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A new family of simple, analytic solutions of self-similarly expanding
fireballs is found for systems with ellipsoidal symmetry and a direction
dependent, generalized Hubble flow. Gaussian, shell like or oscillating den-
sity profiles emerge for simple choices of an arbitrary scaling function. New,
cylindrically or spherically symmetric as well as approximately one dimen-
sional hydrodynamical solutions are obtained for various special choices of
the initial conditions.

PACS numbers: 24.10.Nz, 47.15.Hg

1. Introduction

Hydrodynamics is describing the local conservation of matter, momen-
tum and energy. Due to this nature, hydrodynamical solutions are applied to
a tremendous range of physical phenomena ranging from the stellar dynamics
to the description of high energy collisions of heavy ions as well as collisions
of elementary particles. Some of the most famous hydrodynamical solutions,
like the Hubble flow of our Universe or the Bjorken flow in ultra-relativistic
heavy ion physics have the properties of self-similarity and scale-invariance.
Heavy ion collisions are known to create three dimensionally expanding sys-
tems. In case of non-central collisions, cylindrical symmetry is violated, but
an ellipsoidal symmetry can be well assumed to characterize the final state.
The data motivated, spherically or cylindrically symmetric hydrodynamical
parameterizations and/or solutions of Refs. [1–10] are generalized here to
the case of such an ellipsoidal symmetry, providing new families of exact
analytic hydrodynamical solutions.
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2. The new family of self-similar ellipsoidal solutions

The non-relativistic (NR) hydrodynamical systems are specified by the
continuity, Euler and energy equations:

∂tn + ∇(nv) = 0 , (1)

∂tv + (v∇)v = −
∇p

mn
, (2)

∂tε + ∇(εv) = −p∇v . (3)

Here n denotes the particle number density, v stands for the NR flow velocity
field, ε for the energy density, p for the pressure and in the following the
temperature field is denoted by T . These fields depend on the time t as well
as on the coordinates r = (rx, ry, rz). We assume, for the sake of simplicity,
the following equations of state,

p = nT , ε = κp , (4)

which close the set of equations for n, v and T . The NR ideal gas cor-
responds to κ = 3/2. The new family of exact analytic solutions of the
hydrodynamical problem are given for arbitrary values of κ > 0, m > 0.
The hydro solutions are determined by the choice of a positive function
of a non-negative, real variable T (s), corresponding to the (dimensionless)
scaling function of the temperature. The scaling variable s is defined as

s =
r2
x

X2
+

r2
y

Y 2
+

r2
z

Z2
. (5)

There the scale parameters depend on time, (X,Y,Z) = (X(t), Y (t), Z(t)).
The ellipsoidal symmetry of the solutions is reflected by the ellipsoidal family
of surfaces given by the equation s = s0 = const. The temperature and the
density field depend on the coordinates (rx, ry, rz) only through the scaling
variable s.

The new family of elliptically symmetric solutions of fireball hydrody-
namics is given by

n(t, r) = n0

V0

V
ν(s) , (6)

v(t, r) =

(

Ẋ

X
rx,

Ẏ

Y
ry,

Ż

Z
rz

)

, (7)

T (t, r) = T0

(

V0

V

)1/κ

T (s) , (8)

ν(s) =
1

T (s)
exp



−
Ti

2T0

s
∫

0

du

T (u)



 , (9)
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where the constant n0 is given by n0 = n(t0,0), the typical volume of the
expanding system is V = XY Z, the initial volume being V0 = V (t0), the
dimensionless scaling function of the density profile is denoted by ν(s), the
constant T0 is defined by T0 = T (t0,0) and a constant of integration is
denoted by Ti. The definitions of n0 and T0 correspond to the normalization
ν(s = 0) = 1 and T (s = 0) = 1. Initially, only one of the temperature
and density profiles can be chosen as an arbitrary positive function, the
equations of state relates the density and temperature profiles, resulting in
the matching condition for the profile functions, as expressed by Eq. (9).

The equations of motion of the scale parameters are

XẌ = Y Ÿ = ZZ̈ =
Ti

m

(

V0

V

)1/κ

. (10)

This time evolution of the radius parameters X, Y and Z is equivalent
to the classical motion of a particle in a non-central potential, governed by
the Hamiltonian

H =
1

2m

(

P 2
x + P 2

y + P 2
z

)

+ κTi

(

X0Y0Z0

XY Z

)1/κ

, (11)

where the canonical coordinates are (X,Y,Z) and the canonical momenta

are (Px, Py, Pz) = m(Ẋ, Ẏ , Ż). This generalizes earlier results [9, 10] from
κ = 3/2 and T (s) ≡ 1 to and to arbitrary T (s) > 0 and κ > 0.

