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INVERSE PROBLEM OF VARIATIONAL CALCULUS
FOR NONLINEAR EVOLUTION EQUATIONS
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We couple a nonlinear evolution equation with an associated one and
derive the action principle. This allows us to write the Lagrangian density of
the system in terms of the original field variables rather than Casimir poten-
tials. We find that the corresponding Hamiltonian density provides a natu-
ral basis to recast the pair of equations in the canonical form. Amongst the
case studies presented the KdV and modified KdV pairs exhibit
bi-Hamiltonian structure and allow one to realize the associated fields in
physical terms.
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1. Introduction

In the calculus of variations one is concerned with two types of problems,
namely, the direct and inverse problems. The direct problem is essentially
the conventional one in which one first assigns a Lagrangian and then com-
putes the equation of motion through Euler–Lagrange equations. As op-
posed to this, the inverse problem begins with the equation of motion and
then constructs a Lagrangian consistent with the variational principle [1].
The object of the present work is to derive an uncomplicated method for
the Lagrangian representation of nonlinear evolution equations. We shall
see that our results for the Lagrangian densities provide a natural basis to
recast these equations in the Hamiltonian form [2,3].
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Studies in the Hamiltonian structure of nonlinear evolution equations are
based on a mathematical formulation that does not make explicit reference to
Lagrangians [4]. We feel that the Lagrangian formulation of these equations
should be quite interesting because Lagrangian densities, via the Legendre
map, will give us a direct route to construct the expressions for Hamilto-
nian densities that characterize the equation of Zakharov, Faddeev [2] and
Gardner [3]. To gain some weightage for the physical and mathematical
motivation of our work we proceed by noting the following.

Let P [v] = P (x, v(n)) ∈ Ar be an r-tuple of differentiable function. The
Fréchet derivative of P is the differential operator DP : Aq → Ar defined by

DP (Q) =
d

d ∈

∣

∣

∣

∣

∈=0

P [v + ǫQ[v]] (1)

for any Q ∈ Aq. If D =
∑

J

P [u]DJ , PJ ∈ A is a differential operator, its

adjoint D⋆ is given by

D⋆ =
∑

J

(−D)J . PJ . (2)

Helmholtz theorem for inverse variational problem [5] asserts that any non-
linear evolution equation ut = P [u] will have a Lagrangian representation
only if DP is self-adjoint. When the self-adjointness is guaranteed, a La-
grangian density L for P [u] can be explicitly constructed using the homo-

topy formula L[v] =
∫ 1
0 vP [λv]dλ. A single evolution equation is never an

Euler–Lagrange expression. One common trick to put a single evolution
equation into the variational form is to replace u by a potential function
w with u = −wx. This yields wxt = P [wx].The function w is often called
the Casimir potential. For many nonlinear evolution equations the Fréchet
derivative of P [wx] is self adjoint, while that of P [u] is not. In view of this,
the Lagrangian densities for single evolution equations are always written in
terms of partial derivatives of w. There are some equations for which even
P [wx] is not self-adjoint. These are often referred to as non-Lagrangian.
The well-known Burgers equations and nonlinear evolution equations with
nonlinear dispersive terms [6] serve as typical examples of non-Lagrangian
equations.

Keeping the above in view we shall work out a Lagrangian representa-
tion without taking recourse to the use of Casimir potentials. In Section 2
we introduce a suitable associated equation for an additional field variable
v(x, t) and use it to write the action principle for any nonlinear evolution
equation. We express the Lagrangian density in terms of u(x, t), v(x, t) and
their partial derivatives. We show in Section 3 that the coupled set of equa-
tions as introduced by us form a Hamiltonian system. We also cite examples
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in which the associated fields admit simple physical realization. In Section 4
we summarize our outlook on the present work and make some concluding
remarks.

