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QUANTIFYING NOISE INDUCED EFFECTS
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Contrary to conventional wisdom, the transmission and detection of
signals, efficiency of kinetics in the presence of fluctuating barriers or sys-
tem’s synchronization to the applied driving may be enhanced by random
noise. We have numerically analyzed effects of the addition of external
noise to a dynamical system representing a bistable over-damped oscillator
and detected constructive influence of noise in the phenomena of resonant
activation (RA), stochastic resonance (SR), dynamical hysteresis and noise-
induced stability (NES). We have documented that all above-mentioned
effects can be observed in the very same system, although for slightly differ-
ent regimes of parameters characterizing external periodic driving or (and)
noise. Particular emphasis has been given to presentation of various quan-
tifiers of the noise-induced constructive phenomena and their sensitivity to
the location and character of the imposed boundary condition.

PACS numbers: 05.40.–a, 05.10.–a, 02.50.–r, 82.20.–w

1. Introduction

The formulation of the fluctuation theory by Einstein and by Smolu-
chowski has opened a new road towards understanding statistical physics
within the framework of stochastic processes. In particular, the quantitative
explanation of the Brownian motion as a realization of random walk and
mathematical development of the theory presented in the pioneering works
by Langevin and Wiener have created foundations for the dynamical inter-
pretation of motion under the influence of irregular, noisy forces, provoking
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an outburst of studies on fluctuation-facilitated transport and fluctuation-
induced critical phenomena. In nonlinear systems, a combined action of
external driving and noise has been demonstrated [1–4] to induce the whole
plethora of unexpected effects whose appearance and action can be under-
stood by proper interpretation of non-equilibrium, dissipative dynamics.

In this paper, the generic double-well, periodically modulated potential
model perturbed by thermal Gaussian fluctuations is investigated. By use of
the numerical Monte Carlo methods all known effects displaying construc-
tive role of noises are demonstrated. In order to predict diverse physical
manifestations of the cooperative behaviors between the noise and input pe-
riodic “signal”, various quantifiers of noise-induced effects are examined and
detection of stochastic resonance (SR), resonant activation (RA), dynami-
cal hysteresis and noise enhanced stability (NES) is evidenced in the same
dynamical system, although for different regimes of feature parameters.

Our analysis starts with the phenomenon of stochastic resonance [1, 3]
which predicts optimization and synchronization of the system’s response in
the presence of noise. Occurrence of the phenomenon was experimentally
proven in digital devices such as Schmitt triggers [2] and observed in physical
systems such as ring lasers [5], vertical cavity surface emitting lasers [6] or
colloidal suspensions [7]. Characteristic features of SR were also recognized
in biological systems [4, 8–11]. In SR, due to interaction between the input
signal and the system, weak input signal can be amplified by its stochastic
counterpart. An increase of the noise intensity to a certain optimal level im-
proves the output signal quality as measured by signal-to-noise ratio (SNR),
spectral power amplification (SPA) or residence time distribution [12, 13].

Another phenomenon manifesting constructive role of noises is the reso-
nant activation which describes the most efficient time-averaged escape rate
over a time-modulated energy barrier. The cooperative interplay between
time-dependent modulation of the barrier and thermal fluctuations that as-
sist the motion over the barrier cause the enhancement of the kinetic rate for
the process. In consequence, the RA is a generic effect for barrier crossing
events in conformation-modulated energy landscape [4, 14].

Owing to the different nature of SR and RA, the system’s response to
a periodic signal generally cannot be optimized simultaneously for both phe-
nomena to occur. Comparative experimental studies with a colloidal particle
trapped in the double-well potential created by optical tweezers [7,15] have
shed a light on differences between the two effects.

Bistable systems reacting to the external periodic stimulus may also
exhibit a time-delayed “hysteretical” response to the cyclical variation of
a control parameter [16, 17]. In particular, it has been argued that the
hysteresis loop area can be a useful quantity for identifying critical values of
field parameters responsible for the onset of resonance-like response of the
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system and therefore helpful in designing field parameters for an optimal
control [16–18]. In fact, the maximal loop area of the dynamical hysteresis
is indicative of the highest level of synchronization between the state of the
process and the external stimulus and can be correlated with occurrence of
the SR.

In resonant activation, dynamical hysteresis and stochastic resonance
presence of noise positively influences kinetics and makes it more efficient and
synchronized. On the contrary, the optimal level of noise can also prolong
the amount of time that the process spends in a metastable state, thus
modifying the stability of the system and inhibiting the process of passage
over the barrier. The effect known as the noise enhanced stability (NES) [19]
is also closely related to the noise-induced stabilization and noise-induced
slowing down [20].

