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Jet quenching has become an essential signal for the characterization of
the medium formed in experiments of heavy-ion collisions. After a brief in-
troduction to the field, we present the full derivation of the medium-induced
gluon radiation spectrum, starting from the diagrammatical origin of the
Wilson lines and the medium averages and including all intermediate steps.
The application of this spectrum to actual phenomenological calculations
is then presented, making comparisons with experimental data and indi-
cating some improvements of the formalism to the future LHC program.
The last part of the lectures reviews calculations based on the AdS/CFT
correspondence on the medium parameters controlling the jet quenching
phenomenon.

PACS numbers: 12.38.Mh, 25.75.Bh, 13.87.–e, 11.15.Me

1. Contents of the lectures

The lectures are organized as follows, in Sec. 2 and 3 the properties
of QCD matter and the use of heavy-ions to study these extreme condi-
tions are briefly reviewed; Sec. 4 presents the general formalism to describe
highly energetic particles propagating in matter which is then applied to
the case of medium-induced gluon radiation in Sec. 5; Sec. 6 summarizes
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how this formalism is implemented in actual phenomenological calculations
and gives a brief review of the comparison with experimental data; Sec. 7
presents some new developments on the calculation of the transport co-
efficient using the Anti-de-Sitter/Conformal-Field-Theory correspondence;
finally, some conclusions are presented. Readers interested on the formal-
ism of medium-induced gluon radiation could directly jump to Sec. 4. The
derivation of the medium-induced gluon radiation presented here is new and
entirely based on resummation of the multiple scattering diagrams which we
find more intuitive.

2. Heavy-ion collisions and extreme QCD matter

QCD is the theory which describe the strong interaction. Its asymp-
totic states are hadrons which are colorless objects composed by quarks
and gluons, the degrees of freedom of the QCD Lagrangian. Confinement is
a property of the strong interaction which forbids the existence of asymptotic
colored states in normal conditions of temperature and densities. Quarks
are fermions with fractional electric charge and very different masses. Light
quark masses are O(10 MeV) for up and down and O (100MeV) for strange.
Heavy quark masses are ∼ 1.5GeV for charm, ∼ 5GeV for beauty and
∼ 175GeV for top. The masses of the hadrons formed by light quarks is
much larger than the sum of the individual masses of their constituents,
indicating a large dynamical origin for the first. The spectroscopy of both
light and heavy mesons and baryons is an interesting area to study the QCD
dynamics. A main observation is that the chiral symmetry — an exact sym-
metry of the Lagrangian when the quark masses are neglected — is not
observed. This symmetry breaking is not realized by the presence of a new
particle as the Higgs boson in the EW sector, but by the structure of the
QCD vacuum, in which the symmetry is spontaneously broken. In this case,
the associated Goldstone bosons are identified to be the pions and kaons,
which are almost massless when their mass is compared with that of other
hadrons.

So, two basic properties of the QCD vacuum are the confinement of
quarks and gluons and the chiral symmetry breaking. One relevant question
is, then, is there a regime where these symmetries are restored?

Another essential property of QCD is asymptotic freedom, the fact that
the interaction disappears at small distances/large scales. As a consequence,
QCD medium at asymptotic temperatures is predicted to be a gas of free
quarks and gluons with a restoration of the symmetries mentioned above.
For a null net baryon number in the medium, the transition temperature
is found to be in the range Tc ∼ 175–190MeV — see e.g. [1] for a recent
discussion. Most of the theoretical information we have in the transition
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region comes from lattice QCD calculations where different quantities can
be studied1 such as the equation of state, the chiral condensate or the free
energy.

A first example of this collective behavior is the equation of state. The
pressure or the energy density measured in units of T 4 of an ideal gas are,
according to the Stefan–Boltzman law, proportional to the number of degrees
of freedom in the system: so, for a free gas of pions this quantity is Ndof = 3,
while for a free gas of quarks and gluons this quantity is much larger, Ndof =
2× 2× 3 + 2× 8 counting spin, color and (two) flavor states. This different
behavior is observed in lattice calculations where a jump at the transition
temperature, Tc, appears — see Fig. 1. Interestingly, the lattice results
also signal to a significant departure of the ideal gas behavior, ε = 3p at
temperatures close to Tc — see Fig. 1.
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Fig. 1. Left: entropy, s ≡ ε + p in units of T 4 versus temperature computed in

lattice. Right: trace anomaly in units of T 4 as a function of the temperature.

