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We investigate self-similar solutions of evolution equation of a (1+1)
dimensional real, scalar field ϕ with V-shaped field potential U(ϕ) = |ϕ|.
The equation contains a nonlinear term of the form sign(ϕ), and it has
a scaling symmetry. It turns out that there are several families of the self-
similar solutions with qualitatively different behaviour. We also discuss
a rather interesting example of evolution with non self-similar initial data
— the corresponding solution contains a self-similar component.

PACS numbers: 05.45.–a, 03.50.Kk, 11.10.Lm

1. Introduction

Signum-Gordon equation1 has the form

∂2ϕ(x, t)

∂t2
− ∂2ϕ(x, t)

∂x2
= −sign(ϕ(x, t)) , (1)

where ϕ is a real scalar field, and x, t are dimensionless variables obtained by
appropriate choice of units for the physical position and time coordinates.
It follows from the Lagrangian

L =
1

2
∂µϕ∂

µϕ− |ϕ| ,

where µ = 0, 1, ∂0 = ∂t, ∂1 = ∂x. The sign function has the values ±1 when
ϕ 6= 0 and 0 for ϕ = 0. Because of the sign(ϕ) term Eq. (1) is nonlinear in
a rather interesting way. The corresponding field potential U(ϕ) = |ϕ| has
the minimum at ϕ = 0, and the field ϕ can oscillate around the equilibrium
value ϕ = 0, but Eq. (1) cannot be linearised even if amplitude of the
oscillations is arbitrarily small.

1 We thank Benny Lautrup from NBI for suggesting the name.

(3099)
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The signum-Gordon model has rather sound physical justification. It has
been obtained in a continuum limit (or in a large wavelength approximation)
to certain easy to built mechanical system with a large number of degrees
of freedom, see [1, 2] for details. The model can also be applied in the
description of pinning of an elastic string, which represents a vortex, to a
rectilinear impurity in the case both, the string and impurity, lie in one
plane. Yet another interesting application is the dynamics of a system of
two global strings in a plane. Such strings are represented by the real func-
tions ψ1(x, t), ψ2(x, t), and in certain approximations their dynamics can be
summarised in the following Lagrangian

Ls(ψ1, ψ2) =
1

2
∂µψ1∂

µψ1 +
1

2
∂µψ2∂

µψ2 − V (ψ1 − ψ2) ,

where V is an extrapolation of the well-known logarithmic interaction po-
tential between separated global strings to small values of |ψ1 − ψ2|:

V (ψ1 − ψ2) = a ln

(

1 +
|ψ1 − ψ2|

a

)

,

where a is a positive constant (see [3] for a detailed discussion of the inter-
string potential). For small values of |ψ1 − ψ2|/a we have

V (ψ1 − ψ2) ≈ |ψ1 − ψ2| .

In this case Euler–Lagrange equations for ψ1, ψ2 obtained from the La-
grangian Ls imply that ϕ = 1

2(ψ1 −ψ2) obeys the signum-Gordon equation.
The solutions presented in our paper describe particular cases of the time
evolution of all those systems. The present paper, however, is focused on
the self-similar solutions of the signum-Gordon equation rather than on its
applications.

The signum-Gordon equation possesses the exact scaling symmetry:
if ϕ(x, t) is its solution then

ϕλ(x, t) = λ2 ϕ

(

x

λ
,
t

λ

)

(2)

is a solution too, for any constant λ > 02. This symmetry is one of the most
interesting features of the model. As always when there is a symmetry, one
may search for solutions which are invariant under the symmetry transforma-
tions. In the case of scaling they are called the self-similar ones. In paper [2]

2 Transformations of the form (2) with λ < 0 are obtained as a product of the scal-
ing transformation (2) with the reflections x → −x, t → −t. Eq. (1) is invariant
with respect to such reflections, and also with respect to 1+1 dimensional Poincaré
transformations.
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an example of such solutions of the signum-Gordon equation has been given.
Self-similar solutions of nonlinear equations play very important role in non-
linear dynamics, and they have plenty applications. Beautiful presentation
of self-similarity with its applications is given in [4]. A shorter introduction
to this topic can be found in [5].

The present paper is devoted to a thorough investigation of self-similar
solutions of the signum-Gordon equation.Rather surprisingly, we have found
that there are many classes of such solutions. The solutions presented in [2]
form merely a measure zero subset in just one such class: the segment S0 = 0,
−1/2 < Ṡ0 < 1/2 in Fig. 1. Amusingly enough, the self-similar solutions are
composed mainly from quadratic polynomials in x and t. The various types
of solutions differ in particular by the number of isolated zeros of the field ϕ:
they can have infinitely many, just one or no isolated zeros. We give explicit
forms of all self-similar solutions corresponding to initial data (5) with two

arbitrary, real parameters S0, Ṡ0. These solutions form a two-dimensional
subset of the four-dimensional set of the self-similar solutions of the signum-
Gordon equation. It is depicted as Fig. 1, which can be regarded as the most
interesting result of our paper. Let us stress that it is rather unusual that
one can give explicit analytic forms of self-similar solutions of a nonlinear
evolution equation for a wide class of initial data.

