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CHAOS IN NEWTONIAN ITERATIONS:

SEARCHING FOR ZEROS WHICH ARE NOT THERE∗
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We show analytically that Newtonian iterations, when applied to a poly-
nomial equation, have a positive topological entropy. In a specific example
of an attempt to “find” the real solutions of the equation x2 + 1 = 0, we
show that the Newton method is chaotic. We analytically find the invari-
ant density and show how this problem relates to that of a piecewise linear
map.

PACS numbers: 05.45.–a

1. Introduction

Suppose we want to numerically solve a nonlinear equation f(z) = 0,
where z ∈ R or z ∈ C. If only calculating the derivative of f is possible,
perhaps the famous Newton (or Newton–Raphson) method [1] is the first
method that comes to mind. Starting from some z0, this method uses the
following iterations:

zn+1 = zn −
f(zn)

f ′(zn)
= η(zn) . (1)

If this iteration converges, it usually does so very fast. Because of that, and
because of its simplicity, the Newton method is one of the most frequently
used numerical methods ever. Yet it is widely known that even if f(z) is
a low-order polynomial, boundaries between basins of attractions of different
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roots can be very complicated. Indeed, many pieces of popular software use
this particular property of the Newtonian iterations to produce aesthetically
pleasing fractals.

The Newton method fails if it hits a zero of the derivative, or when the
denominator in Eq. (1) vanishes, unless the zero of the derivative corresponds
to a multiple root. It is less commonly known that the Newton method also
fails to find a root if it forms a multicycle. Many textbooks that teach the
Newton method do not even mention this fact and those that do make the
impression that multicycles in the Newton method are a rare and unim-
portant peculiarity. In reality, however, constructing examples that display
multicycles is quite easy. A reader may verify, for instance, that the points
{0, 1} form a stable 2-cycle, shown in Fig. 1, in the Newton method applied
to the polynomial x3−2x+2. Several questions then arise: How many such
multicycles are there? Is it possible to encounter them in practical numeri-
cal applications of the Newton method? Is there a connection between the
multicycles and, say, basins of attraction?
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Fig. 1. A 2-cycle generated by the Newton method applied to the equation

x3 − 2x + 2 = 0.

We may regard consecutive iterations of the Newton method as a dy-
namical system. Multicycles generated by the Newtonian iterations are the
periodic orbits of this dynamics. Since the seminal works of Cvitanovic and
co-workers [2], it is known that the unstable periodic orbits (UPOs) carry im-
portant information about the dynamical system that generates them. Yet
to extract this information, one needs to know at least how many periodic
orbits there are.
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We shall discuss these questions in the case of f(z) being a polynomial.
This paper is organized as follows: In Section 2 we show that the New-

tonian iterations applied to a polynomial equation can generate infinitely
many multicycles and we calculate the topological entropy associated with
them. In Section 3 we discuss a particularly simple case of the polynomial
z2 +1. We show that dynamics resulting from the Newton method, when re-
stricted to the real axis, is chaotic and equivalent to the dynamics generated
by a piecewise linear map. We explicitly calculate the invariant density of
the Newtonian dynamics in this case. Since the number of chaotic systems
whose invariant densities are known analytically is fairly limited, this result
is very interesting, at least from a pedagogical point of view. In Section 4 we
partially generalize these results to the case of polynomials z2m + 1, m > 2.
Conclusions are given in Section 5. The Appendix contains a proof of the
theorem that we use to calculate the topological entropy.