Figures from [3].

In order to understand the nature of the transition order parameters
are needed. In QCD with massless quarks, the chiral condensate is the
order parameter, while in the infinite mass limit the order parameter is the
Polyakov Loop. The order of the transition depends on the actual value of
the quark masses and most calculations agree in the absence of a real phase
transition at zero baryochemical potential — the transition would just be
a rapid cross-over.

The behavior of the potential between heavy quarks is also of inter-
est for phenomenological applications. Although some discussion about the
precise meaning and the definition of a potential exists in the case of a hot
medium [4], a screening leading to a non-confining potential is expected to
appear at some point above the phase transition and, correspondingly, the
heavy quark bound states would cease to exist if this temperature is reached.

1 See e.g. [2] for a description of the QCD thermodynamics as studied by lattice.
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A prediction of the presence of a deconfined medium in heavy ion collisions
is then the disappearance of heavy-quark bound states (quarkonium) and in
particular the J/Ψ .

2.1. Heavy-ion collisions to characterize hot QCD states

The description of hadronic collisions in terms of the formation of a ther-
mal state, which then evolves according to a hydrodynamical behavior, has
an old story. In the 50’s, Landau [5] proposed a model in which a tran-
sient thermal state — little fireball — is formed by energy deposition in
a small slice of space, of the size of the Lorentz-contracted nuclei, at the
center of mass of the collision. The subsequent hydrodynamical evolution
produces an expansion and cooling of the system up to a freeze-out tem-
perature T ∼mπ when the formed hadrons free stream to the detectors.
A rapidity-independent version of this model was proposed by Bjorken [6]
— see e.g. [7] for a review on hydrodynamical models in heavy-ion collisions.
Although more sophisticated implementations are used nowadays, very de-
manding from the computational point of view, for the hydrodynamical
description of nuclear collisions, the Bjorken model estimate gives a conve-
nient and simple parametrization of some medium properties, as a function
of the proper time τ , as the energy density or the temperature of the created
medium

ǫ(τ) ≃ ǫ0

τ4/3
, T ≃ T0

τ1/3
. (1)

Present facilities to study this active field of research — see [8] for a recent
review on the experimental situation — are the CERN SPS, with fixed target
collisions of different nuclei up to

√
s ≃ 20GeV/A; the RHIC at Brookhaven,

a dedicated collider which reaches much larger energies,
√

s = 200GeV/A;
and in the near future the LHC at CERN, with an important program
of nuclear collisions which will provide a spectacular jump in the collision
energy upto

√
s = 5500GeV/A. Here, the quoted figures refer to the total

available energy in center of mass of the collision divided by the number
of nucleons from the two nuclei — energy per nucleon — so that it can be
directly compared to a corresponding proton–proton collision energy.

The lifetime of the hot medium produced in heavy ion collisions is so
small, of the order of its own transverse size, that only indirect probes are
available to characterize its properties. Here we will only focus on hard
probes and specially on the study of the high transverse momentum part
of the spectrum of produced particles. Jet quenching is the generic name
under which the corresponding effects on high-p⊥ particles are known. The
original proposal [9], a suppression of the large transverse momentum yields
due to the energy lost by interaction of the fast partons with the medium
has been observed at RHIC [10] and partially also at the SPS [11].
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3. Hard probes to heavy-ion collisions

Hard processes are those involving large momentum exchanges. Asymp-
totic freedom allows, in these conditions, to perform calculations by a per-
turbative expansion in terms of αs(Q

2), where Q is the large scale of the
process, as, e.g. a large mass or a large transverse momentum of the pro-
duced particles. This perturbative expansion is, however, computed in terms
of quarks and gluons, the degrees of freedom of the QCD Lagrangian, and
some extra information is usually needed to connect it with the initial and
final hadrons appearing as asymptotic states. A crucial simplification of the
problem is possible thanks to the factorization theorems of QCD which allow
to separate long- and short-distance contributions to the cross section in the
form2:

