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ENERGY AND MOMENTUM OF RIGIDLY ROTATING
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This study is purposed to elaborate the problem of energy and momen-
tum distribution of the Rigidly Rotating Wormhole space-time in general
theory of relativity. In this connection, we use the energy-momentum def-
initions of Einstein, Bergmann–Thomson and Tolman. We obtained that
the energy and momentum distributions of Einstein, Bergmann–Thomson
and Tolman definitions give the same results in Rigidly Rotating Wormhole
space-time.
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1. Introduction

It is well known that one of the most interesting and challenging problems
of general relativity is the energy and momentum localization. Energy-
momentum is an important conserved quantity in any physical theory whose
definition has been under investigation for a long time from the General
Relativity (GR) viewpoint. The problem is to find an expression which
is physically meaningful. The point is that the gravitational field can be
made locally vanish and so one is always able to find the frame in which the
energy-momentum of gravitational field is zero while in the other frames,
it is not true. Unfortunately, there is still no generally accepted definition
of energy-momentum for gravitational field. The problem arises with the
expression defining the gravitational field energy part.
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In the theory of GR, the energy-momentum conservation laws are given
by

T b
a;b = 0 , (a, b = 0, 1, 2, 3) , (1)

where T b
a denotes the energy-momentum tensor. In order to change the

covariant divergence into an ordinary divergence so that global energy-
momentum conservation, including the contribution from gravity, can be ex-
pressed in the usual manner as in electromagnetism, Einstein formulated [1]
the conservation law in the following form

∂

∂xb

(√
−g

(

T b
a + tba

))

= 0 . (2)

Here tba is not a tensor quantity and is called the gravitational field pseudo-
tensor. Schrodinger showed that the pseudo-tensor can be made vanish out-
side the Schwarzschild radius using a suitable choice of coordinates. There
have been many attempts to find a more suitable quantity for describing the
distribution of energy and momentum due to matter, non-gravitational and
gravitational fields. The proposed quantities which actually fulfill the con-
servation law of matter plus gravitational parts are called gravitational field
pseudo-tensors. The choice of the gravitational field pseudo-tensor is not
unique. Because of this, quite a few definitions of these pseudo-tensors have
been proposed. The notion of energy-momentum prescriptions was severely
criticized for a number reasons. Firstly, the nature of symmetric and locally
conserved object is non-tensorial one; thus its physical interpretation ap-
peared obscure [2]. Secondly, different energy-momentum complexes could
yield different energy-momentum distributions for the same gravitational
background [3]. Finally, energy-momentum complexes were local objects
while it was generally believed that the suitable energy-momentum of the
gravitational field was only total, i.e. it cannot be localized [4]. There have
been several attempts to calculate energy-momentum prescriptions associ-
ated with different space-times [5, 6].

In order to obtain a meaningful expression for energy, momentum and
angular momentum for a general relativistic system, Einstein himself pro-
posed an expression. After Einstein’s energy-momentum complex [7], many
complexes have been found, for instance, Landau–Lifshitz [8], Tolman [9],
Papapetrou [10], Möller [11,12], Weinberg [13] and Bergmann [14]. Some of
these definitions are coordinate dependent while others are not. Also, most
of these expression cannot be used to define angular momentum.

The lack of a generally accepted definition of energy-momentum in a
curved space-time has led to doubts regarding the idea of energy localization.
According to Misner et al. [15], energy is localizable only for spherical sys-
tems. Cooperstock and Sarracino [16] came up with the view that if energy
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is localizable for spherical system, then it can be localized for any system.
Bondi [17] argued that a non-localizable form of energy is not allowed in GR.
After this, an alternative concept of energy, called quasi-local energy, was
developed. The use of quasi-local masses to obtain energy-momentum in a
curved space-time do not restrict one to use particular coordinate system. A
large number of definitions of quasi-local masses have been proposed, those
by Penrose and many others [18–20].

In this paper we calculate the energy and momentum distribution of
the rigidly rotating wormhole space-time [24] in the Bergmann–Thomson,
Einstein and Tolman prescriptions in general relativity. We will proceed
according to the following scheme. In Section 2, we give the Rigidly Rotating
Wormhole (RRW) space-time and transformation for given RRW metric.
Sections 3, 4, 5 give us the energy-momentum definitions of Bergmann–
Thomson, Einstein and Tolman in general relativity, respectively, and we
calculate the energy-momentum densities for the Rigidly Rotating Wormhole
space-time. Finally, we summarize and discuss our results. Throughout this
paper, we use units where G = c = 1.