2. Polynomials and multicycles

Let P (z) be a complex polynomial of order n:

P (z) =

n
∑

s=0

asz
s . (2)

Suppose the polynomial Eq. (2) has nd distinct roots1. We solve the poly-
nomial equation

P (z) = 0 , (3)

numerically by Newtonian iterations. This procedure defines a function

η(z) = z −
P (z)

P ′(z)
. (4)

Consecutive iterates of Eq. (4) satisfy

ηk(z) = ηk−1(z) −
P

(

ηk−1(z)
)

P ′ (ηk−1(z))
, k = 1, 2, . . . , (5)

with η0(z) ≡ z. The following Theorem gives a more detailed characteris-
tics of the iterates of the function Eq. (4). It is pivotal in our subsequent
discussion:

1 Distinct roots of a polynomial must not be confused with roots of muliplicity one.

For example, the polynomial x
2(x− 1)2(x− 2), of order five, has three distinct roots.
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Theorem 1. ∀ k > 1

ηk(z) = z −
P (z)

P ′(z)

Ak(z)

Bk(z)
, (6)

where Ak, Bk are polynomials of order nk
d − nd, where nd is the number of

distinct roots of the polynomial P (z).
An elementary, but rather lengthy and technical, proof of this Theorem

is given in the Appendix.
Theorem 1 is very useful when we consider multicycles generated by the

function Eq. (4). Specifically, all points belonging to a k-cycle satisfy

ηk(z) = z . (7)

Using Eq. (6) we get that either P (z) = 0, which means that z is a fixed
point of the function Eq. (4), or that

Ak(z) = 0 . (8)

This equation has nk
d − nd solutions on the complex plane. If k is prime,

then there are Nk = (nk
d − nd)/k different k-cycles. If k is not prime, we

need to subtract “spurious” k-cycles; for example, two rounds over a 2-cycle
can be mistakenly taken for a 4-cycle. Eventually, for the number of k-cycles
that are generated by the Newton method applied to a polynomial with nd

distinct zeros, we obtain

Nk =
1

k

(

nk
d − nd −

∑

j∈Dk

j Nj

)

, (9)

where Dk is a set of all proper divisors of k (if k is prime, Dk = ∅). These
multicycles are periodic orbits of the dynamics generated by successive iter-
ations of the function Eq. (4). A limited number of the multicycles may be
stable, but as in any dynamical system, an overwhelming majority of them
are unstable and form the unstable periodic orbits (UPOs) of the dynamics.

The number of multicycles grows very rapidly with k; for example,
if nd = 5, there are approximately 4.5 × 1010 17-cycles. To quantify this
observation, we can calculate the topological entropy [3] of the dynamics
generated by η(x) by appropriately counting the UPOs [4]:

S = lim
k→∞

1

k
ln Nk = ln nd . (10)

S > 0 for all nd > 2. It is well known that if a map acting on an interval has
a positive topological entropy, it is chaotic [5]. In a more general setting,
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if the topological entropy is positive, we can expect some form of chaotic
behavior to show up in the dynamics.

We can see that the Newton method, when applied to a polynomial
equation, leads to an extremely rich structure of multicycles. But where are
they? If any of them is stable, as in our example in the Introduction, it can
show up in a practical application of the Newtonian iterations. The unstable
majority live on fractal boundaries between basins of attraction. It is the
dynamics on these boundaries that is the chaotic behavior whose presence is
indicated by a positive value of the topological entropy. It is also interesting
to see that if a polynomial has multiple roots, it has less multicycles than
a polynomial of the same order and with all roots distinct: It is the number
of distinct roots, rather than the degree of the polynomial or the number of
all the roots, that determines the value of the topological entropy.

3. The equation x2 + 1 = 0

In general, multicycles generated by the Newton method live on compli-
cated geometric objects somewhere on the complex plane. There is, however,
one nontrivial example where the locale of the multicycles can be pinpointed
quite accurately. Consider the equation

z2 + 1 = 0 . (11)

It generates the following Newtonian dynamics:

η(z) =
1

2

(

z −
1

z

)

. (12)

It can be proved that if we start with any z0 such that Im(z0) > 0, the New-
tonian iterations converge to z∞ = +i. Similarly, if we start with Im(z0) < 0,
the Newtonian iterations converge to z∞ = −i. Therefore, all the multicy-
cles of the function Eq. (12) and all the points that eventually end up on
them must lie on the real axis.