Usually phenomena manifesting constructive role of noises in physical
systems have been considered separately. Here it is shown that all known
noise-induced phenomena (resonant activation, stochastic resonance, syn-
chronization, dynamical hysteresis and noise enhanced stability) could be
observed in the same system. Depending on the quantities under the study
and their interpretation, various effects could be recorded. The coexistence
of these effects suggests that they are very closely related and should be
considered together.

2. Model

For the examination of the noise induced effects in the generic double-
well potential the Langevin equation

dx(t)

dt
= −V ′(x) − A0 cos(Ωt + ϕ)

︸ ︷︷ ︸

f(t)

+ξ(t) , (1)

describing motion of the over-damped Brownian particle has been used. Here
V (x) represents the static double-well potential of the fourth order

V (x) = −
a

2
x2 +

b

4
x4 . (2)

whose minima are located at xm = ±
√

a/b with a separating maximum
located at xb = 0. The depth of the unperturbed potential well is equal to
V (xb)−V (xm)=∆V =a2/(4b). For the purpose of simulations a=128, b =
512 and A0 = 8, i.e. xm = ±1

2 and ∆V = 8. ξ(t) is a delta correlated,

〈ξ(t)ξ(t′)〉 = σ2δ(t − t′), white noise of intensity σ2. A particle mass, a fric-
tion coefficient and the Boltzmann constant has been preset to 1.
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The periodic forcing f(t) causes the periodic modulation of the potential

V (x) + A0x cos(Ωt + ϕ) = V (x) + A0x cos

[
2π

TΩ

t + ϕ

]

.

As the consequence, the crossings over the barrier as described by the tran-
sition probabilities of the thermally activated hops become time dependent.
For Brownian particle performing motion within the periodically tilted po-
tential a maximum synchronization between the thermally activated hopping
and the weak periodic driving occurs when the Kramers time matches time
scale of the modulation TΩ . During the motion, the local stability of the
potential minima changes, i.e. part of the driving force’s period the left po-
tential minimum can be favored over the right, while during the remaining
part of time the right minimum is more stable. Moreover, the periodic driv-
ing f(t) shifts the positions of xm (potential minima) and xb (separation
surface), as indicated in Fig. 1.
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Fig. 1. Modulation of the generic double-well potential (left panel) −ax2/2+bx4/4+

A0x cosΩt with a = 128, b = 512, A0 = 8, Ω = 1 for t = {0, π/2, 3π/2} and the

location of the top of the potential barrier (right panel) as a function of cosΩt.

The preferable direction of the motion in the presence of a non-biased noise is from

a shallower to a deeper minimum. For a chosen set of parameters potential maxima

are always separated by a local maximum of the potential.

The Langevin equation Eq. (1) was integrated by standard techniques
of integration of stochastic differential equations with respect to the Wiener
process [21]. Properties of the system were examined by use of the Monte
Carlo techniques. Long realizations of the non-stationary process governed
by Eq. (1) were simulated and collected ensembles of trajectories were used
to estimate various quantifiers of noise-induced effects.
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3. Solutions and results

The interplay of external driving and thermal fluctuations leads to several
above-mentioned fine-tuning properties of the system. All those phenomena
can be registered in the analysis of the generic model and the conditions for
their occurrence are clarified. Finally, the related effect of noise enhanced
stability, which is also observed in a subject to noise, modulated double-well
potential, is discussed.

3.1. Stochastic resonance

As already stated, the stochastic resonance phenomenon typically occurs
in nonlinear systems when the stochastic noise amplifies a weak periodic
input signal [1]. An explanation of the phenomenon may be given in terms of
different characteristics. Measures of the stochastic resonance could be based
on the measurement of the input-output synchronization (periodic response,
spectral amplification, area of the dynamical hysteresis loop, residence time
distribution) or extraction of the signal from the background noise (signal-
to-noise ratio).

In Fig. 2 sample power spectrum of the process governed by Eq. (1) is
presented. From power spectra, spectral amplification η(σ2) and signal-to-
noise ratio (SNR), according to definition from [1], were estimated. In the
power spectrum clear peak at the driving frequency ω ≈ Ω = 1 is visible.
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Fig. 2. The power spectrum S(ω) for σ2 = 4, the spectral amplification η(σ2) and

SNR for the generic model. The maximum of SNR corresponds to the situation

when the signal is extracted from the background noise in the optimal way. The

maximum of the spectral amplification η represents such a value of the noise inten-

sity that the system reproduces the input signal in the best way. The frequency of

external driving Ω = 1.



1764 B. Dybiec, E. Gudowska-Nowak

Inspection of the spectral amplification and signal-to-noise ratio indicates
the existence of an optimal noise intensity σ2 for which the quantifiers of
stochastic resonance are maximal.

