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A randomly interacting N -species Lotka–Volterra system in the pres-
ence of a Gaussian multiplicative noise is analyzed. The investigation is
focused on the role of this external noise into the statistical properties of
the extinction times of the populations. The distributions show a Gaussian
shape for each noise intensity value investigated. A monotonic behavior of
the mean extinction time as a function of the noise intensity is found, while
a nonmonotonic behavior of the width of the extinction time probability
distribution characterizes the dynamical evolution.
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1. Introduction

Generalized Lotka–Volterra equations have been used in recent years to
describe the dynamics of various kind of population species, which are main
components in complex ecosystems [1–6]. To understand the complex be-
havior of such ecosystems is crucial to analyze the role played by the external
noise on the dynamics. It has become increasingly evident that nonlinearity
and noise play an important role in such complex dynamics. Recently, in
fact, noise-induced effects in population dynamics, such as pattern forma-
tion, stochastic resonance, noise delayed extinction, quasi periodic oscilla-
tions, etc., have been investigated with increasing interest [8–14]. Complex
ecological systems evolve towards the equilibrium states through the slow
process of nonlinear relaxation, which is strongly dependent on the random
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interaction between the species, the initial conditions and the random inter-
action with environment. One of the open problems of such ecosystems is the
investigation of the time scales of extinction and survival of the species and
their related statistics. Various factors affecting extinction such as migra-
tion, chaos, interaction between species, spatial synchronization, etc., have
been discussed in the literature [15–18]. However, there is lack of investiga-
tion on the role of external noise on the extinction process, which is the main
focus of this paper. The mathematical model used to analyze the dynamics
of N biological species, with spatially homogeneous densities, is the gener-
alized Lotka–Volterra system. We consider a Malthus–Verhulst model for
the self regulation mechanism and an external multiplicative noise source,
taking the environment interaction into account [19,20]. Within this model
we analyzed the role of the noise in the statistical properties of the extinc-
tion times of the populations. Specifically a monotonic behavior of the mean
extinction time as a function of the noise intensity is observed. The width
of the distribution of the extinction times, however, has a nonmonotonic
behavior as a function of the noise intensity.

2. The model

The dynamical evolution of our ecosystem composed by N interacting
species in a noisy environment (climate, disease, etc.) is described by the
following generalized Lotka–Volterra equations with a multiplicative noise,
in the framework of Ito stochastic calculus [21]

dni(t) =
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where ni(t) ≥ 0 is the population density of the ith species at time t and
i = 1, ..., N . In Eq. (1), the first two terms describe the development of the
ith species without interacting with other species, α is the growth parameter,
and Jij is the interaction matrix, which models the interaction between
different species (i 6= j). Here wi is the Wiener process whose increment dwi

satisfy the usual statistical properties 〈dwi(t)〉 = 0, and 〈dwi(t)dwj(t
′)〉 =

δijδ(t− t′)dt. The interaction matrix Jij has elements randomly distributed
according to a Gaussian distribution with 〈Jij〉 = 0, 〈JijJji〉 = 0, and σ2

j =

J2/N . Our ecosystem contains, therefore, 50% of prey-predator interactions
(Jij < 0 and Jji > 0), 25% competitive interactions (Jij > 0 and Jji > 0),
and 25% symbiotic interactions (Jij < 0 and Jji < 0). We consider all
species equivalent so that the characteristic parameters of the ecosystem are
independent of the species. The formal solution of Eq. (1) is
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where the term hi(t)=
∑

j 6=i Jijnj(t) represents the influence of other species

on the differential growth rate of the ith population. The dynamical behav-
ior of the ith population depends on the time integral of the term hi(t) and
the time integral in the denominator of Eq. (2). By considering the deter-
ministic dynamics (in the absence of external noise (ε = 0)), with a large
number of interacting species (that is large interaction random matrix), we
can assume that the term hi(t) is Gaussian with zero mean and variance

σ2
hi

= Σj,k〈JijJik〉〈njnk〉= J2〈n2
i 〉, with 〈JijJik〉= δjk

J2

N
. In the absence of

external noise, from the fixed-point equation ni(α−ni +hi) = 0, the sta-
tionary probability distribution of the populations is the sum of a truncated
Gaussian distribution at ni = 0 (for ni > 0) and a delta function for the
extinct species (for ni = 0). The initial values of the populations ni(0)
have also Gaussian distribution with mean value 〈ni(0)〉 = 1, and variance
σ2

n(0) =0.03. The interaction strength J determines two different dynamical

behaviors of the ecosystem. Above a critical value Jc = 1.1, the system is
unstable and at least one of the populations diverges. Below Jc the system
is stable and asymptotically reaches an equilibrium state. The equilibrium
values of the populations depend both on their initial values and on the in-
teraction matrix. If we consider a quenched random interaction matrix, the
ecosystem has a great number of equilibrium configurations, each one with
its attraction basin. For an interaction strength J =1 and an intrinsic growth
parameter α=1 we obtain: 〈ni〉=1.4387, 〈n2

i 〉=4.514, and σ2
ni

=2.44. These
values agree with that obtained from numerical simulation of Eq. (1).