We shall, therefore, discuss properties of the map Eq. (12) restricted to
the real axis:

η(x) =
1

2

(

x −
1

x

)

, x ∈ R . (13)

Formally speaking, this map results from an attempt to find the real zeros
of the equation x2 + 1 = 0. There are no such zeros, but that does not
necessarily mean that properties of the map Eq. (13) are not interesting.
Fig. 2 shows a typical trajectory generated by this map.
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Fig. 2. A typical trajectory generated by the map Eq. (13). The trajectory spends

most of its time in the vicinity of x = 0, but from time to time it makes large excur-

sions, and then slowly relaxes towards zero. If one waits long enough, arbitrarily

large excursions can be observed.

3.1. Properties of the map Eq. (13)

We shall list the most important properties of the map (Eq. 13):

• This function is singular in x = 0 and it increases monotonically for
both x < 0 and x > 0. It does not have a fixed point.

• Each point has two pre-images. The pre-images of a point x satisfy

x± = x ±
√

x2 + 1 . (14)

• There are countably many multicycles (UPOs). For each multicycle,
there are countably many points that eventually fall onto it.

• x = 0 corresponds to the escape to infinity. There are countably many
points that are eventually mapped into x = 0 and escape to infinity.

• The union of all the multicycles, points that lead to them, and points
that eventually escape to infinity, is also countable and dense in R.
This leaves us with uncountably many points that neither escape, nor
fall on a multicycle, but form a “truly chaotic” orbit of the dynamical
system Eq. (13).
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Simulations suggest that the map Eq. (13) has an invariant density that
does not depend on the starting point, provided this point does not escape
to infinity. This eliminates only countably many points, and in practice
only three of them: x ∈ {−1, 0, 1} (the pre-images of ±1 are irrational and
inaccessible in numerical simulations). Indeed, to compute the invariant
density, denoted here by ρ(x), we use the Frobenius–Perron equation [6]:

ρ(x) =

∞
∫

−∞

δ (η(x) − y) ρ(y) dy . (15)

Using Eq. (14), this equation takes the explicit form

√

x2 + 1 ρ(x) =
(

x +
√

x2 + 1
)

ρ
(

x +
√

x2 + 1
)

−
(

x −
√

x2 + 1
)

ρ
(

x −
√

x2 + 1
)

. (16)

It can be verified by a direct substitution that the Lorentzian distribution

ρ(x) =
1

π(1 + x2)
, (17)

solves the Frobenius–Perron equation Eq. (16). Thus the map Eq. (13) joins
the elite club of maps whose invariant densities are known explicitly. Slowly
decaying tails of the invariant density Eq. (17) explain the large deviations
from zero made by the chaotic trajectory.

3.2. The stereographic projection

It is interesting to see that the stereographic projection converts the
function Eq. (13) into a piecewise linear map on the unit interval. If we
substitute

x = tan πφ , (18)

we obtain

η(x) = cot 2πφ = tan π

(

2φ +
1

2

)

. (19)

Given the periodicity of the trigonometric function, we can see that the map
Eq. (13) is equivalent to

ζ(φ) = 2φ +
1

2
mod 1 . (20)

Properties of the map Eq. (20) are easy to find and they nicely illustrate
the multicycles.
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• The map Eq. (20) is chaotic with the Lyapunov exponent λ = ln 2.
This map has a flat invariant density, ρ(φ) = 1, φ ∈ [0, 1].

• φ = 1/2 is the fixed point of the map Eq. (20). The fixed point
corresponds to an escape to infinity in the language of x given by
Eq. (18).