2. Lagrangian representation

The basic philosophy we use here to construct expressions of Lagrangian
densities of nonlinear evolution equations has a rather old root in the clas-
sical-mechanics literature. For example, as early as 1931, Bateman [7] al-
lowed for an additional degree of freedom to bring the equation of motion
for the damped harmonic oscillator within the framework of action principle.
The Bateman Lagrangian

L = ẋẏ +
γ

2
(xẏ − yẋ) − ω2xy (3)

for the one-dimensional linearly damped harmonic oscillator

ẍ + γẋ + ω2x = 0 , x = x(t) (4)

has a ‘mirror image’ equation

ÿ − γẏ + ω2y = 0 y = y(t) (5)

for the associated coordinate y(t). Here γ is the co-efficient of friction and
ω, the natural frequency of the oscillator. The overdots stand for deriva-
tives with respect to time t. Understandably, the complementary equation
in (5) represents a physical system which absorbs energy dissipated in the
first. Interestingly, Bateman [7] regarded a dissipative system as physically
incomplete such that one needs to bring in an additional equation to derive
the original one from an action principle. Thus it remains a real curiosity
to envisage a similar study in the context of classical fields and look for the
Lagrangian representation of nonlinear evolution equations.

Any nonlinear evolution equation that has at least one conserved density
ρ[u] can be written in the form

ut +
∂

∂x
ρ[u] = 0 , u = u(x, t) . (6)

This single evolution equation is non-Lagrangian. When written in terms
of the Casimir potential, the equation resulting from (6) may be either La-
grangian or non-Lagrangian. However, we can make use of an elementary
lemma to get a Lagrangian representation of (6).
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Lemma 1. There exists a prolongation of (6) into another equation

vt +
δ

δu
(ρ[u]vx) = 0 , v = v(x, t) (7)

with the variational derivative

δ

δu
=

n
∑

k=0

(−1)k
∂k

∂xk

∂

∂ukx
, ukx =

∂ku

∂xk
(8)

such that the system of equations follows from the action principle

δ

∫

L dxdt = 0 . (9)

Here L stands for the Lagrangian density.

Proof. For a direct proof of the lemma let us introduce L in the form

L = 1
2(vut − uvt) − ρ[u]vx . (10)

From (9) and (10) we obtain the Euler–Lagrange equations

d

dt

(

∂L

∂vt

)

−
δL

δv
= 0 (11)

and
d

dt

(

∂L

∂ut

)

−
δL

δu
= 0 . (12)

Using (10) in (11) and (12) we obtain (6) and (7), respectively.
We shall now consider two examples of physical interest and apply the

rule in (7) to construct the associated equations. We first focus our attention
on the Korteweg–de Vries (KdV) equation

ut + 6uux + u3x = 0 . (13)

The KdV equation represents the prototypical nonlinear evolution equation
that was first solved by the inverse spectral transform method [8]. From (6)
and (13) we see that for this equation

ρ[u] = 3u2 + u2x . (14)

Using (14) in (7) we get the associated equation

vt + 6uvx + v3x = 0 . (15)
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The corresponding Lagrangian density as obtained from (10) reads

L = 1
2(vut − uvt) − (3u2 + u2x)vx . (16)

It is easy to verify that (16), when substituted in (11), reproduces the KdV
equation. The second example of our interest is the so-called modified KdV
(mKdV) equation given by

ut + 6u2ux + u3x = 0 . (17)

Equation (13) and (17) are connected by Miura transform and as with (13),
(17) can also be solved by the inverse spectral method [9]. The mKdV
equation appears in a number of applicative contexts including description
of Alfvén waves in a collisionless plasma. The associated equation for (17)
is obtained in the form

vt + 6u2vx + v3x = 0 (18)

with the Lagrangian density given again by (10). For the mKdV equation

ρ[u] = 2u3 + u2x . (19)

Results similar to those for KdV and mKdV equations can also be written for
other nonlinear evolution equations which can be expressed in the form (6).
We give in Table I, the results for a number of evolution equations which
are often believed to be non-Lagrangian.