We have also investigated the evolution from certain particular initial
data which are not self-similar, with ∂xϕ discontinuous at a certain point.
While the late time behaviour of the corresponding solution remains myste-
rious, we have noticed a very interesting phenomenon which occurs during
the early stages of the evolution. At first, the point of the discontinuity of
∂xϕ moves with a constant velocity equal to −1 (“the velocity of light”) until
∂xϕ becomes a continuous function of x. From this time on, the evolution
of ϕ locally, that is in a vicinity of the former point of discontinuity, follows
a self-similar solution with one isolated zero. This behaviour is universal in
the sense that it does not depend on details of the initial data. Solutions of
this class might be relevant for the description of the process of coalescence
of two strings, see Fig. 9.

All our analytic solutions have been checked by comparisons with purely
numerical solutions of Eq. (1).Actually, there was a very fruitful interplay of
the two methods: certain solutions were seen first numerically and later ob-
tained in the analytic form, whereas with others it was the other way round.

The plan of our paper is as follows. In Sec. 2 we discuss the Ansatz
and initial data for the self-similar solutions, and we present a map of such
solutions. Sec. 3 is devoted to a detailed presentation of all classes of the
self-similar solutions: in Subsections 3.1–3.5 we give explicit forms of all
solutions. In Sec. 4 we consider the initial stages of evolution in the particular
case of non self-similar initial data. Sec. 5 contains a summary and remarks.



3102 H. Arodź, P. Klimas, T. Tyranowski

1

II a                             I a

III S0

1
2

-–

1
2

-–

1
4

-– 1
4
–

1
2
–

1
2
–

I b                                  II b

-1

v
=
 1

v
=
 1

v
=
 0

v = 0

S0

.

Fig. 1. The map of the self-similar solutions of the signum-Gordon Eq. (1). Each

point in the (S0, Ṡ0) plane represents one solution. The symmetry of the picture

with respect to the reflection (S0, Ṡ0) → (−S0,−Ṡ0) is related to the reflection

symmetry ϕ→ −ϕ of the signum-Gordon equation. Because of this symmetry it is

sufficient to discuss solutions from the half-plane S0 ≥ 0. The dashed lines are aux-

iliary: two coordinate lines, and the two lines Ṡ0 = −2S0 which are asymptotically

tangent to the lines v = 0. v ∈ (−1, 1] is a certain velocity defined in the text. It is

a function of the parameters S0, Ṡ0 for the given solution. The continuous lines

are border lines between the classes of solutions, but their points also represent

some special solutions discussed in subsections 3.1 (the v = 0, S0 ≥ 0 rectilinear

half-line), 3.2 (the v = 0, S0 ≥ 0 curved line), 3.4 (the open segment connecting

the point (0,−1/2) with the point (1/4, 0)), and 3.5 (the v = 1, S0 ≥ 0 half-line).

The lower, curved v = 0 line is a cubic curve given by Eq. (16), the other one is

obtained by the reflection. The rounded brackets, which enclose two line segments

— the edges of the rhomb III, indicate that these segments do not contain their

ends — the end points belong to the two v = 1 half-lines.
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2. The Ansatz and initial data

The physical context in which the signum-Gordon equation appears im-
plies that the most interesting solutions are such that ϕ(x, t) is a continuous
function on the (x, t) plane. For the first order partial derivatives ∂tϕ, ∂xϕ
only discontinuities across the lines x = x0 ± t (the characteristics) are al-
lowed. For example, a discontinuity of ϕ as a function of x would mean that
the string is broken. A discontinuity of ∂tϕ(x, t) at a certain instant t1 would
mean that the velocity of a certain part of a continuous mechanical system
(e.g., of a string) suddenly jumps in spite of the fact that the force, given
by the sign(ϕ) term, is always finite. Hence, such a jump is possible only
if simultaneously also ∂xϕ(x, t) is not continuous (then ∂2

xϕ(x, t) becomes
infinite). The well-known reasoning [6] gives Rankine–Hugoniot condition
for matching the continuous pieces of the solutions. We do not quote it here
because it just implies that the partial derivatives can be discontinuous only
across the characteristics, which is a well-known fact for hyperbolic evolution
equations.

On the other hand, Eq. (1) implies that at least one of the second order
derivatives ∂2

t ϕ, ∂
2
xϕ has to be discontinuous when the piecewise constant

function F (x, t) = sign(ϕ(x, t)) changes its value from 0 to ±1. At such
a point ϕ = 0, and in a certain neighbourhood of it ϕ > 0 or ϕ < 0. Then,
the left and right second derivatives of ϕ can have different values — if this
is the case then the ordinary second derivative of ϕ does not exist, strictly
speaking. Nevertheless, such solutions are physically admissible. The proper
mathematical framework for discussing them is based on the notion of weak
solutions, see, e.g. [6,7]. The reader interested in the mathematical aspects of
the weak solutions, including the uniqueness of solution of Cauchy problem,
should consult the literature.

