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Three new models with V-shaped field potentials U are considered:
a complex scalar field X in 1+1 dimensions with U(X) = |X |, a real scalar
field Φ in 2+1 dimensions with U(Φ) = |Φ|, and a real scalar field ϕ in 1+1
dimensions with U(ϕ) = ϕΘ(ϕ) where Θ is the step function. Several ex-
plicit, self-similar solutions are found. They describe interesting dynamical
processes, for example, “freezing” a string in a static configuration.
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1. Introduction

Lagrangian for a field, let it be a real scalar field φ, usually contains
a kinetic part, and a potential U(φ) which, in the case of physical models,
is assumed to be at least bounded from below. In most models, however,
U(φ) is a smooth function of φ with isolated absolute minima which are
reached at finite values of φ. Furthermore, if φ0 is one of such minima, the
second derivative U ′′(φ0) = m2

0 ≥ 0 exists and plays the role of length scale
(λ0 ∼ 1/m0) in the model. For a weak classical field such a model is reduced
to a free field model, and when quantizing it one can apply the harmonic os-
cillator paradigm with particle creation and annihilation operators. Models
with these features are very popular — justly so because they have plenty
of important applications.

Said above notwithstanding, one can find interesting models which do
not fit that description. In particular, there exist physically well-motivated
models such that U ′′ is infinite at the minimum of U [1]. Specifically, the
field potential U is V-shaped around the minimum, hence the first deriva-
tive has a discontinuity at φ = φ0. In papers [1–3] we have investigated
certain relatively simple models of this kind with a single real scalar field in
1+1 dimensions and, moreover, with the field potential invariant under the
transformation φ(x) → −φ(x). Among the most interesting findings was
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a scaling symmetry of the “on shell” type. This symmetry is universal in the
sense that it does not depend on neither the number of space dimensions
nor the number of fields.

In the present paper we continue the investigations of field theoretic
models of that kind. Our goal here is to find self-similar solutions in models
which are less restricted than the ones considered in the previous papers:
we allow for more fields, or more space dimensions, or smaller symmetry.
We consider three new models. In the first one we have a complex scalar
field in 1+1 dimensions (Section 2), the second involves a real scalar field
in 2+1 dimensions (Section 3), and in the third model the field potential is
not invariant under the transformation φ(x) → −φ(x) and has degenerate
minimum extending from φ = 0 to −∞ (Section 4). These models are
interesting already on purely theoretical ground as examples of V-shaped
field potentials and this is our main motivation. Nevertheless, these models
can have applications. For example, the first two can be regarded as models
of pinning of a string or a membrane, respectively, and the third model
describes the process of depinning of a planar string. It should be stressed
that total energy is conserved in these models — the pinning occurs because
of the dynamics and not because of a dissipative loss of energy.

In the case of V-shaped potentials the pertinent Euler–Lagrange equa-
tions are nonlinear in a rather unusual way — as a rule they contain a dis-
continuous function of the field. Restricting the considerations to the sector
of self-similar fields is a natural simplifying step which reduces by one the
number of independent variables. Theory and applications of self-similar
solutions of nonlinear evolution equations is a well-established, important
branch of theory of nonlinear systems, see, e.g., [4,5]. It turns out that in the
sector of self-similar fields there is quite interesting dynamics which can be
seen, e.g., from the explicit solutions which are presented in subsequent
sections.

2. Complex scalar field in 1+1 dimensions

The string in three dimensional space is attracted to a straight line,
which we call the z-axis. The two directions perpendicular to it are denoted
as the X1,X2 directions. For notational simplicity, we use dimensionless
coordinates z,X1,X2 - the physical coordinates are obtained from them
by multiplying by a unit of length. Position of the string at a fixed time
t is given by two functions X1(z, t),X2(z, t) of z ∈ (−∞,∞), which give
Cartesian coordinates of points of the string in the (X1,X2) planes1. We will
consider only the cases of a stretched string, so that X1,X2 are single-valued
functions of z.