2. Rigidly rotating wormhole space-time

The wormhole solutions of the Einstein equations started with Einstein
himself, since he was interested in giving a field representation of parti-
cles [21]. The idea was further developed by Ellis [22] and others, where
instead of particles, they try to model them as “bridges” between two re-
gions of the space-time. The idea of considering such solutions a actual
connections between two separated regions of the Universe has attracted
a lot of attention since the seminal work of Morris and Thorne [23]. For
the Lorentzian wormhole to be traversable, it requires exotic matter which
violates the known energy conditions. To find the reasonable models, the
generalized models of the wormhole with other matters and/or in various
geometries have been studied. Among the models, the matter or wave in
the wormhole geometry as the primary ad auxiliary effects [24]. Recently,
the solution for the electrically charged case was also found [25].

Among the models, the rotating wormhole is very interesting to us, since
Kerr black hole is the final stationary state of most black holes. The Kerr
metric has many insights in black hole physics as the general black hole so-
lution with angular momentum. Likewise, the rotating wormhole is station-
ary and axially symmetric generalization of the Morris–Thorne wormhole.
The reason is that it may be the most genera extension of Morris–Thorne
wormhole. Teo [26] derived the rotating wormhole model from the generally
axially symmetric space-time and have shown an example with ergoregion
and geodesics able to traverse wormhole without encountering any exotic
matter.
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The Rigidly Rotating Wormhole metric [24] is given by

ds2 = −dt2 +
1

1 − b(r)
r

dr2 + r2dθ2 + r2 sin2 θ[dφ − ωdt]2 . (3)

where ω is the constant angular velocity and b(r) is the shape function of
the wormhole [23,27]. Here, the throat is r = b0 and the shape of the throat
is the sphere.

It is well known that the energy-momentum complexes give meaningful
result if calculations are performed in quasi-Cartesian coordinates. The line
element Eq. (3) may be transformed to quasi-Cartesian coordinates:

ds2 =
[

ω2
(

x2 + y2
)

− 1
]

dt2 +
Ax2 + y2 + z2

r2
dx2

+
Ay2 + x2 + z2

r2
dy2 +

Az2 + y2 + x2

r2
dz2

+
2(A − 1)

r2
[xydxdy + xzdxdz + yzdydz]

−2ω(xdydt − ydxdt) , (4)

where A = [1 − b(r)
r

]
−1

and the coordinates r, θ, φ in Eq. (4) and x, y, z are
related through

r =
√

x2 + y2 + z2 ,

θ = cos−1
(z

r

)

,

φ = tan−1
(y

x

)

. (5)

3. Energy-momentum complexes of RRW model

in the Bergmann–Thomson prescription

The energy-momentum prescription of Bergmann–Thomson [14] is given
by

Ξ
µν =

1

16π
Π

µνβ
,β , (6)

where

Π
µνβ = gµαV νβ

α (7)

with
V να

β = −V αν
β =

gβξ√−g

[

−g
(

gνξgαρ − gαξgνρ
)]

,ρ
. (8)
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Ξ
0
0 is the energy density, Ξ

0
µ are the momentum density components, and Ξ

µ
0

are the components of the energy current density. The Bergmann–Thomson
energy-momentum definition satisfies the following local conservation laws

∂Ξ
µν

∂xν
= 0 (9)

in any coordinate system. The energy and momentum components are given
by

P µ =

∫ ∫ ∫

Ξ
µ0dxdydz . (10)

Further Gauss’s theorem furnishes

P µ =
1

16π

∫ ∫

Π
µ0ακαdS . (11)

κα stands for the 3-components of unit vector over an infinitesimal surface
element dS. The quantities P i for i = 1, 2, 3 are the momentum components,
while P 0 is the energy.

Considering the line element Eq. (4) for Eqs. (7) and (8), required com-
ponents of Π

µνα are

Π
001 = −4

√

(x2 + y2)(r − b)

r
, (12)

Π
301 = −4ω

√

(x2 + y2)(r − b)

r
, (13)

Π
302 = − 2ωz

√

r(r − b)
. (14)

Substituting these results into Eq. (6), we find that energy and momentum
densities, respectively.

