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We consider a Markovian jumping process with two absorbing barriers,
for which the waiting-time distribution involves a position-dependent co-
efficient. We solve the Fokker–Planck equation with boundary conditions
and calculate the mean first passage time (MFPT) which appears always
finite, also for the subdiffusive case. Then, for the case of the jumping-size
distribution in form of the Lévy distribution, we determine the probabil-
ity density distributions and MFPT by means of numerical simulations.
Dependence of the results on process parameters, as well as on the Lévy
distribution width, is discussed.

PACS numbers: 02.50.Ey, 05.40.–a, 05.60.–k

1. Introduction

Transport processes in physical systems are usually considered in the dif-
fusion limit of large distance at long time. In realistic situations, however,
the available space is finite and this must be taken into account. In the
framework of the stochastic description, that restriction means that the sys-
tem possesses an absorbing and/or reflecting barrier at which the probability
distribution vanishes. Therefore, the corresponding equations must involve
boundary conditions. Effects connected with the final size of the system are
especially pronounced for small objects and they are encountered in many
applications of the stochastic processes to systems of high complexity. Tak-
ing into account the absorbing barriers is essential in dealing with several
population and environmental problems. For example, models of species
extinction involve the size of a refuge in which life conditions are favorable,
whereas they are extremely harsh outside [1]. Inclusion of size of the refuge
is also crucial in a model of the infection of Hantavirus in the deer mouse,
based on biological observations in North America [2].
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Time characteristics of the escaping process involve the first passage time
density distribution, defined as a probability that the time the particle needs
to reach the absorbing boundary is within the interval (t, t+dt), provided the
particle was initially at a given point x0 [3]. The average of that distribution
— the mean first passage time (MFPT) — is a useful quantity to estimate
the speed of transport for systems which are defined on the restricted area.
The MFPT can be calculated also for the boundless systems, if a potential
restricts the domain.

For example, an application of the diffusion problem on the finite inter-
val to the heat conduction between hot and cold baths is recently of wide
interest. There are several attempts to link such thermodynamical phenom-
ena as heat conductivity to the dynamical diffusion. In this context, the
problem of validity of Fourier’s law, as a counterpart to the Fick diffusion
law, is especially interesting. Applicability of dynamical processes, which
are characterized by the anomalous diffusion coefficient, became clear when
the anomalous heat conductivity in classical one-dimensional lattice systems
has been found [4]. A model, called “dynamical heat channels” [5, 6], can
be constructed by introduction some simplifications, e.g. by neglecting the
interactions between particles. Then the dynamics can be handled by the
decoupled CTRW which implies all kinds of the anomalous diffusion. In this
particular model, the subdiffusive case requires long tails of the waiting time
distribution; as a result the average waiting time, as well as MFPT [7], is
infinite. For the heat conduction process that would mean a perfect insula-
tor.

However, that uncoupled version of CTRW does not take into account
that, in general, the system may be inhomogeneous, i.e. its parameters de-
pend explicitly on the spatial variable. This happens in the complex systems
where long-range space correlations are important and the medium structure
is crucial for the system properties. As an example can serve the transport
on the fractal objects [8–10] and, since fractals are ubiquitous in nature, its
numerous manifestations in various branches of science. The transport coef-
ficients must vary with the position if one describes the dynamical properties
of materials containing impurities and defects. Physical problems which are
considered in this context involve conductivity of amorphous materials, the
ionic conductors, dynamics of dislocations, transport of a dye in porous
materials (quenched disordered media) [11]. In the case of the heat con-
duction, deviations of model calculations from Fourier’s law indicate that
the asymptotic temperature gradient is nonuniform and they point at long-
range effects [12]. The MFPT for a process which can correspond e.g. to the
Langevin equation with the multiplicative noise, and which is also described
by the Fokker–Planck equation with the variable coefficient, was calculated
in Ref. [13].
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In the present paper we evaluate the MFPT for a jumping process which
is a version of the CTRW: it is Markovian and takes into account the spatial
dependences of the problem by introduction the x-dependent waiting time
distribution.