The conservation of energy by the classical Hamiltonian motion deter-
mines the physical meaning of the constant of integration Ti as the initial
potential energy corresponding to the initial internal energy of the fireball:

Etot =
m

2

(

Ẋ2
0 + Ẏ 2

0 + Ż2
0

)

+ κTi , (12)

where the total energy is denoted by Etot, and the initial velocities are
denoted by (Ẋ0, Ẏ0, Ż0). Due to the repulsive nature of the potential, the
coordinates diverge for large values of t. The asymptotic velocities tend to
constants [9] of (Ẋas, Ẏas, Żas),

Etot =
m

2

(

Ẋ2
as + Ẏ 2

as + Ż2
as

)

. (13)

This completes the specification of the new family of solutions of fireball
hydrodynamics with ellipsoidal symmetry. The form of the dimensionless
scaling function T (s) can be chosen freely from among the positive func-
tions of a non-negative variable. This freedom corresponds to a freedom in
the specification of the initial conditions. Thus (uncountably) infinite new
solutions of NR hydrodynamics are found.
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3. Self-similarity of the elliptic hydro of solutions

Each of these new hydrodynamical solutions is scale invariant:

r
′ = (rx

X0

X
, ry

Y0

Y
, rz

Z0

Z
) , (14)

n (t, r) = n(t0, r
′)

(

X0Y0Z0

XY Z

)

, (15)

vx (t, r) = vx(t0, r
′)

Ẋ

Ẋ0

, . . . (16)

T (t, r) = T (t0, r
′)

(

X0Y0Z0

XY Z

)1/κ

. (17)

Scale invariance of these solutions is equivalent to their self-similarity. The
profile functions depend on time only through the scale parameters (X,Y,Z)
and on the coordinates only through the scale parameter s.

4. Limiting cases

The various physically interesting limiting cases fall into two classes.
The first class of limiting cases corresponds to various additional symmetry
properties imposed on the scaling variable of Eq. (5). The second class of
limiting cases corresponds to various choices of T (s), the scaling function of
the temperature. The Lagrangian equations of motion for the scale parame-
ters, Eqs. (10) as well as the shape of the flow velocity field, Eq. (7), are the
same for all the choices of T (s). Trivial prefactors are given in Eqs. (6), (8).
Hence these equations will not be repeated in the forthcoming discussion.
We provide some physically interesting examples for the matching pair of
density and temperature scaling functions (ν,T ) that satisfy Eq. (9).

5. Spherically symmetric family of solutions

By assuming that initially all the scale parameters as well as their time
derivatives are equal, X0 = Y0 = Z0 ≡ R0 and Ẋ0 = Ẏ0 = Ż0 ≡ Ṙ0, the
ellipsoidal family of solutions reduces to the spherical family of solutions of
Ref. [7] with a scale parameter X = Y = Z ≡ R. The scaling variable and
the equations of motion simplify to

s =
r

2

R2
, RR̈ =

Ti

m

(

R3
0

R3

)1/κ

. (18)

This family generalizes the Zimányi–Bondorf–Garpman (ZGB) solution [1],
the spherical Gaussian solution [3], and the Buda–Lund type of hydro so-
lutions [7] to arbitrary scaling functions T (s) > 0 and equation of state
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parameters κ > 0. If Ṙ0 = 0, and the asymptotic velocity of the expansion
is Ṙ2

as = 〈u〉2 = Ti/m, and if κ = 3/2, the equation of motion of the scale
parameter is solved in a simple form [7] as R2 = R2

0
+ 〈u〉2(t − t0)

2.

6. Cylindrically symmetric family of solutions

By imposing cylindrically symmetric initial conditions, X0 = Y0 = Rt0,
and Ẋ0 = Ẏ0 = Ṙt0, one finds that X = Y = Rt, as the equations of motion

preserve cylindrical symmetry. Introducing rt =
√

r2
x + r2

y, the scale param-

eter s and the equations of motion for the longitudinal and the transverse
scales read as

s =
r2
t

R2
t

+
r2
z

Z2
, RtR̈t = ZZ̈ =

Ti

m

(

R2
t0Z0

R2
t Z0

)1/κ

. (19)

These generalize the equations of motion for scales of the cylindrically
symmetric, De–Garpman–Sperber–Bondorf–Zimányi (DGSBZ) solution of
Ref. [2] to arbitrary 0 < κ 6= 3/2 and to arbitrary T (s) > 0.