The first two equations in the table are due to Burgers. These are dis-
sipative and do not support soliton solutions. However, both of them are
useful in the study of acoustics and shock waves [10]. In the recent past two
of us [11] studied the equations in the Burgers hierarchy and sought a La-
grangian representation in which the appropriate equations were expressed
in terms of Casimir potentials. However, the results represented here have
the obvious virtue of simplicity and directness. The compound KdV–Burgers
equation [12] describes wave propagation in which the effects of nonlinearity,
dissipation and dispersion are all present. We believe that the Lagrangian
representation of these equations using associated equations is quite inter-
esting. The KdV and mKdV equations are quasi-linear in the sense that the
dispersive behaviour of the solution of each equation is governed by a linear
term giving the order of the equation. In contrast to this, the third and fifth
order equations (FNE3) and (FNE5) [6] in the table are nonlinear partial
differential equations with nonlinear dispersive terms. These are, therefore,
fully nonlinear evolution (FNE) equations. The solitary wave solutions of
these equations have a compact support. To the best of our knowledge no
Lagrangian representations of FNE3 and FNE5 have yet been found. There
have, however, been attempts [13] to introduce Lagrangian system of FNE
equations which support compacton solutions.
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TABLE I

Associated equations for a few important nonlinear evolution equations.

Evolution equation Conserved density Associated equation

Burgers2:
ut − u2x − 2uux = 0 −(ux + u2) vt + v2x − 2uvx = 0

Burgers3:
ut − u3x − 3u2ux −(u2x + u3 + 3uux) vt + 3uv2x − 3u2vx

−3uu2x − 3u2
x

= 0 −v3x = 0

KdV–Burgers:
ut + uux − νu2x

1

2
u2 − νux + µu2x vt + uvx + νv2x

+µu3x = 0 +µv3x = 0

FNE3:
ut + 3u2ux + 6uxu2x u3 + 2u2

x
+ 2uu2x vt + 3u2vx + 2uv3x = 0

+2uu3x = 0

FNE5:
ut + β1(u

2)x + β2(u
2)3x β1u

2 + β2(u
2)2x + β3(u

2)4x vt + 2β1uvx + 2β2uv3x

+β3(u
2)5x = 0 +2β3uv5x = 0

3. Canonical structure

Zakharov and Faddeev [2] developed the Hamiltonian approach to inte-
grability of nonlinear evolution equations in one spatial and one temporal
(1+1) dimensions and Gardner [3], in particular, interpreted the KdV equa-
tion as a completely integrable Hamiltonian system with ∂x as the relevant
Hamiltonian operator. In this context we introduce the following lemma for
the Hamiltonian structure of the coupled equations introduced by us.

Lemma 2. The Hamiltonian density H constructed from (10), can be used
to express (6) and (7) in the Hamiltonian form

ηt = J
δH

δη
, (20)

with

η =

(

u

v

)

(21a)

and the symplectic matrix

J =

(

0 1
−1 0

)

. (21b)
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Proof. Using the Legendre map the Hamiltonian density for the Lagrangian
in (10) is obtained as

H = ρ[u]vx . (22)

From (20), (21) and (22), equations in (6) and (7) follow immediately.
A significant development in the Hamiltonian theory is due to Magri [14]

who realized that completely integrable Hamiltonian system have an addi-
tional structure. They are bi-Hamiltonian systems, i.e., they are Hamilto-
nian with respect to two different compatible Hamiltonian operators. We
have found that both KdV and mKdV can be recast in the bi-Hamiltonian
form

ηt = J1
δH2

δη
= J2

δH1

δη
. (23)

The appropriate results for Hamiltonian operators and Hamiltonian densities
are given by

J
KdV/mKdV
1 = J , (24)

JKdV
2 =

(

0 (∂3
x + 2u∂x + 2∂xu)∂−1

x

−(∂2
x + 4u) 2vx∂−1

x

)

, (25)

JmKdV
2 =

(

0 (∂3
x + 2u2∂x + 4

3∂xu2)∂−1
x

−(∂2
x + 4u2) 2uvx∂−1

x

)

, (26)

H
KdV/mKdV
1 = uvx , (27)

H
KdV
2 = (3u2 + u2x)vx (28)

and

H
mKdV
2 = (2u3 + u2x)vx . (29)

