≡ V (x) defined by Eq. (4) is depicted in

the absence of the external driving, i.e. when λ(t) = 0 for selected values of the

scaled temperature T/T ∗. Upper inset: The corresponding barrier hight ∆V of the

potential as a function of temperature. Lower inset: The position of the minimum

xM of the corresponding potential as a function of temperature.

in [13,22]. The dynamics of the system approaching thermal equilibrium has
been studied in [24]. In the absence of external driving, i.e. when λ(t) = 0,
the potential (4) can assume either a bistable or monostable behavior, see
in Fig. 1. In the former case, the corresponding stationary probability den-
sity p(x) exhibits two symmetric maxima at (−xM, xM) and a minimum at
xm = 0. In the latter case, it possesses one maximum at xM = 0. The
extremal values are clearly independent of an initial condition p(x, 0). The
non-zero maxima of p(x) correspond to the non-zero self-sustaining station-
ary fluxes and currents.

Let us next study the system dynamics when driven by an external,
time-periodic, oscillatory magnetic field of a frequency ω, i.e. the case when

λ(t) = a0 sin(ωt) . (7)

In this case, the process x(t) becomes a non-stationary stochastic process
and the long-time probability density limt→∞ p(x, t) is a periodic function of
time [14, 15, 25–28]. As a consequence, the statistical averages are periodic
functions of time. In particular, the mean magnetic flux obeys

〈x(t)〉 =
〈
x

(
t + 2

π

ω

)〉
for t → ∞ , (8)

where

〈x(t)〉 =

∞∫

−∞

xp(x, t) dx . (9)
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The probability density p(x, t) has been determined numerically from the
Fokker–Planck equation (6). The evolution of p(x, t) has been calculated
with the time step ∆t = 10−4 starting out from the Gaussian distribution
p(x, 0) = exp(−x2/2σ)/

√
2πσ, with σ = 0.005. The results presented below

correspond to sufficiently large times, when p(x, t) becomes independent of
the initial distribution [25, 29]. In doing so, we have used a grid of 2001
x-points uniformly distributed in the interval [−5, 5]. This interval is much
larger than the half-width of both the initial distribution p(x, 0) and the sta-
tionary distribution pst(x) in the absence of the external force. The partial
derivatives with respect to x-variable have been calculated with the help of
the 5-point formula.

4. Resonant dynamics of the average magnetic flux

In bistable systems driven by a time-periodic forcing signal one can ex-
pect a resonant behavior termed the stochastic resonance [14, 15]: the re-
sponse to the external periodic signal can be maximized by increasing the
intensity of noise up to an optimal value. The phenomenon is well under-
stood and constitutes a prominent example for the constructive role of noise.

In the following we show that there occurs a resonant enhancement of
the output signal in the mesoscopic cylinder to the external, time-varying
magnetic field. This effect is a result of an interplay between coherent and
dissipative currents flowing in the cylinder as well as the periodic driving and
the thermal noise. The phenomenon is somewhat different than the usual
Stochastic Resonance occurring in a bistable system for which the potential
does not depend on temperature [14]. Here, the generalized potential (4) de-
pends on temperature: it is bistable for low temperatures and successively
becomes monostable at higher temperatures. The input signal is character-
ized by the external periodic magnetic flux (7) of amplitude strength a0.
The output signal is characterized by the long-time mean magnetic flux (8),
which as a periodic function of time oscillates between maximal and mini-
mal values. The absolute extremal value b0 = |〈x(t)〉|max compared to the
amplitude a0 denotes the (spectral) amplification factor Af = b0/a0 of the
output signal [14, 25, 26].