Motion of the heavily damped Brownian particle in a tilted double-well
potential is registered in stochastic trajectories x(t) exhibiting a series of
switchings between both sides of the potential barrier. In the absence of
the periodic forcing, the residence time distribution (i.e. distribution of
time episodes in which the process x(t) dwells in a right/left potential well)
is exponential. An introduction of the periodic driving produces series of
peaks centered at Tn = (n + 1

2)TΩ with n = 0, 1, 2, . . .. These peaks are
centered at preferable times for the most probable particle passage when
the relevant potential barrier height becomes minimal. After a transition,
the particle has to wait for the half of the period TΩ/2 before the next best
chance for the reverse passage happens.

An analysis of histograms of residence times when the system dwells on
one of the meta-stable states provides another measure of the stochastic
resonance [12, 13]. The presence of peaks indicates the level of the synchro-
nization between the switching mechanism and the external periodic driving.
Barrier crossing events tend to take place when the external driving assists
the noise in moving a particle from one potential well to another, i.e. when
the relative barrier is minimal. In particular, the area under the first peak,
cf. right panel of Fig. 4, which is located at TΩ/2, is the measure of the
synchronization between the input and the output signals. It becomes the
largest in the regime SR, when the switchings between the potential wells
are in phase with the external periodic signal and the mean residence time
is closest to half the signal period. Fig. 3 presents sample residence time
distributions for various values of the noise intensity σ2. The right panel of
Fig. 4 presents numerical estimation of the area under the first peak of the
residence time distributions.

For large t (t → ∞), the process x(t) described by Eq. (1) loses in-
formation about its initial state and the average 〈x(t)|x(0) = x0〉 becomes
a periodic function of time with dominant frequency equal to the frequency
of external driving Ω = 1 [1, 3], i.e. 〈x(t)〉as = x̄ cos(Ωt − ϕ̄) where the
amplitude x̄ and the phase shift ϕ̄ depend on the noise intensity σ2 and the
frequency of the external driving Ω. In left panel of Fig. 4 the amplitude of
〈x(t)〉as versus the noise intensity σ2 is plotted. There exists such a value
of σ2 for which x̄ is maximal. Accordingly, at this point the phenomenon of
the stochastic resonance takes place.

Evaluation of the area, P1, under the first peak of the residence time
distribution, due to presence of the exponential background produced by
spontaneous transitions between states, is complicated and not fully unique.
Usually, this problem is resolved by subtracting exponential decay or by re-
stricting the area of integration to a smaller arbitral interval than [0, TΩ ].
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Fig. 3. Residence time distributions for the generic model for various noise inten-

sities. For a large noise intensity, the particle moving in a double-well potential

does not feel the potential barrier and the residence time distribution approaches

the exponential distribution. For small noise intensities, the barrier crossing events

are most efficient when the potential barrier attains its minimum. Therefore, the

residence time distribution consists of periodic peaks centered at time points when

the height of the surface separating the minima of the potential is minimal.
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Therefore, to avoid this problems, as a measure of the stochastic resonance
probability, P (. . . , TΩ), of a given number of transitions between states dur-
ing one period of the external driving, TΩ, has been suggested [22]. Samples
of P (. . . , TΩ) probabilities are presented in Fig. 5.
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3.2. Resonant activation

First passage time problem for a given stochastic process concentrates
on calculation of the time-dependent probability density for a process {x(t)}
to reach for the first time a point x or to cross a boundary. In this section
we discuss evaluation of the mean value of the first passage time (MFPT)
distribution (see Fig. 6) when crossing a boundary may be understood as
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an escape event from one of the potential wells [23]. Accordingly, MFPT is
then defined as an average time after which the particle becomes absorbed
(removed from the system). Figs. 6, 7 present results of MFPT versus the
angular frequency of the external driving Ω for various noise intensities σ2.
In the simulations, the particle starts its diffusive motion in the left potential
minimum. The absorbing boundary is located at the maximum of the per-
turbed potential. Histograms of FPTs were estimated from the trajectories
x(t) and consequently the MFPTs were evaluated.
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Fig. 7. MFPTs’ curves for the periodically modulated double-well potential model

with various noise intensities. With an increasing noise intensity the average time

that a particle needs to escape from the system decreases.

As it can be seen in Fig. 7, the dependence of MFPT on the driving
angular frequency Ω is non monotonic [24] and for certain value of the
external driving frequency Ωres the MFPT becomes minimal. The observed
RA phenomenon [14] corresponds to the maximal reaction rate [23] and
decreases with the increasing noise intensity σ2 when the separatrix surface
between the wells is no longer experienced by the moving particle.