The statistics of the species extinction has been analyzed using the mean
extinction time 〈tm〉, defined as

〈tm〉 =
1

Nexp

Nexp
∑

i=1

tm , (3)

and its variance
σ2 = 〈t2m〉 − 〈tm〉2 . (4)

Here 〈tm〉 is an ensemble average (Nexp is the number of simulative experi-
ments), tm is the average extinction time over the number of populations N

tm =
1

N

N
∑

i=1

ti,m , (5)

and ti,m is the extinction of the i-th population in the m-th experiment.
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3. Results and comments

The parameters used in our simulation are: α = 1.2, J = 1, σ2
J = 0.005,

N = 400. The number of simulative experiments is Nexp = 1000, and
the initial values of the average population and its standard deviation are:
〈ni(0)〉 = 1, σ2

ni(0)
= 0.03. The dynamics of the various species are different

even if they are equivalent according to the parameters in the dynamical
Eq. (1). However, to change the species index by fixing the random matrix or
to change the random matrix by fixing the species index should be equivalent
as regards the asymptotic dynamical regime.

In the presence of the external noise (ε 6= 0) we calculate the long time
probability distribution of the species density for different values of the noise
intensity. These are shown in Fig. 1.

Fig. 1. Long time probability distribution of the species densities for different exter-

nal noise intensities ε. Namely ε = 0, 0.562, 1, 1.778, 3.162, 5.62. Around the value

ε = 0.562 the distribution becomes asymmetric, and for ε > 1.778, all the species

are extinct.

For increasing external noise intensity we obtain a larger probability dis-
tribution with a lower maximum (see the different scales in Fig. 1 for differ-
ent noise intensity values). The distribution is asymmetric for ε = 0.562
and tends to become a truncated delta function around the zero value
(P (ni) → δ(ni) for ni ≥ 0, and P (ni) = 0 for ni < 0), for further increas-
ing noise intensity. Specifically for high values of noise intensity (namely
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for ε > 1.778) we strongly perturb the population dynamics, and because
of the presence of an absorbing barrier at ni = 0 [19], we obtain quickly
the extinction of all the species. To confirm this picture we calculate the
time evolution of the average number of extinct species for different noise
intensities. This time behavior is shown in Fig. 2. We see that this number
increases with noise intensity, obtaining a rapid transient dynamics of the
system towards the extinction final state for ε ≥ 1.778. This means that
the species rapidly die and the probability distribution of the species density
confines accordingly.

Fig. 2. Time evolution of the normalized number of the extinct species for different

noise intensities ε. Namely: ε = 0, 0.562, 1, 1.778.

In the following Fig. 3 we show the probability distribution function
(PDF) of the extinction times of the species. The shape of the distribution
is Gaussian in the deterministic regime (ε = 0) and in the presence of the
external noise (ε 6= 0). For low noise intensities the probability distribu-
tion becomes larger and lower until reaches the value of ε = 1. After this
value of noise intensity the distribution becomes narrow and higher. The
mean extinction time, which is easily visible from the figure because of the
Gaussian shape distribution, decreases monotonically with increasing noise
intensity. In this figure it is shown a well defined extinction time windows of
the species, moving towards the absorbing barrier at ni = 0, with increasing
noise intensity.



1780 A. Fiasconaro, B. Spagnolo

Fig. 3. Probability distribution function of the extinction times of the species, for

different values of the noise intensity. Namely: ε = 0, 0.562, 1, 1.778, 3.162, 5.62.

All the PDFs show a Gaussian shape distribution.

This behavior is due to the presence of the external noise and the ab-
sorbing barrier. In fact, in the deterministic case (ε = 0), the Gaussian
distribution of the extinction times is due only to the random interaction
matrix. The characteristic values of the distribution, that is the mean and
the variance, depend on the choice of the parameters of the model, that is
the growth parameter α, the interaction strength J and the initial condi-
tions. A small amount of noise forces the system to sample more of the
available range in the parameter space and therefore moves lightly the sys-
tem towards the extinction. The average extinction time at ε = 0.562 is
less than that in the absence of external noise. This enlargement and low-
ering of the PDF continues until the noise intensity reaches the value of the
interaction strength J = 1. After that the external noise prevails on the
interaction matrix term and the extinction process proceeds quickly because
of the presence of the absorbing barrier at ni = 0 (see Eq. (1)). Almost
all the species extinguish in short times around a very low mean extinction
time. At ε = 3.162, for example, 〈tm〉 ∼ 3.3. Increasing the noise intensity
(ε > 1) the PDF becomes narrower and, therefore, higher.

As can be seen in Fig. 3 for ε = 3.162 and ε = 5.62 the species extinction
happens in few time units, so that the probability of density species vanishes
for the same values (see Fig. 1).
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This peculiar behavior of the PDF of extinction times gives rise to the
nonmonotonic behavior of the variance of the same quantity as a function
of the noise intensity. This is shown in the following Fig. 4.

Fig. 4. Mean extinction time and variance as a function of the noise intensity ε.

The variance shows a nonmonotonic behavior with a maximum at ε ≃ 1 and very

low values at higher noise intensities.

From this figure, the maximum of the variance at the noise intensity ε ≃ 1
and the very small values of the variance at high noise intensities, are clearly
visible. In the same figure the monotonic behavior of the mean extinction
time 〈tm〉 is shown. Calculation have been repeated for different number
of populations, namely: N = 100, 200, 300, 400. In all the calculations the
qualitative behaviors of the mean extinction time and its variance are the
same than those reported in Fig. 4.

We did not reveal any power law decay for the probability distribution
of extinction times as found in previous investigations [16].

4. Conclusions

The analysis of the dynamics of ecosystem composed by N random in-
teracting species has been performed in the presence of multiplicative noise.
The probability density of the extinction time of the species (P (t)) has been
evaluated for various noise intensities. The extinction times tms are Gaus-
sian distributed with a mean value monotonically decreasing as a function of
the noise intensity. The variance of the extinction times shows a nonmono-
tonic behavior, which characterizes the transient dynamics of the N random
interacting species model.
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