In the case of transformation (2) the scale invariant Ansatz can be taken
in the form

ϕ(x, t) = x2S(y) , y =
t

x
. (3)

We will consider solutions of Eq. (1) for t > 0 with initial data specified
at t = 0. Solutions for t < 0 can be easily obtained with the help of the
time reflection symmetry. It will turn out that S(y) can be a quadratic,
linear or constant function of y. Therefore, ϕ will be continuous at x = 0 in
spite of the fact that the scale invariant variable y is singular at that point.
Equivalent Ansatz

ϕ(x, t) = t2 T
(x

t

)

,

avoids the superficial singularity at x = 0, but it is less convenient for
incorporating the initial data.



3104 H. Arodź, P. Klimas, T. Tyranowski

The self-similar initial data have the form

ϕ(x, 0) =

{

R0x
2 for x ≤ 0 ,

S0x
2 for x ≥ 0 ,

∂tϕ(x, t)|t=0 =

{

Ṙ0x for x ≤ 0 ,

Ṡ0x for x ≥ 0 ,
(4)

where R0, Ṙ0, S0, Ṡ0 are constants. Such initial data are self-similar because
the point x = 0 is not shifted by the rescaling x → x/λ. In general, the
ϕ(x, 0) is of C1(R) class, while the ∂tϕ(x, t)|t=0 is of class C0(R). One can
easily show that formula (4) gives the most general self-similar initial data.

We shall restrict our considerations to the case R0 = Ṙ0 = 0. The other
choice: S0 = Ṡ0 = 0 and R0, Ṙ0 arbitrary is related to the previous one by
the spatial reflection x→ −x, which is a symmetry of Eq. (1). Thus, in the
main part of our paper we assume that

ϕ(x, 0) =

{

0 for x ≤ 0 ,

S0x
2 for x ≥ 0 ,

∂tϕ(x, t)|t=0 =

{

0 for x ≤ 0 ,

Ṡ0x for x ≥ 0 .
(5)

Such initial data correspond to the following conditions for the functionS(y)

lim
y→0+

S(y) = S0 , lim
y→0−

S(y) = 0 , lim
y→0+

S′(y) = Ṡ0 , lim
y→0−

S′(y) = 0 . (6)

Let us remark that solutions for more general self-similar initial data (4) can
be obtained in certain cases just by combining solutions obeying (5) with
the ones obtained from them by applying the spatial reflection, but there
are also cases in which such approach does not work.

The Ansatz (3) reduces Eq. (1) to the following ordinary differential
equation for the function S(y)

(1 − y2) S′′ + 2y S′ − 2 S = −sign(S) , (7)

where S′=dS/dy, and the sign(S) function has the values +1 or−1 forS > 0
or S < 0, respectively, and sign(0) = 0. Notice that at the points y = ±1
(which correspond to characteristics of Eq. (1)) the coefficient in front of the
second derivative term in Eq. (7) vanishes. This has the consequence that
the first derivative dS/dy of the solution does not have to be continuous
at these points. However, one can easily show that the discontinuity at
y = 1 can occur only if sign(S) is not constant at that point. In order to
obtain weak solutions of this equation we first solve it assuming that S > 0
or S < 0 or S = 0. Such partial solutions have a rather simple form of
quadratic polynomials in y:

when S > 0 : S+(y) = −β
2 (y2 + 1) + α

2 y + 1
2 ,

when S < 0 : S−(y) = β′

2 (y2 + 1) − α′

2 y − 1
2 ,
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where α, β, α′, β′ are arbitrary constants. The polynomial solutions are valid
on appropriate intervals of the y-axis determined by the conditions S > 0
or S < 0, respectively. There is also the trivial solution

S0(y) = 0 .

Next, we match such partial solutions requiring that S and S′ are con-
tinuous functions of y, except at the point y = 1, where only continuity of S
is required. It turns out that the continuity of only S at y = 1 is sufficient
to ensure the implied by wave equation (1) continuity of

∂ϕ

∂x+
=

1

2

(

∂ϕ

∂x
+
∂ϕ

∂t

)

,

where x+ = x+ t, across the characteristic line x = t. The matching condi-
tions together with the initial data (5) determine the constants α, β, α′, β′

from the partial solutions. In this manner we have constructed exact, self-
similar weak solutions of the Cauchy problem (5) for all values of parameters

S0, Ṡ0. Because x ∈ (−∞,∞), the variable y can take all real values. The
factor x2 in (3) makes the solutions finite at x = 0.

Depending on the values of S0, Ṡ0 the self-similar solutions have quite
different forms. As one can see from the “map” presented in Fig. 1, the set
of such solutions of the signum-Gordon equation is surprisingly rich.

3. Self-similar solutions

Below we give the analytic forms of the self-similar solutions with initial
data (5). We assume that S0 ≥ 0. Solutions with negative values of S0 can
be obtained by the reflection φ(x, t) → −φ(x, t), which in particular means

that S0 → −S0, Ṡ0 → −Ṡ0.