σAB→h = fA(x1, Q
2) ⊗ fB(x2, Q

2) ⊗ σ(x1, x2, Q
2) ⊗ Di→h(z,Q2) , (2)

where the short-distance perturbative cross section, σ(x1, x2, Q
2), is compu-

table in powers of αs(Q
2) and the long-distance terms are non-perturbative

quantities involving scales O(ΛQCD). More specifically, the proton/nuclear
parton distribution functions (PDF), fA(x,Q2), encode the partonic struc-
ture of the colliding objects and can be interpreted as the probability to find
a parton (quark or gluon) inside the hadron with fraction of momentum x;
the fragmentation functions (FF), D(z,Q2), describe the hadronization of
the parton i into a final hadron h with a fraction of momentum z.

Although the PDFs and the FFs are non-perturbative quantities, their
evolution in Q2 can be computed by the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) equations [12]. This equations resum higher or-
ders in αs which, due to enhanced contributions in some regions of phase-
space, cannot be neglected. For example, we will see Sec. 5 that the spectrum
of gluons radiated with energy fraction z out of a quark produced in a hard
process is

dI

dzdt
=

αs

2π2

1

t
P (z) ≃ αs

π2

1

t

CR

z
, (3)

with t the invariant mass of the produced pair. This radiation is divergent
in the infrared and collinear limits giving large O(αs log t) terms to the cross
section which need to be taken into account. These terms are resummed by
the DGLAP evolution equations3

∂D(x, t)

∂ log t
=

1
∫

x

dz

z

αs

2π
P (z)D

(x

z
, t
)

. (4)

2 For simplicity we have made all the scales the same, although, strictly speaking, the
factorization, renormalization and fragmentation scales can be different.

3 To simplify the notation, we include only one flavor, see, e.g. [13] for a complete
description.
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where D(x, t) can be the PDFs or the FFs and P (z) are the splitting func-
tions. At the lowest order (LO) these equations admit a probabilistic inter-
pretation in which a parton shower is formed by subsequent branching of the
initial quark or gluon. We will come back to this interpretation in Sec. 6.

These equations provide an excellent description of experimental data as
deep inelastic lepton–proton scattering (DIS) or jets.

3.1. Hard processes as probes of the medium

The hard process described by the perturbative cross section σ(x1, x2, Q
2)

in (2) takes place in a very short time, O(1/Q), and is basically unchanged
for most of the processes of interest. The interest of hard processes as probes
of the medium is that the long distance parts are modified when they com-
municate with the extension of the medium. Measuring these modifications
allows for a characterization of the medium properties — see e.g. [14] for
a recent review.

A conceptually simple example is the J/Ψ , whose production cross sec-
tion can be written as

σhh→J/Ψ =fi(x1, Q
2)⊗fj(x2, Q

2)⊗σij→[cc̄](x1, x2, Q
2)〈O([cc̄] → J/Ψ)〉 , (5)

where now 〈O([cc̄] → J/Ψ)〉 describes the hadronization of a cc̄ pair in
a given state (for example a color octet) into a final J/Ψ . In the case
that the pair is produced inside a hot medium this long-distance part is
modified. Actually, the potential between the pair is screened in a hot
medium and the hadron is dissolved, making 〈O([cc̄] → J/Ψ)〉 → 0. The
experimental observation of this effect is a disappearance of the J/Ψ in
nuclear collisions [15]. This suppression has been discovered in experiments
at the CERN SPS [16] and then also at RHIC [17]. The interpretation of the
experimental data is, however, not simple; one of the reasons being the lack
of good theoretical control over the modification of a purely non-perturbative
quantity as the hadronization of a cc̄ pair into a charmonium state.