Ξ
00 = Ξ

03 =
1

8π

√

x2 + y2(xbx + yby + zbz + b − r)

r
√

r − b
, (15)

Ξ
0
1 = Ξ

0
2 = 0 , (16)

where subscripts (x, y, z) denote partial differentiation.
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4. Energy-momentum complexes of RRW model

in the Einstein prescription

The energy-momentum complex as defined by Einstein [12] is given by

Υ
ν
µ =

1

16π
Hνα

µ,α , (17)

where
Hνα

µ =
gµβ√−g

[

−g
(

gνβgαξ − gαβgνξ
)]

,ξ
. (18)

Υ
0
0 is the energy density, Υ

0
α are the momentum density components, and

Υ
α
0 are the components of energy current density. The Einstein energy and

momentum density satisfies the local conservation laws

∂Υ
ν
µ

∂xν
= 0 (19)

and energy and momentum components are given by

P µ =

∫ ∫ ∫

Υ
0
µdxdydz . (20)

Further Gauss’s theorem furnishes

P µ =
1

16π

∫ ∫

H0α
µ ηαdS , (21)

ηα stands for the 3-components of unit vector over an infinitesimal surface
element dS. The quantities P i for i=1,2,3 are the momentum components,
while P 0 is the energy.

The required components of Hνα
µ from Eqs. (4) and (18) are

H01
0 = 4

√

(x2 + y2)(r − b)

r
, (22)

H02
0 =

2z
√

r(r − b)
. (23)

Substituting these results into Eq. (17), we get following energy and mo-
mentum densities in the form

Υ
00 =

1

8π

√

x2 + y2(xbx + yby + zbz + b − r)

r
√

r − b
, (24)

Υ
01 = Υ

02 = Υ
03 = 0 . (25)
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5. Energy-momentum complexes of RRW model

in the Tolman prescription

The energy-momentum complex of Tolman [9] is

Imi
k =

1

8π
U

ij
k,j , (26)

where

U
ij
k =

√
−g[−gpi(−Γ

j
kp+

1
2δ

j
kΓ

a
ap+

1
2δi

pΓ
a
ak)+

1
2δi

kg
pm(−Γ

j
pm+1

2δi
pΓ

a
am+1

2δj
mΓ

a
ap)],

(27)
where Im0

0 is the energy density, Imα
0 are the components of the energy cur-

rent density and Im0
α are the momentum density components. The energy-

momentum complex Imi
k satisfies the local conservation law

∂Imi
k

∂xi
= 0 . (28)

The energy distribution in the Tolman definition ETol is given by

ETol =

∫ ∫ ∫

Im0
0dxdydz . (29)

Noticing that the space-time under consideration is static, one has

ETol =
1

8π

∫ ∫

U
0β
0 n

(α)
β ds(α) , (30)

where nβ is the unit vector over an infinitesimal surface element, ds. The
required component of U να

µ from Eqs. (4) and (27) are

U01
0 = 2

√

(x2 + y2)(r − b)

r
, (31)

U02
0 =

z
√

r(r − b)
(32)

and if we take this result into from Eqs. (26), we obtain following energy
and momentum densities

Im00 =
1

8π

√

x2 + y2(xbx + yby + zbz + b − r)

r
√

r − b
, (33)

Im01 = Im02 = Im03 = 0 . (34)
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6. Summary and discussion

The subject of energy-momentum localization in the general theory of
relativity has been very exciting and interesting; however it has been associ-
ated with some debate. Recently, some researchers have been interested in
studying the energy content of the universe in various models.

The object of present paper is to show that it is possible to solve the
problem of localization of energy in general relativity by using the energy
and momentum complexes. In this paper, we get some energy distributions
of the Rigidly Rotating Wormhole cosmological model, we have considered
three different energy and momentum complexes in general relativity: e.g.

Bergmann–Thomson, Einstein, and Tolman.

TABLE

The energy and momentum densities in Bergmann–Thomson, Einstein, Tolman
definitions for RRW space-time.

Prescription Energy density Momentum density

Bergmann–Thomson Ξ
00 = 1

8π

√
x2+y2(xbx+yby+zbz+b−r)

r
√

r−b
P 1 = P 2 = 0, P 3 6= 0

Einstein Υ
00 = 1

8π

√
x2+y2(xbx+yby+zbz+b−r)

r
√

r−b
P 1 = P 2 = P 3 = 0

Tolman Im00 = 1
8π

√
x2+y2(xbx+yby+zbz+b−r)

r
√

r−b
P 1 = P 2 = P 3 = 0

We found that; The energy (due to matter plus field) distribution in
Einstein, Bergmann–Thomson and Tolman prescriptions of RRW are the
same and non zero. The momentum distribution of RRW in Einstein and
Tolman prescriptions are the same and zero, but some components of
Bergmann–Thomson momentum distribution of RRW is zero while momen-
tum density (P 3 6= 0) is different from zero. The results advocate the
importance of energy-momentum complexes.

This work is supported by the Scientific and Technical Research Council
of Turkey (TUBITAK) under the Grant 106T042.
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