3.1. Solutions of types: I a, II a, v = 0

These solutions lie in the open region above the rhomb III and above
the v = 1, S0 ≥ 0 line, see Fig. 1. The solutions are obtained by matching
the trivial solution with the partial solution S+ at the point y = 1/v which
corresponds to the line x = vt. The velocity v has values in the interval
(−1, 1), and it is given by formula (8). It turns out that one has to use
a second solution of the type S+ which matches the previous one at the
point y = 1 corresponding to the characteristic line x = t. That latter S+

solution has the form S0 + Ṡ0y − (1/2 − S0)y
2, where S0 ≥ 0, Ṡ0 are the

parameters specifying the initial data according to formula (5).
The velocity v is given by the formula

v =
1

2S0 + Ṡ0

− 1 , (8)
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which follows from the matching condition at the point y = 1. In the region
I a the velocity has values from the interval (−1, 0), while in the region II a

v ∈ (0, 1). On the line 2S0 + Ṡ0 = 1, which separates the two regions, v = 0.
The full solution has the form

ϕ(x, t) =











ϕ0 = 0 , for x ≤ vt ,

ϕ1 = (x−vt)2

2(1−v2)
, for vt ≤ x ≤ t ,

ϕ2 = S0x
2 + Ṡ0tx+ (S0 − 1

2)t2 , for x ≥ t .

(9)

It is depicted in Fig. 2.

x t=x vt=

ö

ö
1

ö
0

ö
2

x

Fig. 2. Picture of a solution of type I a for which −1 < v < 0. v is the velocity of

the point on the x axis at which ϕ1 merges with the trivial solution ϕ = 0. The

two vertical arrows indicate that values of ϕ increase with time — the ϕ > 0 part

moves to the left. Solutions of the type II a have a similar shape, but they move to

the right (0 < v < 1).

The half-line 2S0 + Ṡ0 = 1, S0 ≥ 0, v = 0, which separates the classes
I a and II a, includes the static solution

ϕs+(x) =

{

0 for x ≤ 0 ,
x2/2 for x ≥ 0 ,

(10)

for which S0 = 1/2, Ṡ0 = 0. Other solutions from that line are time depen-
dent. They coincide with the static one in the growing with time interval
0 ≤ x ≤ t, while at the points x > t they have the form ϕ2(x, t), see the
second and third lines in formula (9). Asymptotically, as t grows to infinity,
such ϕ entirely covers the static solution.

The signum-Gordon equation is invariant under the Lorentz transforma-
tions

t′ = γ(t− wx), x′ = γ(x− wt) ,
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where γ = 1/
√

1 − w2, |w| < 1. Such transformations preserve self-similarity
of solutions. One can see that the static solution (10) is transformed into

the solution with S0 = γ2/2, Ṡ0 = −wγ2. In this case formula (8) gives
v = w. For these particular solutions the functions ϕ1 and ϕ2 in formula (9)
have the same form.

3.2. Solutions of types: I b, II b, v = 0.

These solutions lie in the open region below the rhomb III and the v = 1,
S0 > 0 line, see Fig. 1. Solutions of this type have the form shown in Fig. 3.

x vt= x v t= 1

ö0

ö
3

ö
1

ö
2

x = t

v1 > 1

x

ö

Fig. 3. Picture of a solution of type I b for which −1<v< 0. The arrows indicate

that the values of ϕ decrease with time — the ϕ < 0 part expands in both direc-

tions. The solutions of type II b have a similar shape, but they move to the right

(0 < v < 1).

Solutions from the half-line S0 = 0, Ṡ0 ≤ −1/2 are not considered here be-

cause they can be obtained from the solutions lying on the S0 = 0, Ṡ0 ≥ 1/2
half-line with the help of the reflection φ → −φ. The solutions shown in
Fig. 3 are composed of the trivial solution S = 0 in the region y > 1/v > 1,
one solution S+ in the region y < 1/v1 < 1, and two solutions S− in the
region 1/v1 < y < 1/v which continuously match each other at the point
y = 1. The pertinent formula for ϕ has the following form

ϕ(x, t) =























ϕ0 = 0 for x ≤ vt ,

ϕ1 = − (x−vt)2

2(1−v2) for vt ≤ x ≤ t ,

ϕ2 = β2

2

(

x2 + t2
)

− α2

2 xt
1
2x

2 for t ≤ x ≤ v1t ,

ϕ3 = S0x
2 + Ṡ0tx+

(

S0 − 1
2

)

t2 for x ≥ v1t .