Fig. 2 depicts the dependence of the amplification factor on temperature
of the driven system. Different values of the characteristic noise intensity δ0

in (5) correspond to different characteristics of the cylinder, i.e. to different
set-ups (cf. Eq. (20) in [22]). One can notice that there is an optimal
temperature at which the output signal is maximal with the corresponding
amplitude b0 of the output being several times larger than the amplitude
a0 of the input. This Stochastic Resonance enhancement can be caused
either by the occurrence of the bifurcation of the time-dependent solution
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Fig. 2. The amplification factor (see in text and in Ref. [25]) is depicted vs. the

scaled temperature for several values of the noise intensity δ0 and a fixed driving

strength a0 = 0.01. The vertical line depicts the critical temperature above which

the generalized potential V (x) in Fig. 1 becomes monostable.

or by noise. In the former case it is induced by the deterministic crossing of
the potential barrier occurring at sufficiently high temperatures or also for a
sufficiently large driving amplitude a0 (note the inset in Fig. 1). This effect is
detectable for small noise amplitudes, e.g. for δ0 = 0.001 in Fig. 2. The noise-
dominated situation corresponds to larger values of δ0; then the resonant
enhancement is due to the standard stochastic resonance mechanism. In the
intermediate regime one can not distinguish whether the enhancement of the
magnetic flux is caused mainly by ‘deterministic’ driving or synchronized
‘stochastic’ escape events.

There is a natural question how the observed resonance-behavior de-
scribed above is related to the model Stochastic Resonance in continuous or
discrete systems in the limit of small (with respect to both noise and the
barrier) driving amplitude and small (with respect to the barrier height)
noise intensity. The second assumption justifies the approximation of the
rate by the so called Kramers rate [16, 17]. The leading linear response ap-
proximation for the amplification factor is given then by the relation [14,25]:

Af =
〈x2〉|a0=0

D(T )

2rk(T )√
4rk(T )2 + ω2

, (10)

where rk is the Kramers escape rate [16,17] with temperature T as a control
parameter. The comparison between the precise numerical results and the
linear response approximation (10) is presented in Fig. 3. Notice that the
approximation (10) allows to predict the position of peaks of Af with surpris-
ingly good accuracy although the used parameters of the system dynamics
are beyond of the range of validity of Eq. (10) [14].
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Fig. 3. The comparison of the Stochastic Resonance as quantified by the amplifi-

cation factor between the numerical data with the analytic linear response formula

(10), labeled by A.

The mean energy carried by the magnetic flux is one of the main char-
acteristics of the system. It is proportional to the second statistical moment
〈φ2(t)〉 ∼ 〈x2(t)〉. In the long time limit, it is also a periodic function of time,
i.e., 〈x2(t)〉 = 〈x2(t + 2π/ω)〉. In some range of parameters, we could ob-
serve a non-monotonic behavior with a local minimum being exhibited as a
function of temperature. Indeed, when the noise parameter δ0 is sufficiently
small, i.e. when the coherent current dominates over the dissipative current,
there exists an optimal temperature at which the amplitude of the magnetic
energy is minimal. The numerical results are plotted in Fig. 4. The non-
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zero value at T = 0 is obvious because then the mean energy of the flux is
roughly speaking proportional to the minimum xM of the generalized poten-
tial. In high temperature, however, there are no coherent electrons left and
the statistics is governed by the Gaussian distribution for which the second
statistical moment becomes a linear function of the scaled temperature.

5. Summary

In this work we have investigated some unusual properties of the mag-
netic flux in mesoscopic cylinders and rings. We showed that due to interplay
between coherent and dissipative currents and an external, deterministic pe-
riodic driving, one can obtain a substantial gain of the output signal, i.e.,
the maximum of the amplitude of the mean magnetic flux. The effect is
shown to be related both to the deterministic and stochastic properties of
the system and, although closely related, is not identical to the stochastic
resonance sensu stricto. The comparison of the numerical results with the
approximate linear response result for the output amplitude of the period-
ically driven system depicts a satisfactory agreement from the qualitative
point of view.

There are at least three reasons for studying persistent currents out of
equilibrium. First (i), the non-equilibrium behavior of the system can be
radically different from the equilibrium behavior. Our investigations can, in
principle, serve as a guideline for experiments on mesoscopic rings subjected
to external time-dependent magnetic fields. The second (ii) reason is that
the presence of peaks observed in the experiment could provide an indirect
evidence for the existence of bistability occurring in the system, i.e. when the
system is able to accommodate, intrinsic, self-sustaining currents. Finally
(iii), one can then even speculate that such resonant features contribute to
the unexpected and yet still unresolved large amplitude of the experimentally
measured persistent currents, being several times larger than predicted by
present theories.
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