Effects connected with the finite size of the system are especially pro-
nounced if the particle performs long jumps, namely for the Lévy flights,
when the second moment of the probability distribution is infinite. If the
distance between boundaries is small, compared to width of the jump length
distribution, the tails hardly influence the dynamics and the essence of the
Lévy process remains hidden. On the other hand, presence of the barriers
makes all the moments convergent.

The paper is organized as follows. In Sec. 2 we present the definition and
main properties of the jumping process. In Sec. 3 the MFPT for the system
which possesses two absorbing barriers is calculated. The consequences of
introduction of distributions with long tails (Lévy flights) is analyzed in
Sec. 4 and dependence on the process parameters is discussed. The main
results are summarized in Sec. 5.

2. Description of the process

The process we consider in this paper is a step-wise one-dimensional
Markov process defined in terms of the jumping size distribution Q(x) and
the Poissonian waiting time distribution

PP(t) = ν(x)e−ν(x)t , (1)

where ν(x) is the jumping rate [14]. The process value x(t) is constant
between consecutive jumps. Since ν depends on x, the process is a general-
ization of the usual, uncoupled CTRW. The master equation is the following

∂p(x, t)

∂t
= −ν(x)p(x, t) +

∞
∫

−∞

Q(x− x′)ν(x′)p(x′, t)dx′ . (2)

In the following, we assume the scaling form, ν(x) = |x|−θ (θ > −1), for
ν(x) which was applied e.g. to study the diffusion on fractal objects [15].
Moreover, it was used to describe the transport of fast electrons in a hot
plasma [16] and the turbulent two-particle diffusion [17].

A natural choice for the distribution Q(x) is the Gaussian:

Q(x) =
1

σ
√

2π
e−x2/2σ2

. (3)
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The corresponding master equation for the jumping process can then be
approximated — by means of the Kramers–Moyal expansion — by the fol-
lowing Fokker–Planck equation [19]

∂p(x, t)

∂t
=
σ2

2

∂2
[

|x|−θp(x, t)
]

∂x2
, (4)

where σ is the width of the distribution Q(x). The solution, with the initial
condition p(x, 0) = δ(x), is given by

p(x, t) = Cθ

|x|θ exp
(

− 2|x|2+θ

σ2(2+θ)2t

)

(σ2t/2)
1+θ
2+θ

, (5)

where Cθ = 1
2Γ ( 1+θ

2+θ
)
|2 + θ|

θ
2+θ . The mean squared displacement can be

directly evaluated: 〈x2(t)〉 ∼ t
2

2+θ . Then for θ ∈ (−1, 0) the superdiffusion
emerges, for θ > 0 we get the subdiffusion. The normal diffusion takes place
for θ = 0. Therefore, this Markovian process involves all kinds of diffusion.

The other form of Q(x) is the Lévy distribution which is also stable and
has the broad, power-law tails |x|−µ−1 (0 < µ < 2) [18]. The Kramers–
Moyal approximation of the master equation (2) produces in this case the
following fractional equation:

∂p(x, t)

∂t
= Kµ∂

µ
[

|x|−θp(x, t)
]

∂|x|µ , (6)

instead of the Fokker–Planck equation (4). The solution of the Eq. (6)
represents the Lévy process and it can be expressed in terms of the Fox
function in the following form [19,20]

p(x, t) =
a

µ
H1,1

2,2



a|x|

∣

∣

∣

∣

∣

∣

(1 − 1/µ, 1/µ), (1/2, 1/2)

(0, 1), (1/2, 1/2)



 , (7)

where a ∼ t−1/(µ+θ). The solution (7) is correct, and equivalent to the
solution of the master equation (2), in the diffusion limit of large both x
and t. Since all moments of order δ ≥ µ of the distribution p(x, t), Eq. (7),
are divergent, the kind of diffusion process cannot be determined from time
dependence of the second moment. Instead, one can introduce fractional
moments of the order δ < µ. Alternatively, the renormalized moment of the
order µ [19] allows us to characterize the diffusion properties of the system
in the same way as for the Gaussian case and to distinguish the normal
diffusion (θ = 0), subdiffusion (θ > 0) and the superdiffusion (θ < 0).
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Presence of the absorbing barriers must modify the probability distribu-
tion p(x, t) for both choices of Q(x): the distributions dwindle with time
due to the absorption and the broad tails in the Lévy case are cut off. As
a consequence, all the moments are finite. We discuss those problems in the
next sections.