(11)
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Here S0, Ṡ0 are given in the initial data (5). The velocity v1 is obtained
from the condition ϕ3(v1t, t) = 0, and α2, β2 from the matching conditions
at x = v1t, i.e. at y = 1/v1 < 1. Straightforward calculations give

v1 =
−Ṡ0 +

√

Ṡ2
0 − 4S2

0 + 2S0

2S0
, (12)

α2 = 2
v1 + (1 + v2

1)
√

Ṡ2
0 − 4S2

0 + 2S0

v2
1 − 1

, (13)

β2 =
v2
1 + 2v1

√

Ṡ2
0 − 4S2

0 + 2S0

v2
1 − 1

. (14)

Finally, the velocity v is obtained from the condition of continuity of ϕ(x, t)
at the point x = t

v =
2β2 − α2

2 + α2 − 2β2
. (15)

Formulas (12–15) imply that v1 > 1 and −1 < v < 1.

The condition v = 0 is satisfied by (S0, Ṡ0) such that

η =
1

2
+

1

2ξ2
, (16)

where
η = 2S0 − Ṡ0 , ξ = 2S0 + Ṡ0 .

These points form the lower curved line in Fig. 1. Solutions of this kind are
related to another static solution of Eq. (1), namely to

ϕs−(x) =

{

0 for x ≤ 0 ,

−x2/2 for x ≥ 0 ,
(17)

for which S0 = −1/2, Ṡ0 = 0. These v = 0 solutions are time dependent.
Their ϕ1 part, see formula (11), coincides with the static one in the growing
with time interval 0 ≤ x ≤ t, while at the points x > t their form is given
by ϕ2(x, t), ϕ3(x, t). Asymptotically, as t grows to infinity, we recover the
static solution.

3.3. Solutions of type III

Let us try to put together a number of the partial solutions S+, S− in
order to cover as large as possible interval of the y ≥ 0 half-axis, see Fig. 4,
where Sk, k = 1, 2, . . . , denote the consecutive partial solutions S±.
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Fig. 4. The polynomials Sk and the matching points ak, k = 1, 2, . . .

The restriction to y ≥ 0, see Fig. 4, is quite natural. The point is that
y = 0− corresponds to x = −∞, while x = 0+ to x = +∞. Hence, there is
no physical reason for demanding that S(y) is continuous at y = 0 — the
continuity at y = 0 would mean that we arbitrarily impose the restriction
ϕ(∞, t) = ϕ(−∞, t). Therefore, the solution S1 is terminated at y = 0, and
in the region y < 0 we take the trivial solution S0(y) = 0. On the other
hand, both y = −∞ and y = +∞ correspond to x = 0, where the solution
ϕ is required to be a continuous and differentiable function of x.

Let us write the partial solutions in the form

Sk(y) =
1

2
(−1)k

[

βk(y
2 + 1) − αky − 1

]

.

Equation (1) implies that the following matching conditions at the points
y = ak, k ≥ 1, have to be satisfied:

Sk(ak) = 0 = Sk+1(ak) , S′

k(ak) = S′

k+1(ak) , (18)

provided that ak 6= ±1. When y = ±1, only continuity of S(y) has to be
required.

The matching conditions (18) yield the recurrence relations:

αk+1 =
4ak

1−a2
k

−αk , βk+1 =
2

1−a2
k

−βk, ak+1 =
2ak−(1+a2

k)ak−1

1+a2
k−2akak−1

, (19)

where α1 = a1 > 0, a0 ≤ 0, and

β1 =
1

1 − a0a1
, α1 =

a0 + a1

1 − a0a1
. (20)

The relations (20) follow from the fact that a0, a1 are the zeros of the poly-
nomial S1(y). It is clear from Fig. 4 that a0 ≤ 0, a1 > 0.

The solution is single-valued when ak+1 ≥ ak. Simple calculations show
that this condition taken for k = 1, 2 implies that a1 ≤ 1, a2 ≤ 1, and that
a0 ≥ −1. Furthermore, we notice that a0 = −1 or a1 = 1, always give
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a2 = 1, what implies that ak = 1 for all k > 2. Such solutions, i.e., with
a2 = 1, belong to the classes of solutions discussed in Subsections 3.4, 3.5,
except for the case a0 = −1, a1 = 0 in which we obtain the trivial solution
S0 = 0. Therefore, in the remaining part of this subsection we assume that

−1 < a0 ≤ 0 , 0 < a1 < 1 .

Recurrence relations (19) have the following general solutions:

αk =
1

1 + r

[

1

prk−1
− prk + (−1)k(

1

p
− q)

]

− (−1)kα1 , (21)

βk =
1

2
+

1

2(1+r)

[

1

prk−1
+prk+(−1)k(1+

1

p
)(1+q)

]

−(−1)kβ1 , (22)

and

ak =
pk−1 − qk

pk−1 + qk
, (23)

where

q =
1 − a1

1 + a1
, p =

1 − a0

1 + a0
, r =

q

p
. (24)

Note that 0 ≤ q < 1 and p > 1.
Solutions (21)–(23) have been conjectured after seeing several first iter-

ations of recurrence relations (19), and checked by substitution into these
relations. In paper [6] we were able to find only solutions with a0 = 0, a1 < 1.

They lie on the segment S0 = 0, 0 < Ṡ0 < 1/2 inside the rhomb III in Fig. 1.
Formula (23) implies that ak < 1, and that ak → 1 when k → ∞.