7. One dimensional expansions

The equations of motion of parameters (X,Y,Z) has been studied for
the case of κ = 3/2 in Ref. [9]. Although the expansion is generally 3 di-
mensional, a big initial compression in one of the directions (rz) was shown
to result in an effectively 1 dimensional expansion in this direction, corre-
sponding to Landau type initial conditions. In this case, an analytic solution
for the variable Z is given in Eqs. (23)–(25) of Ref. [9], and the conditions
of validity of this approximation were given there by Eqs. (26)–(28). These
equations can be further simplified during the late stage of the expansion,
when acceleration effects are small. In this limiting case, both Eqs. (10) and
the conservation of energy are satisfied by the asymptotic solution:

Ẋa ≃ Ẋ0 , Ẏa ≃ Ẏ0 ,
1

2
mŻ2

a ≃
3

2
Ti , (20)

X(t) ≃ X0 + Ẋat , (21)

Y (t) ≃ Y0 + Ẏat , (22)

Z(t) ≃ Z0 + Żat . (23)

For simplicity, here we utilized t0 = 0 . This asymptotic approximate so-
lution is valid if the conditions of validity of the 1 dimensional expansion
given in Ref. [9] are satisfied simultaneously with the following constraints:

Z0 ≪ Żat, X0 ≫ Ẋ0t and Y0 ≫ Ẏ0t. Alternatively
√

m/(3Ti)Z0 ≪ t ≪
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min(X0/Ẋ0, Y0/Ẏ0). Under these conditions all the initial internal energy is
converted into kinetic energy in the longitudinal direction, while the kinetic
energy in the transverse components is conserved during the time evolution.
For Ẋ0 = Ẏ0 = 0, a one dimensional expansion is obtained.

Various choices for the shape of the temperature scaling function T (s)
generate interesting forms of the hydrodynamical solutions in all the ellip-
soidal, cylindrical, spherical or 1 dimensionally expanding classes.

8. Gaussian solutions

The simplest possible choice for the temperature scaling function is
T (s) = 1. After a trivial scale transformation, (X,Y,Z)→

√

Ti/T0(X,Y,Z),

ν(s) = exp
(

−
s

2

)

, T (s) = 1 . (24)

The density profiles are Gaussians and the temperature distribution be-
comes spatially homogeneous, as follows from Eq. (5), and we recover the
elliptic Gaussian solutions described in Refs. [9, 10]. If freeze-out happens
at a constant value of the local temperature, T (t, r) = Tf , these Gaussian
hydrodynamical solutions corresponds to a sudden freeze-out at a constant
time, t = tf , in the whole volume of the fireball. Remarkable features of this
model are that (i) the slope parameters of the transverse momentum spec-
tra increase linearly with mass, with the coefficient of linearity depending on
the relative direction to that of the impact parameter, (ii) the parameters of
the two-particle Bose–Einstein correlation functions oscillate as a function
of the angle between the event plane and the transverse momentum of the
pair [10].

9. De–Garpman–Sperber–Bondorf–Zimányi solution

One can require that the temperature and the density profiles are de-
scribed as different powers of the same profile function. Such a similarity is
achieved if the temperature and the corresponding density profiles are

T (s) = (1 − s) Θ(1 − s) , (25)

ν(s) = (1 − s)α Θ(1 − s) , α =
Ti

(2T0)
− 1 . (26)

These profile functions generalize the spherical ZGB solution [1, 7], and the
cylindrically symmetric DGSBZ solution [2] to asymmetric ellipsoids and
arbitrary values of κ. The physical meaning of the parameter α is determined
here, in terms of the total initial internal energy Ti and the initial central
value T0 of the temperature field.
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10. Elliptic Buda–Lund solutions

The Buda–Lund hydro model (BL-H) was developed for the description
of single-particle spectra and two-particle Bose–Einstein correlation func-
tions in high energy heavy ion collisions at CERN SPS [4, 5]. The BL-H
attempted to characterize the temperature, density and flow fields by their
means and variances only, its essential property is that it simultaneously
involves a temperature gradient parameter and a Hubble-like flow profile.
In its original form, the model was cylindrically symmetric and the (longitu-
dinal) flow profile was relativistic [4,5]. BL-H type of exact hydro solutions
correspond to the scaling functions

T (∫) =
1

1 + bs
, b =

1

2

〈

∆T

T

〉

, (27)

ν(s) = (1 + bs) exp

[

−
Ti

2T0

(

s +
bs2

2

)]

. (28)

