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We show that, given the generalized chaotic sequences xn = cos[2πθzn],
where z is a typical real number, any string xs, xs+1, xs+2, . . . , xs+r (for
any r) constitutes a set of statistically independent random variables. We
will discuss the relevance of this result to dynamical systems, real physical
experiments, and new technological devices used in secure communications.
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1. Introduction

The leitmotif of much of Mark Kac’s work was the search for the meaning
of independence [1]. Although independence is the central concept of prob-
ability theory, the work of the pioneers devoted to its foundations appeared
to Kac awesomely abstract. He was interested in finding concrete mathe-
matical objects that satisfy the normal law. The stochastically independent
functions studied by Kac and Steinhaus [2–5] were quite concrete mathe-
matical objects, unlike the “mysterious” objects used in the early books of
probability theory [1].

In this context, two functions f1(t), f2(t) are independent in the sense
that the proportion of time during which, simultaneously, f1(t) < α1 and
f2(t) < α2 is equal to the product of the proportions of times during which
separately f1(t) < α1, f2(t) < α2.

However, there is nothing random here. The functions studied by
Kac and Steinhaus can be even periodic. For instance, f1(t) = cos t,
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f2(t) = cos(
√

2t). We should say that Mark Kac was always fascinated
by random phenomena and his dream was to answer the questions: “What
is chance?”, “What is random?” [6]. This quest has inspired us.

Mark Kac’s search for independence in number theory has led to a very
beautiful theorem [7], that marked the entry of normal law into number
theory and gave birth to a new branch of this ancient discipline.

Ulam and von Neumann [8–10] were the first to prove that function
xn = sin2(θπ2n) is the general exact solution to the logistic map xn+1 =
4xn(1 − xn).

Generalizing the exact solution xn = sin2[θπ2n] to the logistic map
xn+1 = 4xn(1 − xn), several authors have obtained the solutions to new
chaotic maps [11–16]. In general, the exact solutions can be written as
xn = P (δkn), where P (t) is a periodic function, δ is a real parameter and k
is an integer number.

Some examples are the following: xn = cos[2πθ2n] is the solution to map
xn+1 = 2x2

n−1, xn = cos[2πθ3n] is the solution to map xn+1 = xn(4x2
n −3),

(θ is a real parameter). These are special cases of the Chebyshev maps
[11, 13].

In the present paper we will prove the statistical independence of the
sequences values generated by function

xn = cos[2πθzn] , (1)

where z is a generic real number. We will discuss the relevance of this re-
sult to dynamical systems, real physical experiments, and new technological
constructions.

2. Unpredictable dynamics

We have presented before [17–21] evidence that the functions xn =
sin2[θπzn] can produce very complex sequences. We will present here a
brief explanation of why the dynamics of function (1) is unpredictable.

From the observation of a string of values x0, x1, x2, x3, . . . , xm generated
by function (1), when z > 1 is a non-integer number, it is impossible to
determine the generation law. The fact is that it is impossible to determine
which value of θ was used and the time-series produced for different values
of θ satisfying the same string of values is different in most of the cases.

Let z be a rational number expressed as z = p/q, p > q > 2, where p
and q are relative prime numbers. We are going to show that given m + 1
numbers generated by function (1): x0, x1, . . . , xm (m can be as large as we
wish), there is an infinite set of values of θ for which the generated string is
the same, and still the next value xm+1 can take q different values. So we
never can be sure of which the next value can be.
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Let us define the following family of sequences:

x(k,m)
n := cos

[

2π (θ0 + qmk)

(

p

q

)n]

, (2)

where k is an integer. We have just re-defined θ = (θ0+qmk). The parameter
k distinguishes the different sequences. For all sequences parametrized by
k, the first m + 1 values are the same.

This can be observed in the following calculation

x(k,m)
n = cos

[

2πθ0

(

p

q

)n

+ 2πkpnq(m−n)

]

= cos

[

2πθ0

(

p

q

)n]

, (3)

for all n ≤ m. Note that the number kpnq(m−n) is an integer for n ≤ m.
Nevertheless, the next value

x
(k,m)
m+1 = cos

[

2πθ0

(

p

q

)m+1

+
2πkp(m+1)

q

]

(4)

can take q different values.
Figures 1, 2 and 3 show different examples of the dynamics produced by

function (1) for different values of z.
Recent developments have shown that predictability can be used to char-

acterize the complexity of dynamical systems (see e.g., [22]).
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Fig. 1. First-return map constructed with the dynamics generated by function (1)

z = 2.
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Fig. 2. First-return map constructed with the dynamics generated by function (1)

with z = 4/3.
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Fig. 3. First-return map constructed with the dynamics generated by function (1)

with z = π.