In solving the inverse variational problem for nonlinear evolution equa-
tions we coupled the field variable u(x, t) of some given equation with the
field variable v(x, t) of an associated equation such that the system follows
from the action principle with a prescribed form of the Lagrangian density
as given in (10). Admittedly, one of our tasks in this work will be to study
the nature of v(x, t) when the original field variable u(x, t) admits simple
physical realization. Keeping this in view, we focus our attention on the
KdV and mKdV equations which support soliton solutions. It is well-known
that the solutions of (13) and (17) are given in the general form

uKdV(x, t) = A(k)sech2(kx − 4k3t) , (30)

umKdV(x, t) = B(k)sech(kx − k3t) , (31)
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where k is the wave number for a single bound-state energy of the potential
that characterizes the spectral problem in solving the evolution equation [8].
Here A(k) and B(k) represent the amplitudes of the bright solitons in (30)
and (31). Understandably, both solutions uKdV(x, t) and umKdV(x, t) are
centered at x = 0. The KdV solution moves to the right with speed 4k2

while the mKdV solution moves in the same direction with speed k2 only.
One can verify that the associated fields corresponding to uKdV(x, t) and
umKdV(x, t) are given by the dark soliton solutions

vKdV/mKdV(x, t) = tanh(kx − 4k3t) . (32)

From (30) and (32) it is clear that both soliton solutions of the KdV pair
move with equal speed. As opposed to this, comparison of (31) and (32)
reveals that the speed of the dark soliton solution for the mKdV pair is four
times the speed of the bright soliton solution. This is not immediately clear
to us and deserves extensive numerical study for further clarification.

4. Concluding remarks

Nonlinear evolution equations are not directly amenable to Lagrangian
representation. We have established that if (6) does not admit a direct
analytic or Lagrangian representation, then there exists an auxiliary or as-
sociated field which helps us treat the original evolution equation within the
framework of the action principle. The method is quite general and works
for both integrable and nonintegrable equations. We have dealt with equa-
tions in which the effects of nonlinearity, dissipation and dispersion are all
present.

It is a well-known belief that there is no exact method for applying varia-
tional principle to dissipative systems. In view of this, studies in Lagrangian
and Hamiltonian mechanics of nonconservative systems are still regarded as
an interesting curiosity. In the context of point mechanics Riewe [15] used
the method of fractional calculus to write a Lagrangian for (4) without tak-
ing help of the additional equation in (5). Kaup and Malomed [16] sought an
application of the variational principle to nonlinear field equations involv-
ing dissipative terms. The Ansatz for the Lagrangian density used by these
authors is simply related to our expression for L in Lemma 1. For example,
we can add the gauge term d

dt

(

1
2uv

)

+ d
dx

(

3u2v
)

+ d
dx (u2xv) on the right

side of (16) and write

L = v (ut + 6uux + u3x) . (33)

In this context we note that (33) was originally suggested by Atherton
and Homsy [17] and subsequently included as an exercise (5.37, p. 184) in
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Ref. [5]. However, it appears that there is no physically founded assumptions
in writing L in this form except that a Lagrangian may involve its own
equation of motion provided one introduces a new concept of variational
symmetry called the s-equivalence [18]. On the other hand, the treatment
presented here is based on a formalism that is specially intended to bring
out the reasons why nonlinear evolution equations, as such, do not follow
from the action principle.

The KdV-like equations support bright solitons while the associated
fields have soliton solutions which are dark. The coupled set of equations
for the bright and dark solitons are Lagrangian although, individually, each
of them is non-Lagrangian. This observation appears to bring in some sim-
ilarity with the celebrated work of Bateman [7] on the dissipative system in
particle dynamics.

The appearance of dark solitons in the solutions of our coupled equations
is not a strange phenomenon. In the past, dynamics of dark solitons induced
by stimulated Raman effect in the optical fiber were explained by the use
of KdV–Burgers equation [19]. We feel that the inverse variational problem
as treated here will be useful to study Noether symmetries and even to
construct exact solutions of the nonlinear evolution equations [20].

This work forms the part of a Research Project F.10-10/2003(SR) sup-
ported by the University Grants Commission, Governement of India. One
of the authors (S.G.A.) is thankful to the UGC, Governement of India for a
Research Fellowship.
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