From the computational point of view, a theoretically simpler case is
the modification of the evolution of fragmentation functions of high-pT par-
ticles due to the presence of a dense or finite-temperature medium. Here,
highly energetic partons, produced in a hard process, propagate through the
produced matter, loosing energy by medium-induced gluon radiation. This
phenomenon is generically known as jet quenching and its implementation
into the perturbative formula (2) will be discussed in the next sections.
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3.2. Nuclear parton distribution functions

A good knowledge of the PDFs is essential in any calculation of hard
processes. The usual way of obtaining these distributions is by a global fit
of data on different hard processes (mainly deep inelastic scattering, DIS) to
obtain a set of parameters for the initial, non-perturbative, input f(x,Q2

0)
to be evolved by DGLAP equations [12].

In the nuclear case, the initial condition, fA(x,Q2
0), is modified com-

pared to the proton. Moreover, at small enough x, non-linear corrections
to the evolution equations [18–21] are expected to become relevant. Global
DGLAP analyses, paralleling those for free protons are available [22–28].
These studies fit the available data on DIS and Drell–Yan with nuclei pro-
viding the needed benchmark for additional mechanisms.

The DGLAP analyses of nuclear PDFs from [27] is shown in Fig. 2, in-
cluding the corresponding error estimates. An important issue, partially
visible in Fig. 2, is that present nuclear DIS and DY data can only constrain
the distributions for x & 0.01 in the perturbative region. By chance, this
region covers most of the RHIC kinematics, so that, the description of e.g.
J/Ψ -suppression or inclusive particle production in dAu collisions as given
by the nuclear PDFs can be taken as a check of universality of these distri-
butions. These checks present a quite reasonable agreement with data [29],
but some extra suppression for the inclusive yields at forward rapidities is
probably present. The strong gluon shadowing plotted in Fig. 2 improves
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the situation at forward rapidities without worsening the fit of DIS or DY
data — χ2/dof < 1. Whether a DGLAP analysis can accommodate all
sets of data is an open question, but the finding in Ref. [27] are encouraging.
A suppression at forward rapidities was also predicted in terms of saturation
of partonic densities [30].

4. Particle propagation in matter

To describe the jet quenching phenomenon, we start from a high-p⊥
quark or gluon produced in an elementary hard collision which subsequently
interacts with the surrounding matter. So, the first question we need to ad-
dress is how a highly energetic particle propagates through a dense medium.
In this section we will present the most widely used formalism based on
a semiclassical approach in which the changes in the medium configuration
due to the passage of the fast particle, recoil, are neglected. In this approx-
imation the medium can be considered as a background field.

A convenient formulation of the problem is in terms of Wilson lines

W (x) = P exp

[

ig

∫

dx+A−(x+,x)

]

(6)

describing the propagation of a particle through a medium field A−(x+,x).
Its origin will be explained in the next subsection. Here we introduce the
light cone variables

x± =
1√
2

(x0 ± x3) , p± =
1√
2

(p0 ± p3) . (7)

So that the scalar product is

p · x = p+x− + p−x+ − p⊥ · x⊥ (8)

and the rapidity

y =
1

2
ln

[

p0 + p3

p0 − p3

]

=
1

2
ln

[

p+

p−

]

. (9)

4.1. Wilson lines, eikonal approximation

A simple derivation of the Wilson line is obtained in terms of multiple
scatterings, providing a clear physical picture of the eikonal propagation.
Consider the diagram of Fig. 3, where static centers of scattering are placed
at x1, x2, . . . xn. Let us fix that the quark is moving in the positive x3

direction, i.e. the large component of the momentum is p+.
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x1 x2 x3 x4 xn

p p′p1 p2 p3 pn

Fig. 3. A multiple scattering eikonal trajectory.

The contribution to the S-matrix of one scattering is

S1(p
′, p) =

∫

d4x ei(p′−p)·x ū(p′) igAa
µ(x)T aγµ u(p) . (10)

Taking the eikonal limit, p ≃ p′, 1
2

∑

λ ūλ(p)γµuλ(p) = 2pµ and pµAa
µ ≃

2p+Aa
−. In order to proceed, we will assume that the fields have a small

dependence on the small coordinate x−: due to the Lorenz contraction, the
medium can be seen as a small sheet in this coordinate. Putting all together
one obtains4

S1(p
′, p)≃2πδ(p′+−p+)2p+

∫

dx⊥e−ix⊥(p′
⊥
−p⊥)

[

ig

∫

dx+A−(x+,x⊥)

]

, (11)

where we have singled out with brackets the contribution of the field which
will exponentiate to give the Wilson line and the color matrix has been
omitted for clarity.