• If we represent any φ ∈ [0, 1] by its binary expansion, the map Eq. (20)
acts on it by (i) the binary shift, (ii) rejecting the highest bit, and
(iii) flipping the remaining highest bit. For example,

0.1100101 . . . 2 → 0.000101 . . . 2 , (21)

where the subscript indicates a binary expansion. Thus, all points with
finite binary expansions eventually converge to 0.12 = 1/2, i.e., escape
to infinity, points with periodic (starting form some point) binary ex-
pansions belong to multicycles or settle on one after a finite number
of steps, and points with nonperiodic, infinite binary expansions lie
on the chaotic trajectory. Thus the rational numbers either escape to
infinity under the action of Eq. (20), or end up on multicycles. As the
transformation Eq. (18) maps rational numbers from the unit interval
to irrational numbers in R, encountering a true multicycle of Eq. (13)
during a computer simulation is impossible. However, the fact that
computer calculations are performed with a finite precision, leads to
the conclusion that in a computer experiment, the map Eq. (13) be-
haves as if it were periodic, with a fairly large period, almost regardless
of the starting point. This is a well known fact about pseudo-random
sequences.

• We can count the k-cycles by counting nontrivially different binary
sequences of the length k. For example, there are 2k possibilities of
distributing {0, 1} among k sites. Two constant sequences must be
excluded, and as all cyclic permutations are equivalent, we arrive, if k
is prime, on (2k − 2)/k. (If k is not prime, the result of (2k − 2)/k is
fractional.) This result, and its generalizations to non-prime k’s, are
the same as those given by Eq. (9) with nd = 2.

4. The equation x2m + 1 = 0

The equation
z2m + 1 = 0 , z ∈ C , m > 2 , (22)

is a natural generalization of the equation Eq. (11). However, the multicycles
generated by the Newtonian iterations resulting from the equation Eq. (22)
are not restricted to the real axis. Indeed, in case of Eq. (22) the Newton
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Fig. 3. The map Eq. (13) (top left) and the map Eq. (20) (bottom left), compared

to the map Eq. (23) with m = 2 (top right) and the corresponding map on the unit

interval, obtained numerically (bottom right).

method generates identical dynamics on each line eiπl on the complex plane,
with l = 0, 1, . . . m − 1, but there are also fractal boundaries between the
basins of attraction that do not lie on these lines and, apparently, a ma-
jority of the multicycles are located there. If the Newtonian iterations are
restricted to the real axis, they are the iterates of the function

η(x) =

(

1 −
1

2m

)

x −
1

2m x2m−1
, x ∈ R . (23)

This function has qualitatively the same properties as the function Eq. (13):
it is singular at x = 0, grows monotonically from −∞ to ∞ in both domains
x < 0 and x > 0, and each point has two pre-images. Therefore, the number
of its multicycles (again, on the real axis) must be the same as that of
Eq. (13). If we use the substitution Eq. (18), the function Eq. (23) does not
convert to a piecewise linear map. Fig. 3 compares the maps Eq. (13) and
Eq. (20) with the map Eq. (23) with m = 2 and the counterpart of ζ(φ),
obtained numerically from Eq. (23) with Eq. (18).
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We now turn to the invariant density. In the asymptotic regime, x ≫ 1,
pre-images of a point x satisfy

η−1(x) ≃ x+ =
2m

2m − 1
x , (24a)

η−1(x) ≃ x− = −
1

(2mx)1/(2m−1)
. (24b)

Moreover, if an invariant density exists and is continuous, it must satisfy

ρ(x−) ≃ ρ(0) . (24c)

Thus, if x ≫ 1, the Frobenius–Perron equation Eq. (15) takes the approxi-
mate form

x
2m

2m−1

[

ρ(x) −
2m

2m − 1
ρ

(

2mx

2m − 1

)]

=
ρ(0)

(2m − 1)(2m)1/(2m−1)
. (25)

Because of the symmetry of the function Eq. (23), the invariant density, if
it exists, must satisfy ρ(x) = ρ(−x). The right-hand side of Eq. (25) is
constant. Thus, the left-hand side can be constant only if

ρ(x) ∼ const · |x|−2m/(2m−1) , |x| → ∞ . (26)