3. Statistical independence

Considering that E(x) is the expected value of quantity x, let us define
the r-order correlations [23, 24]:

E(xn1
xn2

· · · xnr
) =

1
∫

−1

dx0 [ρ(x0)xn1
xn2

· · · xnr
] . (5)

Note that the functions (1) possess zero mean, their values are bound in the

interval −1 ≤ xn ≤ 1, the invariant density is given by ρ(x) = 1/π
√

1 − x2

and x0 = cos(2πθ).
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We have the following formula for the correlation functions:

E(xn1
xn2

· · · xnr
) =

1
∫

0

dθ [cos(2πθzn1) cos(2πθzn2) · · · cos(2πθznr)] . (6)

Considering that cos(θ) = 1
2(eiθ + e−iθ), we obtain

E(xn1
xn2

· · · xnr
) = 2−r

∑

σ

δ (σ1z
n1 + σ2z

n2 + · · · + σrz
nr , 0) , (7)

where
∑

σ is the summation over all possible configurations (σ1, σ2, . . . , σr),
with σ = ±1, and δ(n,m) = 1, if n = m or δ(n,m) = 0, if n 6= m. We
will have non-zero correlations only for the sets n1, n2, . . . , nr that satisfy
the equation

r
∑

i=1

σiz
ni = 0, (8)

where σi = ±1. These equation can always be written in the form

N0 + N1z + · · · + Njz
j = 0, (9)

where N0, N1, . . . , Nj are integers.
Let us recall here some very important definitions and results [2–5, 25–

29] in probability theory. The bounded functions u and v are statistically
independent if and only if

E(umvn) = E(um)E(vn), (10)

for all integer numbers m,n.
Equivalently, the functions f1, f2 · · · , fr constitute a set of statistically

independent functions if and only if

E(fn1

1 fn2

2 · · · fnr

r ) = E(fn1

1 )E(fn2

2 ) · · ·E(fnr

r ), (11)

for all integers n1, n2, . . . , nr.
Now we will prove that the functions xn = cos[2πθzn] (where z is a

typical real number) constitute sequences of statistically independent values.
We must verify the equality:

E[xn0

s xn1

s+1 · · · x
nr

s+r] = E(xn0

s )E(xn1

s+1) · · ·E(xnr

s+r) (12)

for all positive integers n0, n1, n2, . . . , nr.
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Note that equation (12) means that any string of values produced by
function xn = cos[2θπzn]: xs, xs+1, . . . , xs+r is a block of statistically inde-
pendent values. And this string can be started at any point of the sequence.
And the length of this block r can be any integer.

Let us make some calculations:

E(xn0

s xn1

s+1 · · · xnr

s+r) = 2−(n0+n1+···+nr)
∑

σ

δ
(

σs1
zs + σs2

zs + · · · + σsn0
zs

+σ(s+1)1z
s+1 + σ(s+1)2z

s+1 + · · · + σ(s+1)n1
zs+1 + · · ·

+σ(s+r)1z
s+r + σ(s+r)2z

s+r + · · · + σ(s+r)nr
zs+r, 0

)

= 2−(n0+n1+···+nr)
∑

σ

δ
[(

σs1
+ σs2

+ · · · + σsn0

)

zs

+
(

σ(s+1)1 + σ(s+1)2 + · · · + σ(s+1)n1

)

zs+1 + · · ·

+
(

σ(s+r)1 + σ(s+r)2 + · · · + σ(s+r)nr

)

zs+r, 0
]

(13)

On the other hand

E(xn0

s ) = 2−(n0)
∑

σ

δ
[(

σs1
+ σs2

+ · · · + σsn0

)

zs, 0
]

,

E(xn1

s+1) = 2−(n1)
∑

σ

δ
[(

σ(s+1)1 + σ(s+1)2 + · · · + σ(s+1)n1

)

zs+1, 0
]

,

...

E(xnr

s+r) = 2−(nr)
∑

σ

δ
[(

σ(s+r)1 + σ(s+r)2 + · · · + σ(s+r)nr

)

zs+r, 0
]

.