The dimensionless parameter b is interpreted as a measure of the transverse
temperature inhomogeneity [4, 11]. Regardless of the symmetry classes, the
BL-H density profile has an approximately Gaussian, conventional shape if
b < Ti/(2T0). On the other hand, the density profile looks like an ellipsoidal
ring of fire, with a density minimum at the center and a density pile-up
on the surface, if b > Ti/T0. In the spherically symmetric case, similar
morphological classes of BL-H solutions were found in Ref [7]. Introducing
the notation Ti = m〈u〉2, one finds that

m〈u〉2

T0

>

〈

∆T

T

〉

yields ellipsoidal, expanding fireball BL-H solutions, Fig. 1. A detailed anal-
ysis of correlations and spectra in Pb + Pb collisions at CERN SPS indi-
cated [11] such a behavior, corresponding to big and expanding fireballs. On
the other hand, the analysis of correlations and spectra of h + p reactions
at CERN SPS indicated [12–14] small transverse flow and big transverse
temperature inhomogeneity,

m〈u〉2

T0

<

〈

∆T

T

〉

.

This case corresponds to the formation of a shell of fire. Such an example
is shown in Fig. 2.
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Elliptic fireball
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Fig. 1. An approximately Gaussian BL-H fireball profile is shown for X = 5 fm,

Y = 8 fm, m/T0 = 1, 〈u〉 = 0.7, 〈∆T/T 〉 = 0.1. The vertical scale is arbitrary, the

longitudinal coordinate is rz = 0. For the time dependence see Eqs. (10).

Elliptic shell of fire
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Fig. 2. A BL-H shell profile with X = 5 fm, Y = 8 fm, m/T0 = 1, 〈u〉 = 0.5,

〈∆T/T 〉 = 0.71, otherwise as Fig. 1.

11. Fireballs with density waves

Here we show that a simple choice of the temperature scaling function
can lead to periodically oscillating temperature and density waves in exact
solutions of NR hydrodynamics. A pair of oscillating scaling functions is,
for example

T (s) = (1 + α cos βs)−1 , (29)

ν(s) = (1 + α cos βs) exp

[

−
Ti

2T0

(s −
α

β
sin βs)

]

. (30)
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where parameters (α, β) correspond to the amplitude and the period of the
oscillations, respectively, as shown in Fig. 3. As time evolves, the shapes of
the ellipsoids change in coordinate space: the bigger the initial compression,
the faster the expansion in that direction, corresponding to Eqs. (10).

Elliptic density waves
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Fig. 3. An oscillating wave-like density profile is obtained, for X = 5 fm, Y = 8 fm,

Ti/T0 = 1, α = 0.2, β = 2.0.

12. Connection with other exact solutions

of fireball hydrodynamics

Before summarizing the results let us also relate the presented family
of exact solutions of hydrodynamics to presently known, exact solutions
of relativistic hydrodynamics. One of the most well known relativistic hy-
drodynamical solution is the 1+1 dimensional Landau–Khalatnikov solu-
tion, described in Refs. [15–17]. The initial condition here is a uniformly
heated piece of matter initially at rest, the equation of state is that of an
ultra-relativistic gas with three degrees of freedom, but expanding only 1+1
dimensions. Landau has shown that such expansions lead to an approxi-
mately Gaussian rapidity distribution. This Landau–Khalatnikov solution
is presently the only known exact solution of relativistic hydrodynamics that
describes an exploding fireball with relativistic acceleration. These solutions
are, however, not self-similar, and not explicit, one dimensional solutions,
hence they are not easily related to the exact, explicit, self-similar and ac-
celerating non-relativistic solutions described in the present manuscript.

However, it is interesting to note, that in the late time limit, the accel-
eration of the scale parameters vanishes in the non-relativisitic self-similar
solutions described here, as given by Eqs. (21)–(23). Hence for very late
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time, the velocity field becomes spherically symmetric, v → r/t, which
corresponds, within the lightcone, to a well known solution of relativistic
hydrodynamics: uµ(x) = xµ/τ , which is in the 1+1 dimensional case the
reknown velocity distribution of the Hwa–Bjorken solution of relativistic hy-
drodynamics, given in Refs. [18, 19], while in 1+3 dimensions v = r/t or
uµ(x) = xµ/τ is referred to as the Hubble flow, as it corresponds to the flow
velocity field of galaxies in an expanding Friedmann universe. These solu-
tions are boost-invariant and both in the 1+1 dimensional Hwa–Bjorken and
in the 1+3 dimensional Hubble case, corresponding to a flat rapidity distri-
bution. The initial boundary conditions are given only within a lightcone,
on a τ = τ0 boost-invariant hypersurface, the equation of state is character-
ized by a constant or piecewise constant speed of sound, and the solutions
are explicit, accelerationless and self-similar flows.