Fig. 4 shows the invariant density, found numerically, corresponding to the
function Eq. (23) with m = 2. The tails agree perfectly with the theoretical
prediction Eq. (26). Simulations show that for all m > 2, the invariant
density is bimodal, and that the valley between the peaks gets deeper as m
increases.
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Fig. 4. The invariant density corresponding to the function Eq. (23) with m = 2,

obtained numerically. The tails behave like ∼ |x|−4/3, in a full agreement with our

theoretical predictions.
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5. Conclusions

We have shown that the Newton method, when applied to a polynomial
equation that has more than one distinct solution, generates infinitely many
multicycles, and we have calculated the topological entropy associated with
them. We have also shown that the map Eq. (13) is chaotic, equivalent to
a piecewise linear map on the unit interval, and we have explicitly found
its invariant density. This result is interesting by itself as the number of
maps with analytically known invariant densities is very limited. Because
the invariant density in question coincides with the Lorentzian probability
distribution, one could use the function Eq. (13) as a basis of a pseudo-
random generator of the latter.

From a practical point of view, hitting an unstable multicycle is virtually
impossible, although it is well known that starting the Newtonian iterations
in a close vicinity of a fractal boundary between the basins of attractions,
where the unstable multicycles live, can slow down the convergence signif-
icantly. In some cases, stable multicycles can also appear and they can
prevent the Newton method from converging to a root; the polynomial pre-
sented in Fig. 1 provides one such example. It would be interesting to see
what are the criteria for the existence of stable multicycles. In practice,
however, if a multicycle appears to form, the Newtonian iterations should
be interrupted by a couple of steps taken with a different method, and with
the damped Newton method in particular. This usually breaks the multicy-
cle that has started to form, but can lead to new multicycles in their own
right. Discussing this point goes beyond the scope of the present paper. We
should finally mention that the Newton method is not the best method for
a numerical search for zeros of a polynomial. There are other algorithms,
better tailored to polynomials. From those the Laguerre method [1,7], cou-
pled with the deflation of the polynomial, is now regarded as the method
of choice. Despite many arguments in favor of the latter method, the New-
ton method is probably most commonly used for the task, and this is why
a study of its UPOs structure is, in our opinion, important.

To end on a lighter note, we have shown that a numerical search for zeros
of a polynomial with the Newton method can be quite chaotic, in particular
when the zeros are just not there.

Ł.S. thanks Mr Wojciech Brzezicki for a helpful discussion. This work
was supported in part by the Marie Curie Actions Transfer of Knowledge
project COCOS (contract MTKD-CT-2004-517186).
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Appendix A

Proof. We give a proof of Theorem 1 from Section 2 in this Appendix. First
observe that if the polynomial P (z) has multiple roots, there exists a poly-
nomial Q(z) such that P (z) = Q(z)R(z) and P ′(z) = Q(z)S(z), where
deg R(z) = nd, deg S(z) = nd − 1, nd is the number of distinct roots of the
polynomial P (z) and the fraction R(z)/S(z) cannot be further canceled. (If
all roots of P (z) are distinct, nd = n and Q(z) ≡ 1.) Therefore, (cf. Eq. (6))

ηk(z) = z −
R(z)

S(z)

Ak(z)

Bk(z)
. (A.1)

To prove the theorem, we need to show that

I. The polynomials Ak(z), Bk(z), generated according to Eq. (5), have
degrees nk

d − nd, and

II. The polynomials R(z), S(z), Ak(z), Bk(z) do not have common roots,
from which it follows that the fraction in Eq. (A.1) cannot be further
canceled.