(14)

We should notice that
E(xm

n ) = 0 (15)

if m is odd. So any of the correlations E in Eq. (14) is zero if ni is odd.
However,

E(xn0

s xn1

s+1 · · · xnr

s+r) = 0 (16)

if any ni is odd, because the equations

(σs1
+ σs2

+ · · · + σsn0

)

zs +
(

σ(s+1)1 +σ(s+1)2 + · · · + σ(s+1)n1

)

zs+1+ · · ·

+
(

σ(s+r)1 + σ(s+r)2 + · · · + σ(s+r)nr

)

zs+r =0 (17)

are never satisfied for a transcendental z.
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Suppose now that all ni are even. After trivial combinatorial analysis,
we get

E(xn0

s xn1

s+1 · · · x
nr

s+r) = 2−(n0+n1+···+nr)

(

n0
n0

2

)(

n1
n1

2

)

· · ·
(

nr
nr

2

)

, (18)

E(xn0

s ) = 2−n0

(

n0
n0

2

)

, (19)

E(xn1

s+1) = 2−n1

(

n1
n1

2

)

, . . . , (20)

E(xnr

s+r) = 2−nr

(

nr
nr

2

)

. (21)

Equations (15)–(21) imply that

E
(

xn0

s xn1

s+1 · · · x
nr

s+r

)

= E (xn0

s ) E
(

xn1

s+1

)

· · ·E
(

xnr

s+r

)

, (22)

for all integer n0, n1, . . . nr.
Thus the functions (1) with a transcendental z constitute sequences of

statistically independent values. This result is so important that we wish to
present an alternative proof.

Let us define t = 2πθzn in Eq.(1). Now we can consider the following
functions f1 = cos(λ1t), f2 = cos(λ2t), . . . , fr = cos(λrt), where λ1 = z, λ2 =
z2, . . . , λr = zr.

Using a re-working of Theorem 3 [5] and other theorems and definitions
of Refs. [2–5], we obtain the result that the functions fi = cos(λit) constitute
a set of independent functions when the numbers λ1, λ2, . . . , λr are linearly
independent over the rationals (equivalently: integers). This means that if
α1, α2, . . . , αr are rational, α1λ1+α2λ2+· · ·+αrλr = 0 only if α1, α2, . . . , αr

are all zero. On the other hand, the powers of a transcendental number are
linearly independent over the rationals.

Hence the values xn = cos[2πθzn] = cos t, xn+1 = cos[2πθzn+1] =
cos(zt), xn+2 = cos[2πθzn+2] = cos(z2t),..., xn+r = cos[2πθzn+r] = cos(zrt)
constitute a set of independent values.

Here it is important to recall several notions. The set of all algebraic
numbers is countable. Real numbers that are not algebraic are called tran-
scendental. The set of all transcendental numbers is not countable. Most
real numbers are transcendental. The cardinality of the set of transcendental
numbers is the same as that of the set of real numbers, i.e. the order of the
continuum. So for most numbers z, function (1) is a sequence of statistically
independent random variables.
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It is easy to see that any set of values (not necessarily consecutive) pro-
duced by function (1) is also a system of independent variables, because

E
[

xk0

n0
xk1

n1
· · · xkr

nr

]

= E
[

xk0

n0

]

E
[

xk1

n1

]

· · ·E
[

xkr

nr

]

(23)

for all positive integers n0, n1 . . . , nr, k0, k1, . . . , kr.

It is also trivial to verify that for any integer z, the variables xn and xm

(n 6= m) are not statistically independent [23, 24]. For instance, for z = 2,
E[x2

nxn+1] = 1/4 and E[x2
n]E[xn+1] = 0. So E[x2

nxn+1] 6= E[x2
n]E[xn+1].

Other particular (but interesting) facts are the following. For a rational
z = p/q, where p and q are relative prime numbers (p > q > 2), there
are non-zero higher-order correlations. The largest non-zero correlations
that involve powers of xn and xn+1 are the following E(xp

nxq
n+1), which

are of the order of 2−(p+q). (So for large p and q, these correlations are
exponentially small.) All the correlations involving xn+1 as a linear term

are zero. That is E
[

xn+1x
kn

n x
kn−1

n−1 · · · xkn−r

n−r

]

= 0, for all positive integers

r, kn, kn−1, . . . , kn−r. This result reflects the fact that xn+1 cannot be ex-
pressed as a one-valued function of past values. In other words, this result
shows that the dynamics is not predictable.