Therefore, the piecewise polynomial solution constructed above covers only
the interval [0, 1). For this reason we introduce a special notation for it,
namely Spp(y). Calculations show that Spp(y) vanishes when y → 1. On the
other hand, the first derivative S′

pp(y) does not vanish in that limit, but it
remains finite.

This solution can be extended to the full range of y. We have already
taken the trivial solution S0(y) = 0 in the region y < 0. In the region y ≥ 1
we also take the trivial solution which is consistent with the continuity of
S(y) at y = 1. The first derivative dS/dy in general is not continuous at
y = 1, but this is not forbidden by Eq. (7) because the coefficient 1 − y2 in
front of S′′ vanishes when y = 1. Let us recall that y = ±1 correspond to
the characteristics x = ±t of the signum-Gordon equation.

The solution we have just constructed has the following form:

ϕ(x, t) =

{

ϕ0 = 0 for x ≤ t ,

ϕpp = x2Spp

(

t
x

)

for x > t .
(25)
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x t=
x2 x1 x

ö

ö
pp

ö
0

Fig. 5. The self-similar solution of type III. The zeros xk = vkt of ϕ accumulate at

x = t because vk = 1/ak, where ak → 1 when k → ∞. The arrow indicates that

the whole structure moves to the right.

Snapshot of the solution is presented in Fig. 5.
The zeros of φ are given by the formula xk(t) = t/ak. They move with

the constant velocities vk = 1/ak > 1.

The parameters S0, Ṡ0, which specify initial data (5) for these solutions,
enter the first polynomial S1. Hence,

S0 = S1(0) =
1

2
(1 − β1) , Ṡ0 = S′

1(0) =
α1

2
, (26)

where α1, β1 have the form (20). Because a0, a1 are the zeros of this poly-
nomial, they are related to the initial data by the following formulas

a0 =
Ṡ0 −

√
∆

1 − 2S0
, a1 =

Ṡ0 +
√

∆

1 − 2S0
,

where ∆ = Ṡ2
0 − 4S2

0 + 2S0. By the assumption, for the considered solutions
−1 < a0 ≤ 0, 0 < a1 < 1, see Fig. 4. It follows that

2S0 −
1

2
< Ṡ0 <

1

2
− 2S0 , 0 ≤ S0 <

1

4
. (27)

These inequalities correspond to the S0 ≥ 0 part of the interior of rhomb III
in Fig. 1.

3.4. Solutions from the bottom-right open edge of rhomb III

In the present case we take the trivial solution in the regions y ≤ 0 and
y≥1. At the point y=1 the trivial solution matches the partial solutionS−.
At this point we demand only continuity of S(y). The solution S− in turn
matches a partial solution S+ at a point y1 from the interval 0 < y1 < 1. Here
we also demand continuity of derivatives dS/dy. Of course, both S−(y1) and
S+(y1) are equal to 0. The calculations are straighforward. It turns out that

v1 =
1

2S0
− 1 . (28)
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This formula implies that v1 > 1. The solution ϕ has the following form

ϕ(x, t) =











ϕ0 = 0 for x ≤ t ,

ϕ1 = 1
2(v1−1) (x− t)(x− v1t) for t ≤ x ≤ v1t ,

ϕ2 = (x+ t)
[

S0(x+ t) − t
2

]

for x ≥ v1t ,

(29)

see Fig. 6.

x t=

ö

ö
0

ö
1

ö
2

xx v t= 1

Fig. 6. The self-similar solution (29).

These solutions have the following initial data

Ṡ0 = 2S0 −
1

2
, 0 < S0 <

1

4
. (30)

They lie on the open segment which is the interior of the S0 > 0, Ṡ0 < 0
edge of rhomb III in Fig. 1.

Let us note that these solutions can be regarded as a limiting case of
solutions discussed in the previous subsection obtained by putting a0 = −1
and keeping a1 in the open interval (0, 1).

3.5. Solutions with v = 1

In this case we combine the trivial solution and an S+ solution. They
match continuously at the point y = 1.

ϕ(x, t) =

{

ϕ0 = 0 for x ≤ t ,
ϕ1 = (x− t)

[

S0(x− t) + t
2

]

for x > t , (31)

see Fig. 7. In particular, for S0 = 1/4 we have ϕ(x, t) = (x2 − t2)/4 for
x ≥ t, and ϕ = 0 for x ≤ t.

The parameters S0, Ṡ0 for these solutions obey the relation

Ṡ0 = −2S0 +
1

2
, (32)

where S0 ≥ 0.
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x t=

ö

ö
0

ö
1

x

Fig. 7. The self-similar solution (31).

Some of these solutions are related to the ones discussed in Subsection
3.3: if we take a1 = 1 and −1 ≤ a0 ≤ 0, then only the first polynomial S1 is
present and it leads to the solution of the form (31). However, the restriction
−1 ≤ a0 ≤ 0 implies that 0 ≤ S0 ≤ 1/4 because S0 = −a0/2(1 − a0). This
corresponds to that part of the v = 1, S0 ≥ 0 half-line, see Fig. 1, which is
the upper-right edge of rhomb III.