Both parts of the proof proceed by induction. Note that A1(z) ≡ B1(z) ≡ 1,
so the theorem holds for k=1. For the sake of the notation, let us assume that

R(z) =

nd
∑

j=0

rjz
j . (A.2)

Part I

Suppose the theorem holds for some k > 1 and calculate

R
(

z(k)
)

= R

(

z −
R(z)

S(z)

Ak(z)

Bk(z)

)

= r0 +

nd
∑

s=1

rs

(

z −
R(z)

S(z)

Ak(z)

Bk(z)

)s

= r0 +

nd
∑

s=1

rs

s
∑

l=0

(

s

l

)

zs−l(−1)l
(

R(z)

S(z)

Ak(z)

Bk(z)

)l

=

nd
∑

s=0

rsz
s +

nd
∑

s=1

rs

s
∑

l=1

(

s

l

)

zs−l(−1)l
(

Ak(z)

S(z)Bk(z)

)l

(R(z))l

= R(z)

[

1 +

nd
∑

s=1

rs

s
∑

l=1

(

s

l

)

zs−l(−1)l
(

Ak(z)

S(z)Bk(z)

)l

(R(z))l−1

]

(note that l − 1 > 0)
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=
R(z)

(S(z)Bk(z))nd

[

(S(z)Bk(z))nd +

nd
∑

s=1

rs(S(z)Bk(z))nd−s

×
s

∑

l=1

(

s

l

)

(−1)l(zS(z)Bk(z))s−l(Ak(z))l(R(z))l−1

]

. (A.3)

Similarly

S
(

z(k)
)

= S

(

z −
R(z)

S(z)

Ak(z)

Bk(z)

)

=
1

(S(z)Bk(z))nd−1

×

nd−1
∑

s=0

(s + 1)rs+1(SBk)
nd−1−s(z SBk − RAk)

s . (A.4)

Therefore
R

(

z(k)
)

S
(

z(k)
) =

R(z)

S(z)

N (z)

Bk(z)D(z)
, (A.5)

where N (z), D(z) are certain polynomials whose forms are implied in
Eqs. (A.3) and Eq. (A.4). What are the orders of these polynomials?
degS = nd−1 and, by assumption, degAk = degBk = nk

d−nd. We thus
have

deg (SBk)
nd−s = (nd − s)(nd − 1 + nk

d − nd)

= nk+1
d − nk

ds − nd + s , (A.6)

deg (z SBk)
s−l(Ak)

lRl−1 = (s−l)(1+nd−1+nk
d−nd) + l(nk

d−nd)+(l−1)nd

= nk
ds − nd . (A.7)

Thus the term under the sum over s in Eq. (A.3) is of the order nk+1
d −nk

ds−

nd + s + nk
ds = nk+1

d − 2n + s, which takes a maximal value of nk+1
d −nd for

s = nd. Therefore
degN (z) = nk+1

d − nd . (A.8)

Similarly, because deg z S = deg R = nd,

deg (SBk)
nd−s−1(z SBk−RAk)

s = (nd−s−1)(nd−1+nk
d−nd)

+ s(nd+nk
d−nd)

= nk+1
d − nk

d − nd + s + 1 , (A.9)

which takes a maximal value of nk+1
d − nk

d for s = nd − 1. Therefore

degD(z) = nk+1
d − nk

d . (A.10)
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We finally have

ηk+1(z) = ηk(z) −
R

(

ηk(z)
)

S (ηk(z))
= z −

R(z)

S(z)

Ak(z)

Bk(z)
−

R(z)

S(z)

N (z)

Bk(z)D(z)

= z −
R(z)

S(z)

D(z)Ak(z) + N (z)

Bk(z)D(z)
= z −

R(z)

S(z)

Ak+1(z)

Bk+1(z)
. (A.11)

The last statement defines polynomials Ak+1(z), Bk+1(z). Using Eq. (A.8)

and Eq. (A.10), it is now easy to verify that degAk+1 = deg Bk+1 = nk+1
d −nd,

provided the last fraction in Eq. (A.11) cannot be canceled.
By direct calculations, it is easy to show that

Ak+1(z) = Ak(z)Bnd−1
k (z)Snd−1(z)S

(

z −
R(z)

S(z)

Ak(z)

Bk(z)

)

+ Bnd

k (z)Snd(z)Rnd−1(z)R

(

z −
R(z)

S(z)

Ak(z)

Bk(z)

)

, (A.12a)

Bk+1(z) = Bnd

k (z)Snd−1(z)S

(

z −
R(z)

S(z)

Ak(z)

Bk(z)

)

. (A.12b)

Note that we have already shown that Ak+1(z), Bk+1(z) are polynomials.