The contribution with two scatterings is given by

S2(p
′, p) =

∫

d4p1

(2π)4
d4x1d

4x2 ei(p1−p)·x1 ei(p′−p1)·x2 ū(p′) igAa1
µ1

(x1)

×T a1γµ1 i
/p1

p2
1 + iǫ

igAa2
µ2

(x2)T
a2γµ2 u(p) . (12)

Applying the Dirac equation one can write in the eikonal limit
ū(p)γµ1 /p1γµ2u(p′) ≃ (2p+)2gµ1−gµ2− giving

S2(p
′, p)=−ig2(2p+)2

∫

d4p1

(2π)4
d4x1d

4x2
ei(p1−p)x1+i(p′−p1) x2

p2
1 + iǫ

A−(x1)A−(x2) ,

(13)

4 Note that we neglect the p− component. In the eikonal approximation p′

− ≪ |p
⊥
|,

however, the phase factor ip′

−x+ is potentially enhanced by the medium length. Thus,
we are implicitilly assuming that the medium is smaller than the coherence length
p−L ≈ µ2L/2p+ ≪ 1. In the next section we will see how this assumption can be
relaxed.



3740 J. Casalderrey-Solana, C.A. Salgado

where again the color matrices have been omitted as will be omitted in the
following. In the high-energy limit, the integrals in d4p1 can be performed:

∫

dp1−
ei(x1+−x2+)p1−

2p1+p1− + iǫ
= −Θ(x2+ − x1+)

2πi

2p+
, (14)

∫

dp1+ei(x1−−x2−)p1+ = 2πδ(x1− − x2−) , (15)
∫

d2p1⊥e−i(x1⊥−x2⊥)p1⊥ = (2π)2δ(x1⊥ − x2⊥) . (16)

Doing the x−-integration as in the case of one scattering one obtains

S2(p
′, p)≃2πδ(p′+ − p+)2p+

∫

dx⊥e−ix⊥(p′
⊥
−p⊥) 1

2
P
[

ig

∫

dx+A−(x+, x⊥)

]2

,

(17)
where again the second term in the expansion of (6) appears. In order to
obtain (17) we have used that

∫

dx1dx2 . . . dxnΘ(x2 − x1) . . . Θ(xn − xn−1)A(x1) . . . A(xn)

=
1

n!
P
[
∫

dxA(x)

]n

, (18)

where P means path-ordering of the fields A(x).
The generalization to n-scattering centers follows the same lines and the

corresponding contribution is given by

Sn(p′, p) ≃ 2πδ(p′+ − p+)2p+

∫

dx⊥e−ix⊥(p′
⊥
−p⊥)

× 1

n!
P
[

ig

∫

dx+A−(x+,x⊥)

]n

, (19)

So that the total S-matrix is

S(p′, p) =
∞
∑

n=0

Sn(p′, p) ≃ 2πδ(p′+ − p+)2p+

∫

dx⊥e−ix⊥(p′
⊥
−p⊥)W (x⊥) ,

(20)
with W (x⊥) given by Eq. (6). Similar expressions are obtained in the case
of a fast gluon of momentum k with the only replacement of the external
fields in (6), now in the adjoint representation — see e.g. [31]. In order to
see this, the external fields coupled to three gluon vertices (four gluon vertex
are subleading in energy) are written in the adjoint representation

AA = Aa(T a
A)bc = −iAafabc . (21)
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The sum of gluon polarization vectors can be written as

2
∑

i=1

ǫµ
(i)ǫ

ν
(i) = gµν − mµkν

m · k − kµmν

m · k (22)

with m a light-like vector with non-zero minus component, m = (0, 1, 0, 0)
and the polarization vectors defined by ǫ · k = ǫ · m = 0; ǫ2 = −1

ǫ(i) =

(

0,
k⊥ · ǫ(i)⊥

k+
, ǫ(i)⊥

)