4. Non self-similar solutions with a self-similar component

In this section we would like to present a certain interesting solutions of
the signum-Gordon equation which are not self-similar. The corresponding
initial data for them are different from (5); they have the form

ϕ(x, 0) =

{

0 for x ≤ 0 ,

αx for x ≥ 0 ,
∂tϕ(x, t)|t=0 = 0 , (33)

where α > 0 is a free parameter. The solution ϕ was first obtained numeri-
cally in a context which is not relevant here. Computer simulations showed
that, rather surprisingly, certain important quantitative characteristics of
the evolution of ϕ apparently did not depend on the parameter α at all.
Such numerical findings have motivated us to study these solutions in more
detail. It has turned out that the solutions have a self-similar component
during a certain finite time interval. For this reason we would like to present
them here.

Because the signum term in Eq. (1) remains constant until ϕ becomes
equal to zero, the analytic solution of Eq. (1) with the initial data (33)
can be constructed piecewise. In each interval on the x axis such that ϕ has
a constant sign in it, one can use the well-known formula for the general solu-
tion of the one-dimensional wave equation, suitably modified to incorporate
the constant +1 (or −1) term in the equation:

ϕ(x, t) = h(x− t) + g(x+ t) + c1t
2 − c2x

2 ,
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where 2(c1+c2) = ±1(= sign(ϕ)). The functions h, g and the constants c1, c2
are determined from the initial conditions and from the matching conditions.
The resulting solution has a relatively simple form when the time t is not
too large. The evolution of ϕ can be divided into distinct stages. In the first
one time t changes from 0 to α. Then

ϕa(x, t) =











ϕ0(x, t) = 0 for x ≤ −t ,
ϕa1(x, t) = 1

8(x+ t)(4α + x− 3t) for −t ≤ x ≤ t ,

ϕa2(x, t) = αx− t2

2 for x ≥ t .

(34)

The function ϕa1 remains positive in the interval x ∈ (−t, t] until t = α.
Notice that the border point between the supports of the functions ϕ0, ϕa1

moves with the velocity −1 which does not depend on the slope α of the
initial shape (33) of ϕ. This fact is related to the jump of the value of ∂xϕa

at the point x = −t — such discontinuity is allowed for by the wave equation
only on characteristics. Hence the border point between the supports of the
functions ϕ0, ϕa1 has to move with velocity −1 until ∂xϕa1|x=−t vanishes.
This happens at the moment t = α.

At that moment

ϕa(x, α) =











0 for x ≤ −α ,
1
8 (x+ α)2 for −α ≤ x ≤ α ,

α
(

x− α
2

)

for x ≥ α ,

(35)

and (∂tϕa)(x, α) =







0 for x ≤ −α ,

−1
4(x+ α) for −α ≤ x ≤ α ,

−α for x ≥ α .

(36)

These values of ϕ, ∂tϕ constitute the initial data for the second stage of
the evolution of ϕ which lasts until t = 2α. Here the crucial observation
is that ϕa, ∂tϕa at the time α have the shape which coincides with the
self-similar initial data (5) in which x is replaced by ξ = x+ α. The corre-
sponding solution belongs to the class discussed in Subsection 3.4. It has
S0 = 1/8, Ṡ0 = −1/4, and v1 = 3. Note that the velocity v1 does not depend
on the parameter α. The ϕ1 part, see Fig. 6, begins to appear at the point
x = −α at the time t = α. The right end of its support moves to the right
with velocity +3, while the left end moves slower, with velocity +1. Thus,
we expect that in the interval x ∈ (−∞, t] the solution has the form of a time
and space translated self-similar solution (29) (t→ τ = t−α, x→ ξ = x+α).
At the point x = t it continuously matches the function ϕa2 from formula
(34). With this in mind one can easily construct the analytic solution.
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In the time interval t ∈ [α, 2α] we have ϕ(x, t) = ϕb(x, t), where

ϕb(x, t) =



















0 for x ≤ t− 2α ,

ϕb1 = 1
4(x−x0(t))(x−3t+4α) for t−2α≤x≤3t−4α ,

ϕb2 = 1
8(x+ t)(x− 3t+ 4α) for 3t− 4α ≤ x ≤ t ,

ϕb3 = αx− 1
2 t

2 for x ≥ t .

(37)

Here x0(t) = t− 2α.
Note that ϕb3 describes the “freely falling” half-line ϕ = αx, which is the

remnant of the initial data (33).
At the time t = 2α another interesting thing happens. At this moment

the support of ϕb2 becomes reduced to the point x = 2α, and simultaneously
ϕb3(2α, 2α) = 0. The right end of the support of ϕb1, which moves with the
velocity +3, hits the support of ϕb3. At this time the length of the support
of ϕb1 is equal to 2α.