1 Also t is a dimensionless variable proportional to the physical time.
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We are interested in the dynamics of this system in the special case when
the attractive force has the potential

U(X1,X2) = |X| , (1)

where X = X1 + iX2 is the complex number representation of points from
the planes perpendicular to the z-axis. Then, the evolution equation for the
string, in the approximation discussed in the previous section, has the form

(∂2
t − ∂2

z )Xk = −Xk

|X| , (2)

where k=1, 2. Thus, the attractive force has constant modulus equal to +1.
Eq. (2) can be written as

(∂2
t − ∂2

z )X = F (X) , (3)

where

F (X) = − X

|X| . (4)

Here we have assumed that X 6= 0. However, one should take into account
the fact that X = 0 is physically acceptable configuration of the string —
the string just rests on the z-axis. In order to formally include X = 0 to
the set of solutions of the evolution equation we assume that F (X) = 0 if
X = 0. Of course F (X) is discontinuous at X = 0.

It should be noted that we are looking for, so called, weak solutions
of Eq. (2), [6, 7]. When such a solution is inserted in Eq. (2) one should
obtain an identity only when the both sides are integrated with arbitrary test
function of the variables t, z, while in the case of strong solutions the identity
is obtained immediately after the substitution. Actually, the weak solutions
are the right ones in the context of Euler–Lagrange equations because the
stationary action principle has precisely the weak form

∫

dt dx δXi
δS

δXi

= 0 ,

where S is the action functional and δXi arbitrary test functions.
The potential U is V-shaped: plot of U(X1,X2) has the form of a sym-

metric cone with the tip at the point X1 = X2 = 0. Eq. (3) possesses the
scale invariance: if X is a solution of it, then

Xλ(z, t) = λ2 X

(

z

λ
,
t

λ

)

(5)
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is a solution too for any λ > 02. By definition, the self-similar solutions are
invariant with respect to these transformations.

It is convenient to use a polar Ansatz for X:

X = ρ exp(iχ) ,

where ρ and χ are real. Then

X

|X| = sign(ρ) exp(iχ) ,

where the signum function takes values ±1, or 0 if ρ = 0. Eq. (3) is equi-
valent to the following two equations

ρ
(

∂2
t − ∂2

z

)

χ + 2 (∂tχ∂tρ − ∂zχ∂zρ) = 0 , (6)

(

∂2
t − ∂2

z

)

ρ − (∂tχ∂tχ − ∂zχ∂zχ) ρ = −sign(ρ) . (7)

In the case of constant phase χ this set of equations reduces to the signum-
Gordon equation considered in [3]. For this reason, we focus here on self-
similar solutions of Eqs. (6), (7) with non constant χ.

Self-similar Ansatz for X has the form

χ = H(y) , ρ = z2S(y) , y =
t

z
. (8)

Then Eq. (6), (7) are reduced to the set of nonlinear ordinary differential
equations for S and H:

(1 − y2)(SH ′′ + 2H ′S′) + 2ySH ′ = 0 , (9)

(1 − y2)(S′′ − H ′2S) + 2yS′ − 2S = −sign(S) , (10)

where ′ stands for the derivative d/dy. Notice that the presence of the factor
1 − y2 implies that values of H ′ and S′ may have finite jumps at y = ±1.
One way to see it is as follows: the finite jump of the first derivatives would
lead to Dirac’s delta terms ∼ δ(y ± 1) in the second derivatives, but such
terms are not harmful because (1 − y2) δ(y ± 1) = 0.

Finding solutions with non constant χ is greatly simplified by the obser-
vation that Eq. (9) can be written in the following form

(

S2H ′

1 − y2

)′

= 0 .