(23)

and ǫ(1)⊥ = (1, 0), ǫ(2)⊥ = (0, 1). This prescription allows to simplify the
structure of the gluon line since, due to gauge invariance, only the first term
in Eq. (22) contributes in the high-energy limit when the propagator is in
between two three-gluon vertices. So that, one can write for each gluon
propagator

gµν ≃
2
∑

i=1

ǫµ
(i)ǫ

ν
(i) (24)

and now the contribution from each vertex Vµνσ can be simplified as

ǫµ
(i′)(k

′)Vµνσ(−k′, k, k′ − k)Aσ
Aǫν

(i)(k) ≃ −i2gk+AA−δii′ (25)

which has a structure similar to the quark case allowing for a resummation
to obtain a Wilson line now with fields in the adjoint representation. We
will denote this gluon line with a superscript, W A(x⊥).

Eq. (20) describes the scattering of a quark (or gluon, with the changes
explained above) in a medium with a given field configuration, determined by
the scattering centers. The effect of the medium is to induce color rotation
at each scattering center without changing the helicity (polarization) of the
quark (gluon), which loses a negligible amount of energy and propagates
in straight lines. In order to have the final answer for a physical cross
section, these medium configurations need to be averaged within an ensemble
describing the medium. This issue will be discussed later.

4.2. Relaxing the eikonal approximation

In some cases, the restrictions applied in the above formulation need to
be relaxed to allow small changes in the transverse position of the propa-
gating particle. This is the case, for instance, of the medium-induced gluon
radiation, where the gluon position follows Brownian motion in the trans-
verse plane. The eikonal Wilson line is now replaced by the propagator

G(b, a) =

∫

Dr(x+) exp

{

i
p+

2

∫

dx+

[

dr

dx+

]2
}

W (r) . (26)
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This change can be derived in the multiple soft scattering presented in the
previous section. In order to do that, we have to keep the subleading p2

⊥
terms in the poles of the propagators. So, now the integration in pi− reads

∫

dp−
eip−(xi+−x(i+1)+)

2p+p− − p2
⊥ + iǫ

= − i
2π

2p+
Θ(x(i+1)+ − xi+) e

i
p2
⊥

2p+
(xi+−x(i+1)+)

(27)

and instead of (16) the integration in pi⊥ is Gaussian, giving

∫

d2pi⊥
(2π)2

e
i

p2
⊥

2p+
((xi+−x(i+1)+)

e−ipi⊥(xi⊥−x(i+1)⊥)

=
p+

2πi(xi+ − x(i+1)+)
exp

{

−i
p+

2

(xi⊥ − x(i+1)⊥)2

xi+ − x(i+1)+

}

. (28)

Eq.(28) is the Feynman propagator of a free particle that propagates in the
transverse plane from xi⊥ at time xi+ to x(i+1)⊥ at time x(i+1)+ (see e.g. [33])
G0(x(i+1)⊥ − xi⊥;x(i+1)+ − xi+). Thus, Eq. (28) can be expressed as

G0(x(i+1)⊥−xi⊥;x(i+1)+−xi+)=

∫

Dx⊥(xp) exp

{

i
p+

2

∫

dx+

[

dx⊥
dx+

]2
}

,

(29)
where the paths x⊥(x+) connect the two endpoints of the propagator.

The scattering matrix now reads

S(p′, p) = 2πδ(p′+ − p+)2p+

∞
∑

n=0

∫

P
n
∏

i=0

dxi+dxi⊥igA(xi+,xi⊥)

×G0(∆x(i+1)⊥;∆x(i+1)+)igA(x(i+1)+,x(i+1)⊥) , (30)

where ∆x(i+1)⊥ = x(i+1)⊥−xi⊥, ∆x(i+1)+ = x(i+1)+−xi+. This expression
can be reorganized as

S(p′, p) = 2πδ(p′+ − p+)2p+

∫

dx⊥e−ix⊥(p′
⊥
−p⊥)