3. Fokker–Planck equation with the boundary conditions

We consider a one-dimensional motion which is restricted to an interval
[0, L]. The particle performs jumps defined by the probability distributions
PP(t) and Q(x) according to the Eqs. (1) and (3). The end points of the
interval, 0 and L, are regarded as the absorbing barriers; the probability
distribution is given by the Fokker–Planck equation (4) with the initial con-
dition p(x, t = 0) = δ(x−x0) (0 < x0 < L) and with the following boundary
conditions

p(0, t) = p(L, t) = 0 . (8)

Eq. (4) for this problem can be solved by separation of the variables. Let
us assume the particular solution in the form p(x, t) = φ(t)ψ(x). Inserting
this ansatz to the Eq. (4) yields two equations; the function φ can be easily
determined: φ(t) = C exp(−λ2t), where λ =const. For the function ψ we
get the equation

∂2y(x)

∂x2
+

2λ2

σ2
xθy(x) = 0 , (9)

where y(x) = x−θψ(x). The solution of the Eq. (9) can be expressed in
terms of the Bessel functions Jν(x) in the following form [21]

y(x) = A
√
xJ1/(θ+2)

(

2
√

2λ

σ(θ + 2)
x(θ+2)/2

)

(10)

which satisfies the condition ψ(0) = 0. The second boundary condition,
ψ(L) = 0, allows us to determine the parameter λ ≡ λn by means of the
zeros of the Bessel function γn:

λn =
σ(θ + 2)

2
√

2

γn

L(θ+2)/2
. (11)

The general solution can be obtained by summing up over all values of λn:

p(x, t) = xθ+1/2
∑

n

AnJ1/(θ+2)

×
( γn

L(θ+2)/2
x(θ+2)/2

)

exp

(

−
(

σ(θ + 2)

2
√

2

γn

L(θ+2)/2

)2

t

)

. (12)
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The form of the constant An follows from the initial condition. The orthog-
onality property of the Bessel function produces, after some algebra, the
following expression:

An =
θ + 2

Lθ+2

√
x0J1/(θ+2)

(

γn

L(θ+2)/2x
(θ+2)/2
0

)

[

J ′
1/(θ+2)(γn)

]2 . (13)

The series representation of the distribution p(x, t), Eq. (12), is conver-
gent for all x and t. An example of the time evolution of p(x, t), calculated
according to the Eq. (12) in which 40 terms has been taken into account,
is presented in Fig. 1. The distributions shift to the right with time and
their normalization integral becomes smaller — due to absorption at the
boundary x = L = 5.

Fig. 1. The solutions of Eq. (4) with boundary conditions (8) for θ = 1.

Having the distribution p(x, t) calculated, we can determine the survival
probability: the probability that the particle is still inside the interval (0, L),
i.e. it has not yet reach the absorbing barrier. It can be obtained by means

of the formula S(t) =
∫ L
0 p(x, t)dx and it determines the first passage time

density distribution f(t) = −dS(t)/dt. The averaging over that distribution
produces the MFPT:

T =

∞
∫

0

tf(t)dt =

L
∫

0

dx

∞
∫

0

p(x, t)dt . (14)

In the case of our jumping process, the direct evaluation of the integral yields

S(t) =
2x0√
L

∑

n

J1/(θ+2)

(

γn

L(θ+2)/2x
(θ+2)/2
0

)

γnJ−(θ+1)/(θ+2)(γn)
exp

(

−
(

σ(θ + 2)

2
√

2

γn

L(θ+2)/2

)2

t

)

,

(15)
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where we utilized simple properties of the Bessel function. To obtain the
MFPT we need to integrate S over time:

T =

∞
∫

0

S(t)dt =
8x0L

θ+3/2

σ2(θ + 2)

∑

n

J1/θ+2

(

γn

L(θ+2)/2x
(θ+2)/2
0

)

[J ′
1/θ+2

(γn)]γ3
n

. (16)