2 Transformations with λ < 0 can be obtained by combining transformations (5) with
the space-time reflection z → −z, t → −t.
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Hence,
S2H ′ = c0(1 − y2) , (11)

with c0 being a real constant. Therefore, we can eliminate H ′ from Eq. (10),

(1 − y2)S′′ − c2
0(1 − y2)3

S3
+ 2yS′ − 2S = −sign(S) . (12)

Eq. (12) has the following solution, valid in the region |y| < 1,

S1 = α(1 − y2) , (13)

where α is a real constant related to c0:

4α4 + c2
0 = |α|3 . (14)

Inserting formula (13) in Eq. (12) and integrating the resulting equation for
H we find that

H(y) =
d0

2
ln

1 + y

1 − y
+ h0 , (15)

where h0 is a constant and d0 = c0/α
2. Formula (14) implies that

|α| =
1

4 + d2
0

.

Therefore,

S1 = ±1 − y2

4 + d2
0

. (16)

Let us stress that solution (13) is valid only in the interval |y| < 1. If we
take |y| ≥ 1, then instead of (14) we obtain the condition

4α4 + c2
0 = −|α|3,

which implies that α = 0 = c0. Therefore, the Ansatz (13) considered in the
region |y| ≥ 1 yields only the trivial solution S0 = 0. The partial solutions
S0, S1 match each other at y = ±1. Together they form the continuous
solution on the whole y-axis. The first derivative with respect to y has
a finite jump at y = ±1, but this is allowed for by Eq. (10).

Inserting z2S1 and H in the polar Ansatz we obtain the final form of the
self-similar solution for t ≥ 0 (at a given time t > 0 the solution S1 covers
the z > t and x < −t parts of the z axis, while the interval |z| ≤ t is covered
by the trivial solution S0 = 0):

X(z, t) =

{

1
4+d2

0

(z2 − t2) exp
(

id0

2 ln z+t
z−t

+ ih0

)

if |z| ≥ t ,

0 if |z| ≤ t .
(17)
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The constant phase h0 is not interesting — it just corresponds to global
rotations around the z-axis. The minus sign present in formula (16) has
been included in this phase. It is clear that the distance between the string
and the z-axis, equal to |X|, quadratically grows from 0 at the points z = ±t
to ∞ when z → ±∞. Much more interesting is the behavior of the phase
of X at a fixed time t. It describes the winding of the string around the
z-axis. At z → ∞ the phase χ is equal to h0. When z decreases, the phase
increases by 2π with each step from z to z − ∆z, where

∆z =
z2 − t2

z + coth (2π/d0)t

(we have assumed here that d0 > 0). Thus, the string winds around the
z-axis infinitely many times as z → t. Similar behavior of the phase is found
when z → −t, the only difference is that the string winds in the opposite
direction.

6
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1

0

–0.008

0
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0

0.008
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Fig. 1. The z ≥ t branch of self-similar solution (17).

Such unusual behavior of the string might create a suspicion that it is
unphysical for the following reason: that there is an infinite amount of energy
accumulated in the finite region around the point z = t (and, symmetrically,
around z = −t). It turns out that this is not the case. The total energy Etot

of the piece of the string between the points with the coordinates z = t and
z = t + T , where T > 0, is given by the formula

Etot =

t+T
∫

t

dz

(

1

2
∂tXi∂tXi +

1

2
∂zXi∂zXi + |X|

)

.
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Elementary calculation shows that

Etot =
1

2

T

4 + d2
0

(T + t) (T + 2t) .

Furthermore, the length of that piece of the string is also finite:

LT (t) =

t+T
∫

t

dz
√

|∂zX|2 + 1 ≈ tT
√

4 + d2
0

.

The last formula is valid for t ≫ T and t ≫
√

4 + d2
0.

Let us notice that if we put c0 = 0, then d0 = 0, and the solution has
the simple form

X =

{

1
4 (z2 − t2) exp(ih0) for |z| ≥ t ,

0 for |z| < t .