In the next time interval, t ∈ [2α, 3α], the solution ϕ = ϕc has the
following form, see also Fig. 8:

ϕc(x, t) =































ϕ0 = 0 for x ≤ t− 2α ,

ϕc1 =−1
4(x−x0(t))(3t−x−4α) for t−2α≤x≤4α−t ,

ϕc2 for 4α − t ≤ x ≤ t ,

ϕc3 for t ≤ x ≤ t2

2α ,

ϕc4 = αx− 1
2t

2 for x ≥ t2

2α ,

(38)

where

ϕc2 =
3

8
x2 − 3

4
xt+

7

8
t2 + α2 − 1

2
αt+

7

2
αx−

√
α

3
[2(x+ t) + α]3/2 ,

ϕc3 =
t2

2
+ 3αx−

√
α

3
[2(x+ t) + α]3/2 +

√
α

3
[2(x− t) + α]3/2 +

2α2

3
.

ö
c

ö
0

ö
c1

ö
c2

ö
c3

ö
c4

x

x t x t x t0 1 2( ) ( ) ( )

x t3( )

Fig. 8. The solution ϕc. Here x0(t) = t − 2α, x1(t) = 4α − t, x2(t) = t, x3(t) =

t2/(2α), and t ∈ [2α, 3α].
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Note that ϕc1 coincides with ϕb1 from formula (37). Thus, the point x3(t)
(see Fig. 8) accelerates from the initial velocity +2 to ẋ3(3α) = 9/2. At the
time t = 3α the points x0, x1 meet each other, and the support of ϕc1

vanishes. It is the beginning of the fourth stage of evolution of ϕ.

When considered in the context of the interacting strings mentioned in
the Introduction, the solution discussed above provides an interesting picture
of the initial stages of a merging of the strings. In the initial state at t = 0,
frame (a) in Fig. 9, the strings form a “Y” shape with the vertex at the
point x = 0, and the angle α between the two rectilinear pieces of strings in
the region x > 0. In the region x < 0 the strings have already merged. In
the time interval [0, α) the vertex moves with the velocity −1 until a cusp
is formed, see frame (c) in Fig. 9 — this happens at the time t = α. At
this moment a bubble appears, which grows and moves along the strings
in accordance with the self-similar solution of the signum-Gordon equation.
Such smooth evolution goes on until t = 2α. In the third time interval, i.e.

when t ∈ [2α, 3α), the bubble grows and still moves along the strings, but
now it is distorted by the two wave fronts x1(t), x2(t) travelling along it, as
follows from the solution ϕc given by formula (38). The evolution can be
calculated also for times t > 3α, but we shall not dwell on it.

x

v = -1
äv = 2 v = 1

v = 1v = 3

v = 3

(a)                        (b)                     (c)                          (d)                    (e)

Fig. 9. The process of merging of two strings as described by solutions (34), (37).

The “bubble” visible in frames (d), (e) is a part of the self-similar solution. Frame

(c) shows the cusp formed at the time T1 = α. Frames (d), (e) show snapshots of

the two strings at the times t1, t2 such that α < t1 < t2 < 2α.

5. Summary and remarks

1. The signum-Gordon equation appears in several problems of classical
physics. It has a peculiar discontinuous nonlinearity, but this does
not mean that the equation is intractable. We have constructed the
full set of its self-similar solutions with initial data (5). The manifold
of these solutions, presented as the map in Fig. 1, is amazingly rich.
Equally astonishing is the fact that it has been possible to find the
exact analytic forms of all solutions.
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The self-similar solutions may also appear as a component of a globally
non self-similar solution. This possibility is illustrated by the example
presented in Sec. 4. The pattern of evolution of ϕ does not depend on
the slope α in the initial data (33) — this property is related to the
scaling symmetry of the signum-Gordon equation: the slope can be
changed just by the scaling transformation (2). It is interesting to see
that a self-similar solution plays a role in the evolution which starts
from initial data which are not self-similar.

2. There are several obvious directions for extending our results. First,
one may consider the four-parameter set of self-similar initial data (4)
instead of the two-parameter set (5). It seems that not always the
corresponding solutions can be obtained as a straightforward combi-
nation of solutions we have given above. Therefore, the map of such
solutions will be truly four-dimensional.

3. One may also be interested in the stability of our solutions. For that
matter, we have not seen any instability in the numerical investigations
of the self-similar solutions. This seems to indicate that the unstable
modes, if present at all, grow rather slowly. The main obstacle in
the investigations of the stability is the fact that the signum-Gordon
equation can not be linearised around ϕ = 0.

4. Probably the most interesting topic is related to the dynamics of topo-
logical compact solitons (compactons) found in [8]. These solitons have
a piece-wise parabolic shape, and the pertinent field-theoretic model
contains sectors which are described by the signum-Gordon equation.
Therefore, one may expect that certain self-similar waves will appear
in processes such as the scattering of the solitons, or the relaxation of
a single excited soliton. Perhaps one can even provide the exact ana-
lytic description of certain stages of such processes. This would give
the much desired counterbalance to purely numerical investigations
which are dominant in the literature so far.
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