Part II

To complete the proof, we still need to show that the polynomials R(z),
S(z), Ak(z), Bk(z) do not have common roots. The polynomials R(z), S(z)
do not have common roots by construction. Suppose the polynomials R(z),
S(z), Ak(z), Bk(z) do not have common roots for some k > 1.

R(z) = 0

Let R(z) = 0. Then S(z) 6= 0 and Bk(z) 6= 0, and because of Eq. (A.12b),
Bk+1(z) = (Bk(z)S(z))nd 6= 0. Furthermore, if R(z) = 0, then, by virtue of
Eq. (A.12a), Ak+1(z) = Ak(z)(Bk(z)S(z))nd−1S(z) 6= 0, because Ak(z) 6= 0,
either. In other words, R(z) does not have common roots with the other
polynomials.

S(z) = 0

If S(z) = 0, then z is a zero of the derivative of the original polynomial
P (z) that is not a multiple root of the latter. In this case the Newton
iterations diverge and we cannot use the expressions Eq. (A.12). We need to
use the definitions implied in Eq. (A.11) instead; they are still valid by the
argument of continuity. We have Bk+1(z) = Bk(z)D(z), and if S(z) = 0,
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this reduces to Bk+1(z) = snd−1(R(z)Ak(z))nd−1 6= 0, where snd−1 is the
highest-order coefficient in the polynomial S(z), cf. Eq. (A.4) above. For
the remaining polynomial we have Ak+1(z) = Ak(z)D(z) + N (z) which,
for S(z) = 0, reduces to Ak+1(z) = (−1)ndRnd−1(z)And

k (z)(rnd
−snd−1),

where rnd
is the highest coefficient in R(z). Thus if S(z) = 0, Ak+1(z)

could vanish only if rnd
= snd−1, but this is impossible, given the fact that

R(z)Q(z) = P (z) and S(z)Q(z) = P ′(z) for a certain polynomial Q(z). In
other words, S(z) does not have common roots with the other polynomials.

Ak+1(z) and Bk+1(z) do not have common roots

It remains to be shown that Ak+1(z) and Bk+1(z) do not have common
roots. Let us assume that Bk+1(z) = 0. Because Bk+1(z) = Bk(z)D(z),
all roots of Bk(z) are also roots of Bk+1(z). However, if Bk(z) = 0, we can
directly repeat the argument from the preceding paragraph to show that in
this case Ak+1(z) = (−1)ndRnd−1(z)And

k (z)(rnd
−snd−1) 6= 0.

Because we have already shown that S(z) does not have common roots

with Bk+1(z), Bk(z) 6= 0 and S
(

z − R(z)
S(z)

Ak(z)
Bk(z)

)

= 0 is the only remaining

possibility for Bk+1(z) to vanish, cf. Eq. (A.12b). If this is the case, then
form Eq. (A.12a) we have

Ak+1(z) = Bnd

k (z)Snd(z)Rnd−1(z)R

(

z −
R(z)

S(z)

Ak(z)

Bk(z)

)

. (A.13)

By assumption, Bk(z) 6= 0, and because we have already shown that
neither R(z), nor S(z) can have common roots with Bk+1(z), R(z) 6= 0
and S(z) 6= 0. Finally, because, by construction, the polynomials R(z) and

S(z) do not have common roots, if S
(

z − R(z)
S(z)

Ak(z)
Bk(z)

)

= 0, it follows that

R
(

z − R(z)
S(z)

Ak(z)
Bk(z)

)

6= 0, and therefore, Ak+1(z) 6= 0.

We have thus shown that Ak+1(z) and Bk+1(z) do not have common
roots. This completes the proof.
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