This particular solution coincides with one of self-similar solutions of signum-
Gordon equation considered in [3]. In this case the string lies in one plane
containing the z-axis. Solutions with c0 6= 0 are more general — the string
winds around the z-axis. In the case of c0 = 0 Eq. (12) has the same form
as in the signum-Gordon model [3]. Thus, the “centrifugal” term ∼ c2

0 in
Eq. (12) is the only effect of presence of the second scalar field X2, as far as
the self-similar solutions are concerned.

Solution (17) can be regarded as the solution of an initial value problem
for the string being pinned to the z-axis. The initial data are given at the
time t = 0 which corresponds to y = 0. Formula (17) implies that

X(z, t = 0) =
1

4 + d2
0

exp(ih0)z
2,

(∂tX)(z, t = 0) =
d0i

d2
0 + 4

exp(ih0)z . (18)

Thus, at the initial moment all points of the string lie in one plane (the

one with azimuthal angle h0), and the initial velocities (∂t
~X)(z, t = 0) of

the points of the string are perpendicular to their initial position vectors
~X(z, t = 0) = (X1,X2)(z, t = 0).

Let us end this section with the observation that one can also obtain
asymmetric solutions, i.e., such that X = 0 for z < t or for z > −t. The
corresponding initial data are obtained by multiplying both formulas (18) by
Θ(z) or Θ(−z). The point is that for t > 0 y = 0 corresponds to both z = ∞
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and z = −∞. Therefore, Eq. (12) should actually be considered separately
in the regions y > 0 and y < 0, and there is no justification for a requirement
of continuity of S at y = 0!. For this reason we may take the trivial solution
S0 in the whole region y < 0 and S1 in the interval [0, 1], or S0 for all y > 0
and S1 for y ∈ [−1, 0]. These choices give the asymmetric solutions. On the
other hand, notice that y = ∞ and y = −∞ correspond to z = 0. Therefore,
the behavior of S(y) at y → ∞ is correlated with the behavior at y → −∞
because the function X is continuous at z = 0. However, this is not such
a severe condition as it might seem because formula (8) for the ρ function
contains the factor z2 which vanishes for z = 0 — it relates only the terms
∼ y2 in the function S(y) in the regions y > 1 and y < −1.

3. Real scalar field in 2+1 dimensions

Let us consider a membrane (in three dimensional space) which is at-
tracted to a plane. The plane is parametrized by the Cartesian coordinates
x, y, and the elevation of the membrane at the moment t over the point
(x, y) of the plane is denoted by Φ(x, y, t). We consider the membrane with-
out overhangs, hence Φ is a single valued, real function of x, y. The evolution
equation has the form

(∂2
t − ∆)Φ = −sign(Φ) , (19)

where ∆ denotes the two-dimensional Laplacian. The corresponding field
theoretic potential again has the form (1), that is U(Φ) = |Φ|. The scaling
transformations which are the symmetry of Eq. (19) have the form

Φλ(x, y, t) = λ2 Φ

(

x

λ
,
y

λ
,

t

λ

)

,

where λ > 0.
For simplicity, we consider only the axially symmetric configurations,

hence Φ does not depend on the azimuthal angle. In this case the evolution
equation has the form

(

∂2
t − ∂2

r − ∂r

r

)

Φ = −sign(Φ) , (20)

where r =
√

x2 + y2. The self-similar Ansatz

Φ = r2P (w) , w =
t

r
, (21)

reduces Eq. (20 ) to ordinary differential equation

(1 − w2)P ′′ + 3wP ′ − 4P = −sign(P ) , (22)
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where ′ denotes the derivative d/dw. The corresponding homogeneous equa-
tion

(1 − w2)P ′′ + 3wP ′ − 4P = 0 . (23)

has the following linearly independent solutions3:

P1 = 1 + 2w2 , (24)

P2 =

{

(1 + 2w2) arccos w − 3w
√

1 − w2 if |w| ≤ 1 ,

−(1 + 2w2) ln |w −
√

w2 − 1| − 3w
√

w2 − 1 if |w| > 1 .
(25)