Fig. 2 presents the survival probability for some values of θ, both positive
and negative, calculated from Eq. (15). For the problem without absorbing
barriers, the case with θ < 0 corresponds to the superdiffusion, whereas
with θ > 0 — to the subdiffusion. The figure shows that the tails are always
exponential. Moreover, S(t) rises with θ for any t, as expected. For large
values of θ, beginning of the curve is flat which means that trajectories can
hardly escape at short time due to the strong trapping. Since S(t) becomes
actually exponential, the MFPT is finite for all θ (see Eq. (16)), also for those
which correspond to the subdiffusion. This result is in contrast to that of the
decoupled CTRW which predicts divergence of the MFPT in the subdiffusive
case [7]. More precisely, the decoupled CTRW in the subdiffusive case is non-
Markovian and it assumes the waiting time distribution in the power law
form. Then the mean time of a single jump is infinite. For the problem
with the absorbing barriers, one can derive a formula for MFPT directly
from the waiting time distribution and the MFPT appears infinite. For the
process presented in this paper, the waiting time distribution is exponential
and the subdiffusion results from the x-dependence of its coefficient, i.e.

Fig. 2. The survival probability calculated from Eq. (15) for the values of θ which

corresponds to the superdiffusion (θ < 0), normal diffusion (θ = 0), and subdiffu-

sion (θ > 0).
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from nonhomogeneity of the medium. Introduction of that dependence has
important physical implications. As regards the application to the heat
conduction problem, the subdiffusive thermal conductivity becomes possible
also for the systems which are not perfect thermal insulators and then more
realistic.

4. Lévy flights between the absorbing barriers

In this section we analyze the jumping process for the system restricted
by two absorbing barriers for which the jumping size distribution is given
by the Lévy distribution. We calculate the probability density distributions
and the MFPT as a function of both the Lévy index µ and the parameter θ.

The MFPT problem for the Lévy flights on the bounded domain, both
with and without a potential, is studied extensively in recent years; beside
the MFPT, the first passage time distribution has been evaluated as a func-
tion of the parameters of the Lévy distribution, which, in general, can be
asymmetric. Since the analytical approach is very difficult in this case, most
of the studies rely on the Monte Carlo simulations [22–24]. Nevertheless,
recently an analytical solution to the fractional equation with the bound-
ary conditions, which describes the Lévy flights in a homogeneous medium
(θ = 0), has been found [25].

The Lévy distribution represents the general stable distribution and in
that sense it is a generalization of the Gaussian. It accounts for processes for
which the second moment of the probability density distribution diverges:
the standard central limit theorem does not apply in this case. Phenom-
ena which exhibit distributions with long tails are frequently encountered
in nature. They are typical for systems of high complexity, in particular
biological [26], social, and financial ones. Therefore, the theory of the Lévy
flights is widely applicable to problems from various branches of science and
technology.

One can expect that presence of the barriers will influence the stochas-
tic dynamics particularly strong in the case of the Lévy processes. If the
interval length L is small compared to the width parameter σ of the jump
length distribution, the power-law tails of the distribution will not manifest
themselves. In particular, all moments become finite.

We assume the jump length distribution in the form

Q(x) =

√

2

π

∞
∫

0

exp(−σµkµ) cos(kx)dk , (17)

as well as the Poissonian waiting time distribution (1). We determine the
probability density distribution p(x, t) by means of the Monte Carlo method.
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The Lévy-distributed jump-size density has been generated by using the al-
gorithm from Ref. [27]. The time evolution of individual trajectories, which
start with the same initial condition, has been performed by sampling con-
secutive values of the jumping size and the waiting time interval from the
densities Q(x) and PP(t), respectively. The final results have been obtained
by averaging over those individual trajectories. Fig. 3 presents the time evo-
lution of p(x, t) for both positive and negative θ. Similarly as in the case
of the Fokker–Planck equation, the distributions terminate abruptly at the
barrier position and they shrink with time due to the absorption. The initial
delta function at x = 2 is visible up to a long time. In the case of the process

Fig. 3. The time evolution of probability density distribution for Q(x) in the form

of the Lévy distribution (17) with the parameters µ = 1.5 and σ = 1, calculated

for two values of θ: θ = 0.2 (left part) and θ = −0.1 (right part). The vertical lines

near the absorbing barrier x = 4 represent very fast fall of the distributions due to

absorption.