Another important fact is that xn and xn+1 are independent variables
even for an algebraic irrational z. For a general irrational z, the equation

E
(

xkn

n x
kn+1

n+1

)

= E
(

xkn

n

)

E
(

x
kn+1

n+1

)

(24)

is always satisfied.

When kn and kn+1 are both even, we again have

E
(

xkn

n x
kn+1

n+1

)

= 2−(kn+kn+1)

(

kn
kn

2

)(

kn+1
kn+1

2

)

, (25)

E
(

xkn

n

)

= 2−kn

(

kn
kn

2

)

, (26)

E
(

x
kn+1

n+1

)

= 2−kn+1

(

kn+1
kn+1

2

)

. (27)

The main problem in Eq. (24) is when one of the numbers kn or kn+1 is
odd. In fact, this is the case when Eq. (24) is not satisfied for all maps of type

xn+1 = f(xn). We will show that the correlation functions E
(

xkn

n x
kn+1

n+1

)

are zero when kn (or kn+1) is odd. Suppose kn = i, kn+1 = 2j + 1. The
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calculation yields

E
(

xi
nx2j+1

n+1

)

=
1

2(i+2j+1)

∑

σ

δ [σ1z
n + · · · + σiz

n

+σi+1z
n+1 + · · · + σi+2j+1z

n+1, 0
]

. (28)

Note that E(xi
nx2j+1

n+1 ) is not zero only if

(σ1 + σ2 + · · · + σi)z
n + (σi+1 + σi+2 + · · · + σi+2j+1)z

n+1 = 0 . (29)

For irrational z, this equation has not solutions. The same result is obtained
if we assume that kn is odd.

In the language of functions f1 = cos(λ1t), f2 = cos(λ2t), where λ1 = z,
λ2 = z2, t = 2πθzn, the necessary and sufficient condition for the statistical
independence is the linear independence of λ1 and λ2. However, for the par-
ticular case of two numbers λ1 and λ2, the linear independence is equivalent
to the irrationality of λ2/λ1 [1]. Of course, here λ2/λ1 = z.

An alternative checking is the following. Let us define the vector ~r =
(xn, yn), where yn = xn+1. The probability densities P (x, y), P (x), P (y)
can be calculated as

P (x, y) = lim
N→∞

1

N

N−1
∑

n=0

δ(~r − ~rn) ,

P (x) = lim
N→∞

1

N

N−1
∑

n=0

δ(x − xn) ,

P (y) = lim
N→∞

1

N

N−1
∑

n=0

δ(y − yn) .

There are different methods for the calculation of these quantities [30–32].
Following these methods we can check that P (x, y) = P (x)P (y). In fact,

P (x) =
1

π
√

1 − x2
, P (y) =

1

π
√

1 − y2
, P (x, y) =

1

π2
√

(1 − x2)(1 − y2)
.

In general, the numerical calculations corroborate the statistical indepen-
dence of variables xn+1, xn, etc.

Figure 3 is a manifestation of this property. It is evident that for any
map of type xn+1 = f(xn) (including the logistic) the property P (x, y) =
P (x)P (y) cannot be satisfied (compare the figures 1 and 3).

Let us discuss a formulation of the Central Limit Theorem. Using the
theorems proved in Refs. [2–5] and the results of the present paper, we can
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obtain the following formula. If z is a transcendental number and xn =
cos[2πθzn], then

lim
r→∞

P

{

α <
x1 + x2 + · · · xr√

r
< β

}

=
1√
π

β
∫

α

e−ξ2

dξ. (30)

Fig. 4 shows an approximation to the normal law constructed with the
sum of a finite number of values generated by function (1).
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Fig. 4. Normal law constructed with the sum of a finite number of values generated

by function (1).

The results about the independence of functions xn = cos[2πθzn] can be
extended to more general functions as the following:

xn = P [θTzn] , (31)

where P (t) is a periodic functions, using the Fourier representation [23]. A
very important example of function (31) is the following:

xn = [θzn] mod 1 . (32)

A typical example of the dynamics produced by function (32) with z = π
can be seen in Fig. 5. Note that for function (1) the generated values
are not uniformly distributed because the probability density is ρ(x) =

1/π
√

1 − x2. Nevertheless, for function (32), the produced values are uni-
formly distributed (ρ(x) = 1). Compare the distributions of points in the
maps shown in figures 3 and 5.
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Fig. 5. First-return map produced by function (32) with z = π.