From them we can construct partial solutions of Eq. (22)

P+ = α1P1 + α2P2 + 1
4 , if P+ > 0 ,

P− = β1P1 + β2P2 − 1
4 , if P− < 0 , (26)

where αi, βi are constants. In general, these solutions are valid only in certain
finite intervals of the w axis, determined by the inequalities P+ > 0, P− < 0
— for this reason we have called them the partial solutions. There also
exists the trivial solution P = 0 (remember that sign(0) = 0), and the static
solutions

P = ±1

4
. (27)

By glueing together these solutions one can produce various self-similar
solutions of Eq. (22). We will present here just one class of such solutions,
which describes how the membrane “freezes” in the static position. These
solutions involve the static solution and the partial solution P+ which are
glued together on the “light-cone” r = t, i.e., at the point w = 1. In accor-
dance with Eq. (23), in this case it is sufficient to demand only continuity
of P (w). This condition has the form P+(w = 1) = 1/4. Simple calcu-
lation shows that it is equivalent to the condition α1 = 0. Therefore, the
corresponding solution Φ(r, t) of Eq. (20) has the following form

Φ(r, t) =







r2

4 if r ≤ t,

α2

[

(r2 + 2t2) arccos t
r
− 3t

√
r2 − t2

]

+ r2

4 if r ≥ t .
(28)

Here t≥0, and we have chosen that branch of arccos w for which arccos 1=0.
Moreover,

α2 > − 1

2π
. (29)

3 P1 has been obtained by inserting a polynomial Ansatz in Eq. (22), and P2 from P1

by the standard method [8].
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This last condition ensures that P+ > 0 on the whole half-line r ≥ t. Thus,
with time larger and larger part of the membrane becomes static. It follows
from the explicit form (28) of the solution that at the initial time t = 0

Φ(r, t = 0) =
1

2

(

πα2 +
1

2

)

r2 , ∂tΦ|t=0 = −4α2r . (30)

If, for example, the initial slope of the parabola is smaller than 1/4 (α2 < 0),
the initial velocity is positive, i.e., the parabola moves upwards towards the
static shape. Notice, however, that this is done in a manner consistent with
the causal dynamics implied by wave Eq. (20) — the freezing occurs at the
front r = t which travels with the finite velocity equal to +1.

Fig. 2. Snapshot of self-similar solution (28).

One may expect that there are self-similar solutions of Eq. (19) which
depend on the azimuthal angle θ in the (x, y) plane. The angle θ is invariant
under the rescaling (x, y) → (x/λ, y/λ). The Ansatz for self-similar solutions
could be taken in the form Φ = r2P (w, θ). We have not investigated such
solutions of Eq. (19).

4. Θ-Gordon model in 1+1 dimensions

As pointed out in [1], the scaling symmetry (4) is shared by all (1+1)
-dimensional models with V-shaped field potential

U(ϕ) = c1ϕΘ(ϕ) − c2ϕΘ(−ϕ) ,

where c1, c2 are arbitrary real constants, Θ denotes the step function4, and
ϕ(z, t) is a real scalar field. The corresponding wave equations have the form

(∂2
t − ∂2

z )ϕ = −c1Θ(ϕ) + c2Θ(−ϕ) . (31)

4 Θ(ϕ) = 1 when ϕ > 0 and Θ(ϕ) = 0 when ϕ ≤ 0.
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We are interested in the models such that for ϕ = 0 the potential energy
has minimum at ϕ = 0. For this, we have to assume that c1 ≥ 0, c2 ≥ 0. In
the particular case c1 = c2 = 1 the potential U is symmetric with respect to
the reflection ϕ → −ϕ, and Eq. (31) becomes the signum-Gordon equation
considered in [3]. Now we would like to investigate the self-similar solutions
in the case c1 = 1, c2 = 0, when Eq. (31) has the form