In Ref. [20] these boost-invariant self-similar solutions were generalized
to 1+1 dimensional, non-boost invariant, self-similar, accelerationless solu-
tions, using a broad class of equations of state: ε = mn + κp, p = nT .
The initial conditions were given, similarity to the case of the Hwa–Bjorken
solution, on a boost-invariant hypersurface with τ = τ0, but assuming an
inhomogeneous initial temperature profile and a corresponding matching ini-
tial density profile. In the same paper this solution is extended to axially
symmetric, three dimensionally expanding fireballs, that represent the late
stages of central heavy ion collisions. However, for non-central collisions,
axial symmetry is too restrictive and due to this reason we have generalized
these solutions for ellipsoidally expanding relativistic fireballs, and the 1+1
dimensional solution, the 1+3 dimensional axially symmetric solution and
the 1+3 dimensional ellipsoidal solutions were written up also in a series of
papers for the 3-rd Budapest Winter School on Heavy Ion Physics, published
in Refs. [21–23]. These self-similar, relativistic hydrodynamical solutions, in
particular, the ellipsoidal expansion described in Ref. [23], correspond ex-
actly to the late time limit of the non-relativistic solutions described here.
See Ref. [23] for further details on such a correspondence as well as for a more
complete list of citations on early papers on the Hwa–Bjorken solution.

It is worthwhile to mention that there are additional, recently found exact
solutions of relativistic hydrodynamics that find accelerationless generalized
Hubble type of solutions, with direction dependent Hubble constants. The
first of these class of solutions has been found by Bíró in Refs. [24, 25], for
cylindrically symmetric expansions at the softest point of the equation of
state. Sinyukov and Karpenko recently published a solution which can be
considered as the generalization of Refs. [24,25], as well as that of Ref. [23],
for the pre-asymptotic, accelerationless stage of the expansion, when the
scales expand already linearly in time, corresponding to Eqs. (21)–(23), but
before the time period when the off-sets (Xa, Ya, Za) can be considered neg-
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ligibly small. The Bíró as well as the Sinyukov–Karpenko solutions are also
self-similar and accelerationless relativistic solutions, their shortcoming is
that they are valid in the medium only when the pressure is a temperature
independent constant, or, when the boundary condition is an expansion to
the vacuum, they are obtained only for the special “dust” equation of state,
that corresponds to a uniformly vanishing pressure, p = p0 = 0. These
solutions can thus be considered as a pre-asymptotic, relativistic solutions
corresponding to very late stages of the fireball expansions.

This brief review of known exact solutions of fireball hydrodynamics in
the relativistic kinematic domain indicates, that we find a correspondence
between the late stages of the presented exact, accelerating, self-similar so-
lutions of non-relativistic, ellipsoidally symmetric fireballs and the known
class of relativistic but accelerationless, self-similar, ellipsoidally symmetric
solutions of hydrodynamics. The missing link between them is the class of
relativistic, accelerating, explicit solutions of hydrodynamics that use a re-
alistic equation of state. The search for this missing class of exact and
explicit solutions has been started and the first results will soon be reported
elsewhere.

13. Summary

The non-relativistic hydrodynamical problem has been solved for ex-
panding fireballs with ellipsoidal symmetry for the class of self-similar ex-
pansions. The flow velocity distribution is a generalized Hubble field in all
the cases. An exact solution is assigned to each positive, integrable function
of a non-negative variable. The time evolution of the (X,Y,Z) scale param-
eters corresponds to a Hamiltonian motion of a mass point in a non-central,
repulsive potential. The density profiles may be of fireball type, or they may
form one or more shells of fire. For initial conditions with higher symmetry,
one dimensional, cylindrical and spherical expansions are obtained.

These results provide analytic insight into the time evolution of expand-
ing fireballs with nontrivial, ellipsoidally symmetric morphology, a non-
polynomially hard algorithmic problem that is difficult to solve even nu-
merically on von Neumann type computers.

Thanks are due to L.P. Csernai, Y. Hama, F. Grassi, M. Gyulassy,
T. Kodama, B. Lukács and J. Zimányi for inspiring discussions. This work
was supported by OTKA grants T026435, T034296, T038406, NWO-OTKA
grant No. 25487, by an NSF-MTA-OTKA grant INT0089462, the US DOE
grant DE-FG02-93ER40764 and by the NATO PST.CLG.980086 grant.
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