presented in Fig. 3 the width parameter σ of the driving distribution Q(x)
is large, compared to the interval size L, and the results are not sensitive to
its tails. On the other hand, in the limit of large L̄ = L/σ one can expect
that p(x, t) converges to the distribution which corresponds to the process
without absorbing barriers. In this case, the resulting distribution should
not depend on σ and the asymptotics should be completely determined by µ.
Indeed, Fig. 4 demonstrates that for σ = 0.003 the tail approaches the form
∼ x−1−µ, before it is cut abruptly at the barrier position. For the slightly
larger value of this parameter, σ = 0.004, the power-law asymptotics fails
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to appear. The tails of p(x, t) become σ-dependent for relatively large σ
because the importance of the tails of Q(x) gradually declines with σ.

Fig. 4. The log–log plot of the tails of probability density distribution p(x, t),

calculated with θ = 0.2 and µ = 1.5, for two values of the width parameter σ. The

solid line denotes the function ∼ x−5/2.

The same procedure allows us to determine MFPT: the average time T
the edge of the interval, i.e. either 0 or L, is reached. The dependence of
MFPT on both µ and σ is presented in Fig. 5 for the case θ = 0. In general,
T rises with µ because then the probability of large jumps falls. Since that
effect results from the power-law tails, it is weak (the curves are flat) if only
the central part of the distribution — similar for all µ — is involved, i.e. for
large σ. On the other hand, small values of σ result in a strong dependence
T (µ), which becomes exponential for σ = 0.003. This shape persists for even
smaller σ.

The parameter θ is crucial to the speed of the transport; in absence of the
absorbing barriers, the cases with large values of θ correspond to the slow
diffusion. It happens because the traps at large distances becomes more
effective when θ increases and the transport is hampered due to the long
waiting times. Consequently, one can expect that the MFPT will rise with
θ. This conclusion is illustrated in Fig. 6. Growth of the function T (θ) is
especially pronounced for large values of µ (close to Gaussian case µ = 2)
because then the average jump length is relatively small and a large number
of jumps is needed to reach the barrier. Transition from the negative to
positive values of θ — which corresponds to the change of kind of diffusion
in the problem without absorbing barriers — is smooth for all µ. The latter
conclusion holds also for µ = 2, according to the Eq. (16).
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Fig. 5. The MFPT as a function of the parameter µ calculated for θ = 0 and some

values of σ.

Fig. 6. The MFPT as a function of the parameter θ, calculated with σ = 0.3, for

some values of µ.

5. Summary and discussion

We have analyzed the one-dimensional, step-wise jumping process which
is defined on the finite interval, bounded by two absorbing barriers. Since
the waiting time distribution involves the variable, position-dependent coef-
ficient, the inhomogeneity of the medium has been taken into account. That,
power-law, dependence is a reason of the anomalous behavior: the diffusion
can be both weaker and stronger than normal. The calculated MFPT is large
for the subdiffusion and rises with the parameter θ, nevertheless it always
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assumes a finite value. Physical reason behind the latter outcome — which
can never be concluded from the traditional, uncoupled CTRW models of
the subdiffusion — is the weakening of trapping with the increased distance
and, as a result, the effective mean waiting time is finite. From the point
of view of modeling of the anomalous heat conduction, the introduction of
the x-dependent waiting time distribution allows us to describe the subdif-
fusive heat transport for realistic systems: for those which are not perfect
insulators.

Restrictions imposed on the system by the existence of the absorbing
barriers are pronounced if we allow for long jumps, i.e. if the jumping size
distribution Q(x) is of the Lévy form. The power law tails of that distribu-
tion can influence the probability density distribution of the process, p(x, t),
only if Q(x) is narrow, compared to the distance between the barriers, i.e.

to the system size. In that limit, the sections of p(x, t) which are close to
the barrier assume the power law shape in the same form as the tails for the
problem without the barriers. Conversely, for the broad Q(x) those tails are
hardly visible and the MFPT is almost independent of the Lévy parameter
µ. The dependence of MFPT on the parameter θ is similar to that for the
Gaussian Q(x): large values of θ, for which the transport is strongly ham-
pered by the traps, result in large T . Nevertheless, it remains finite, for any
µ and θ.
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