(∂2
t − ∂2

z )ϕ = −Θ(ϕ) . (32)

For the obvious reason we will call this equation the Θ-Gordon equation.
Physical context for considering equation of the form (32) is the depin-

ning phenomenon. This equation can be regarded as describing the dynamics
of a string in a plane which would be permanently pinned to the z line were
it not for a constant bias force, which exactly compensates the pinning force
on one side of the z line (ϕ is just the deviation of the string from this line).
Hence, the Θ-Gordon equation describes the dynamics of the string exactly
at the depinning transition.

The Anstaz for self-similar solutions has the form

ϕ(z, t) = z2R(y) ,

where y = t/z. Inserting it in Eq. (32) we obtain the following equation

(1 − y2)R′′ + 2yR′ − 2R = −Θ(R)Θ(z2) ,

where ′ denotes the derivative d/dy. This equation is to be satisfied in the
weak sense, hence we may drop the factor Θ(z2) which differs from 1 only
at the single point z = 0. Therefore, R(y) obeys (again in the weak sense)
the following equation

(1 − y2)R′′ + 2yR′ − 2R = −Θ(R) . (33)

Equation (33) has the trivial solutions R = 0, R = 1/2, which correspond,
respectively, to ϕ = 0 and to the static solution

ϕs = z2/2 . (34)

Furthermore, there are the partial solutions

R+ = a1 + a2y + (a1 − 1
2) y2 if R+ > 0 ,

R− = b1(1 + y2) + b2y if R− < 0 , (35)

where ai, bi are constants. As in the previous sections, the partial solutions
are valid only in certain intervals of the y axis, determined by the inequalities
R+ > 0, R− < 0.
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Glueing together the partial solutions one can obtain whole variety of
self-similar solutions of Eq. (32) [9]. We present here certain interesting
examples.

1. Freezing in the static configuration.
This solution has the following form

ϕ(z, t) =























0 z ≤ 0 ,
1
2z2 z ∈ [0, t] ,

1
2(v1v2−1) (v1t − z) (z − v2t) z ∈ [t, v1t] ,

S0z
2 + S′

0tz + S0t
2 z ≥ v1t ,

(36)

where

v1 =
S′

0 +
√

S
′2
0 − 4S2

0

2|S0|
> 1 , v2 =

v1

2v1 − 1
< 1 ,

and S0 < 0.
The parameters S

′

0, S0 are not independent — they have to obey the
equation

S
′3
0 + (2S0 − 1)S

′2
0 − 8S3

0 + 4S2
0 − S0 − 4S2

0S
′

0 = 0 , (37)

which follows from the condition of continuity of the derivative ∂zϕ at the
point z = v1t. It turns out that cubic equation (37) has three real solutions
when S0 < 0. The relevant root S′

0 obeys the inequality S′

0 > 1/2 − 2S0.
Initial configuration for solution (36) has the form

ϕ = S0z
2Θ(z), ∂tϕ = S′

0zΘ(z).

Fig. 3. Snapshot of self-similar solution (36).
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2. Depinning of the string from the z-axis.
This solution is given by

ϕ(z, t) =























0 z ≤ −t ,

−α(z + t)2 z ∈ [−t, t],

−β (v1t − z)
(

z − 1
v1

t
)

z ∈ [t, v1t] ,

S0z
2 + S′

0tz + (S0 − 1
2)t2 z ≥ v1t ,

(38)

where S0 > 0, and

v1 =
−S′

0 +
√

S
′2
0 − 4S2

0 + 2S0

2S0
> 1 ,

α =
1

4
(2S0v1 + S′

0)
v1 − 1

v1 + 1
< 1 , β =

4αv1

(v1 − 1)2
.

Solution (38) is valid provided that v1 > 1. This condition is satisfied if

0 < S0 , S′

0 < 1/2 − 2S0 . (39)

Fig. 4. Snapshot of self-similar solution (38).