Although RA and SR phenomena seem to be interrelated [14,25,26], the
conditions for both effects to be observed are different. The RA response is
observed at a fixed value of the noise intensity σ2 after tuning the driving
frequency Ω to a resonant value Ωres whereas SR is typically examined as
a function of the noise intensity. Nevertheless, both effects are visible in the
same parameter regime.
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3.3. Dynamical hysteresis loop

Fig. 8 presents the probability of finding a particle in the right potential
well as the function of the external driving. Due to periodic perturbation
of the potential barrier, the probability density function of the variable x(t)
becomes periodic and, as a consequence, the probability of finding a process
in one of the potential wells is a looping function of time. In the simulations,
the separating surface between potential wells is located at the maximum of
the perturbed potential, Fig. 1. The area of the dynamical hysteresis loop
changes with the noise intensity [18] and can be optimized for detecting its
maximum cf. Fig. 9. Interestingly, the noise intensity for which the spectral
amplification η(σ2) (and x̄(σ2)) attains maximum is slightly different from
the value of the noise intensity for which the area of the dynamical hysteresis
loop is maximal. It is due to the fact that the spectral amplification as
well as the amplitude of the periodic response take into account different
characteristics of the process x(t) [17, 18].
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Fig. 8. Dynamical hysteresis loops for various noise intensities. With the increasing

value of the noise intensity the area of the dynamical hysteresis loop decreases. It

is the effect of the fact that the increasing noise intensity decreases the phase shift

between the periodic input signal and the periodic response of the system.

In Table I, summary of our evaluations is displayed. The most popular
performance measures of SR are presented pointing to the sensitive role
played by properly posed boundary conditions. More precisely, we observe
that due to possible recrossings, evaluation of maximal P1 is recorded for
different noise intensities when the barrier dividing the states is placed at the
other minimum of the unperturbed potential, or at the perturbed potential
top. Moreover, evaluation of hysteresis loop area indicates that its maximum
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TABLE I

Values of the noise intensity for which maxima of SR measures are recorded. Loca-
tion of the maximum of SNR, due to flat character of SNR curve, is not included.

Measure Border location σ2

periodic response (x̄) none 4.2

spectral amplification (η) none 4.0

P (2, 0, TΩ) minimum of the unperturbed potential 3.0

P1 barrier top of the perturbed potential 2.8

P1 minimum of the unperturbed potential 3.2

hysteresis loop area barrier top of the perturbed potential 3.2

is observed for the same noise intensity σ2 for which largest P1 is recorded
for trajectories reaching the other minimum of the unperturbed potential.

A double-well potential with an additive periodic driving tuning the rel-
ative stability of states is an archetypal model used in a variety of biological
applications. The similar model, based on a special form of the double-well
potential was used for description of a voltage-gated ion channel in a red
blood cell [27] in which a dynamical hysteresis was observed experimentally.
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3.4. Noise enhanced stability

Finite amount of noise intensity may also enhance the lifetime of an
unstable state. The phenomenon, addressed in physical literature as noise
enhanced stability (NES) was observed both, in linear [19] and cubic po-
tentials [20]. By investigating the escape times from a time modulated
metastable state, the same effect can be detected in the generic double-
well potential model. Left panel of Fig. 11 displays the perturbed generic
double-well potential at various times t. The particle starts its motion at
the x0 = 0.22 and continues until the absorption at xb = 0.5 takes place.
Results of numerical evaluation of corresponding mean first passage times
MFPTs for the problem are shown in the right panel of Fig. 11. The solid
line indicates an analytical result [23] for passages over the static barrier,
i.e. with ϕ = π and Ω = 0 (cf. Eq. (1)). The dashed lines stand for the
deterministic evaluation of the MFPTs over the static, i.e. A0 = 0, (lower
dashed line) and modulated (upper dashed line) potential barrier. In Monte
Carlo simulations this limit is reached for noise intensities σ2 tending to
zero. Addition of weak noise causes MFPT to increase steadily up to the
maximal value from which further decrease of the MFPT is observed. For
static and modulated potentials a clear feature of the NES phenomenon is
observed: there exists a critical value of the noise intensity σ2 for which
the MFPT attains the maximum. In general, by choosing an appropriate
potential, boundary and initial conditions the lifetime of a metastable state
can be arbitrarily prolonged [20].
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4. Summary and conclusions

The double-well potential model provides an excellent setup to examine
resonant effects induced by combined action of noises and periodic forcing.
Our studies confirm possibility of detection of the SR, RA, NES and dynamic
hysteresis phenomena in the over-damped Brownian dynamics taking place
in a periodically modulated double-well potential model. Table I, central
to the discussion of the results presented here clearly demonstrates that
(i) maximal values of the same SR measure will be observed for different
noise intensities if various border locations between the states are specified,
(ii) in general, characterization of SR is non-unique and the definition of
the phenomenon will depend in many respects on a chosen feature quantity
as calculated or measured in the system. Given the fact that all of diverse
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“noise-induced” phenomena can be observed for signals described by the
same standard model, one can muse about possible concerted realizations of
such optimized actions in natural systems whose performance depends on
modulation frequency and intensity of thermal noise.
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