4. Dynamical systems and other nonlinear models

Let us consider the following dynamical system

xn+1 =

{

axn, if xn < Q,
byn, if xn > Q,

(33)

yn+1 = czn, (34)

zn+1 = cos(2πxn). (35)

The parameters a > 1, b > 1, c > 1 are typical real numbers. Note
that for 0 < xn < Q, the behavior of variable zn is like that of function (1).
For xn > Q the dynamics is re-injected to the region 0 < xn < Q with a
new initial condition which is obtained from Eq. (34) that depends on the
unpredictable dynamics produced by Eq. (35). Due to the non-invertibility
of function y = cos x, it is impossible to determine the initial condition if
the only observable is zn.

A typical example of the dynamics generated by dynamical systems
(33)–(35) is shown in Fig. 6.

When subjected to the same statistical analysis, the time-series gen-
erated by function (1) and variable zn in dynamical system (33)–(35) are
indistinguishable. Another application of these results can be illustrated by
the input–output system shown in Fig. 7.

Function xn = P [φ(n)], where P (t) is a periodic function and φ(n) is
a non-periodic oscillating function with intermittent intervals of truncated
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Fig. 6. First-return map constructed using the variable zn in dynamical system

(33)–(35). a = π, b = 200, c = 70, Q = 500.
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Fig. 7. Input–output system that can produce very complex dynamics.

exponential behavior, would produce also very complex dynamics. Similar
results can be obtained with functions of type xn = h[φ(n)], where φ(n)
possesses the same properties as before, and h(t) is a non-invertible function.

Function φ(n) can be produced by a chaotic system. Another example
of this kind of function is the following

xn = cos[φ(n)], (36)

where φ(n) = A exp[Q(n)], Q(n) = a1 sin(ω1n) + a2 sin(ω2n) + a3 sin(ω3n),
ω2

ω1
, ω3

ω2
, ω3

ω1
are irrational numbers. An example of this dynamics can be

observed in Fig. 8.

Systems like these can be realized in real experiments with electronic
circuits. For instance, a quasiperiodic signal can be used as the input to
an electronic circuit that simulates an exponential function. The output of
the exponential circuit is used as the input to a circuit that simulates a sine
function or cosine function [34].
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Fig. 8. First-return map constructed using the function (36).

Recently, an experimental setup that permits the direct realization of
function

yn = sin2[2θπzn] ≡ 1 − cos2[2θπzn] = 1 − x2
n (37)

has been constructed [35].
Umeno et al., [35] have created an optical device composed of several

Mach–Zehnder interferometers for which Eq. (37) is the mathematical model.
This development is related to secure communication technologies based on
chaos.

5. Conclusions

The independent functions f1(t), . . . , fm(t) studied by Kac and Steinhaus
could be periodic. They were independent in the sense that the proportions
of times during which f1(t) < α1, . . . , fm(t) < αm behave as if they were
probabilities of independent events. If we take e.g. two of them, one is
independent of the other. But if we take one of them alone, it is a very
simple dynamics. On the other hand, the dynamics generated by function
(1) is very complex. It behaves as noise. It is difficult to distinguish it from
a random phenomenon. Moreover, to speak about independence, we do not
need to take unrelated sequences (e.g., produced using different values of θ),
which, in fact, can be independent.

We can speak about independence “inside” the same dynamics. That is,
different subsequences of the same sequence xn = cos[2πθzn], for a given θ,
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are independent. For instance, xn and xn+1 are independent. Their proba-
bilities behave as the probabilities of independent events. This is what we
would expect from a time-dependent random process.

In conclusion, we have shown that given the function xn = cos[2πθzn],
where z is a typical real number, any string xs, xs+1, xs+2, . . . , xs+r (for
any r) constitutes a set of statistically independent random variables.

In a forthcoming work we will present further developments that include
the construction of different continuous functions that possess the proper-
ties of chaotic or stochastic processes. With the help of this theory, we hope
to find analytical solutions to many nonlinear chaotic and stochastic sys-
tems. There are many open problems in this area. Some of them are related
to the following subjects: spatiotemporal chaos [36–45], turbulence [46–51],
Brownian motion (and related stochastic processes) [52], stochastic reso-
nance [41, 53–61], just to mention a few.
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