5. Remarks

1. We have presented examples of self-similar solutions which describe
rather interesting dynamical processes like the freezing in the static
configurations or the depinning. However, it is obvious that the three
models considered here have other self-similar solutions as well. In
the case of Θ-Gordon model one can provide the complete list of such
solutions [9] analogous to the one given in [3] for signum-Gordon model.
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In the other two models such a complete list is probably out of our
reach because of the S−3 term in Eq. (12), or possible azimuthal angle
dependence in the case of membrane model.

2. The kinetic part of evolution equation (3) contains d’Alembert op-
erator ∂2

t − ∂2
z , and this is standard for bosonic field. On the other

hand, when we apply this equation in order to describe evolution of
the string we automatically make certain assumptions about the kind
of string we consider. The precise statement is that it is the string
which has evolution equation of the form (3) when its world-sheet is
parametrized by the coordinates t, z. Of course, we would like to see
a connection with Nambu–Goto string, which has evolution equation
of the form

∂

∂ua

(√−ggab ∂xµ

∂ub

)

= 0 , (40)

where u0 = t, u3 = z, (xµ) = (t,X1(z, t),X2(z, t), z), (gab) is the
inverse to (gab), and

gab =
∂xµ

∂ua

∂xν

∂ub
ηµν .

Let us take a slightly more general than Minkowskian space-time met-
ric ηµν :

(ηµν) = diag(1,−l20,−l20,−1) , (41)

where l20 is a constant (equal to 1 in the case of Minkowski space-time).
Simple calculations show that Nambu–Goto equation (40) is reduced
to the equation

∂2
t Xi − ∂2

zXi = 0 ,

when
l0∂tXi ≪ 1 , l0∂zXi ≪ 1 . (42)

Interesting possibility to satisfy the conditions (42) is to take a very
small l0. This would correspond to the Nambu–Goto string (or a linear
defect like a vortex) in an anisotropic medium which would effectively
provide metric (41). The term F (X) in Eq. (3) represents the pinning
force with which the z line attracts the string.
Analogous remarks can be made about the membrane discussed in
Section 3 and about the planar string of Section 4.

3. The V-shaped field potentials U(φ) we consider should not be identified
as potentials which just contain the modulus of the pertinent field.
Examples of such potentials can be found in [10,11]. The fundamental
difference is that in our models the second derivative U ′′ does not exist
right at the minimum of the potential, hence there is no preferred finite
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length (or mass) scale. Potentials considered in [10, 11] have the Λ
shape. In these cases U ′′ does not exist at a local maximum while at
minima it exists — that has much smaller impact on properties of the
fields.
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REFERENCES

[1] H. Arodź, P. Klimas, T. Tyranowski, Acta Phys. Pol. B 36, 3861 (2005).

[2] H. Arodź, P. Klimas, T. Tyranowski, Phys. Rev. E73, 046609 (2006).

[3] H. Arodź, P. Klimas, T. Tyranowski, hep-th/0701148.

[4] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engi-
neers, Birkhäuser, Boston–Basel–Berlin 2005, Chapter 8.

[5] G.I. Barenblatt, Scaling, Self-similarity and Intermediate Asymptotics, Cam-
bridge University Press, 1996.

[6] R.D. Richtmyer, Principles of Advanced Mathematical Physics, Springer-
Verlag, New York–Heidelberg–Berlin 1978, Section 17.3.

[7] L.C. Evans, Partial Differential Equations, American Math. Society, 1998.

[8] G A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers,
McGraw-Hill Book Company, New York 1961, Chapter 9.3–8.

[9] T. Tyranowski, Thesis for MSC Degree, Jagellonian University, Cracow 2007,
unpublished.

[10] H.J. de Vega, Phys. Rev. D19, 3072 (1979).

[11] S. Theodorakis, Phys. Rev. E56, 4809 (1997).