×
∫

Dr(x+) exp

{

i
p+

2

∫

dx+

[

dr

dx+

]2
}

W (r) , (31)

with W (x⊥) given by (6).
Eq. (31) describes the propagation of a highly energetic particle through

a medium when changes in the transverse position are allowed. The prop-
agation takes phases both from the motion in the transverse plane and the
color rotation by interaction with the medium field.
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4.3. The medium averages

The S-matrices derived in the previous sections are valid for a given
configuration of the fields and should be averaged over the proper ensemble
of the medium field configurations. Several prescriptions have been used in
the literature. Here we will present two of them used for the calculation of
the jet quenching. Notice first that any physical quantity must contain, at
least, the medium average of two Wilson lines since the average is done at the
level of the cross section where only colorless states are allowed. In general,
we will be interested in quantities like

1

N
Tr 〈W †(x⊥)W (y⊥)〉 , (32)

where the trace and the 1/N term correspond to average the initial color
indices — correspondingly, a factor 1/(N2−1)would appear in the case of
Wilson lines in the adjoint representation.

Two main approximations to the averages (32) are used in jet quenching
phenomenology, the multiple soft scattering approximation and the opacity
expansion. Both can be understood in the multiple scattering picture we
are employing. The main assumption is that the centers of scattering are
independent, i.e. no color flow appears between scattering centers separated
more than a distance λ ∼ 1/µ, µ being a typical scale in the medium as the
Debye screening length. So, we want to calculate

1

N
Tr 〈W †(x⊥)W (y⊥)〉 =

1

N
Tr
〈

exp{−ig

∫

dx+A†
−(x+,x⊥)}

× exp{ig
∫

dx+A−(x+,y⊥)}
〉

. (33)

Expanding the exponents and taking the contribution from one scattering
center, the leading contribution is quadratic in the fields — the linear con-
tributions cancels due to the color trace

〈

1 +
1

2
(ig)2

[∫

dx+A†
−(x+,x⊥)

]2

+
1

2
(ig)2

[∫

dx+A−(x+,y⊥)

]2

− (ig)2
[
∫

dx+A†
−(x+,x⊥)

] [
∫

dx+A−(x+,y⊥)

]

〉

. (34)

These terms have a clear diagramatic interpretation, they correspond to
the two-scattering diagrams represented in Fig. 4. The first two do not
resolve the transverse dimension of the dipole and are sometimes called
contact terms. Writing the field as the Fourier transform of a field amplitude
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produced by a scattering center at position (xi+,xi⊥)

T bAb
−(x+,x⊥) =

∫

d2q

(2π)2
ei(x⊥−xn⊥)q T bab

−(q)δ(x+, xi+) . (35)

The medium averages 〈 . . . 〉 are done by integrating in the longitudinal xi+

Fig. 4. Different contributions to the dipole cross section.

and transverse coordinates xn⊥ of the scattering centers. For example, the
third term in (34) gives

∫

dx+dxi+dxi⊥

∫

d2q1

(2π)2
d2q2

(2π)2
e−i(x⊥ −xi⊥ )q1 ei(y⊥−xi⊥ )q2

× a∗−(q1) a−(q2)δ(x+ − xi+) =

∫

dx+

∫

d2q

(2π)2
ei(y⊥−x⊥ )q |a(q)|2 . (36)

Putting all together, Eq. (34) can be written in terms of the cross section
of a dipole, where the quark and the antiquark are located at y⊥ and x⊥
respectively, with one of the scattering centers of the medium.

(34) = 1−CF

∫

d2q

(2π)2
|a(q)|2 (1− ei(y⊥ −x⊥ )q) = 1− 1

2
σ(y⊥ − x⊥) . (37)

The factor CF comes from the color average and the traces over the matrices

1

N

∑

a,b

Tr T aT b = CF =
N2 − 1

2N
=

4

3
. (38)

The corresponding factor for a gluon would be CA = N = 3.
There is a subtlety in the derivation we have just presented. Strictly

speaking, the contact terms are not included in the multiple scattering
derivation of the Wilson lines made before, where each scattering center
contributes with a factor A− and path ordering appears. What we have
implicitly assumed is that scattering centers separated by distances smaller
than λ ∼ 1/µ resolve color correlations while those separated by more than
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λ do not. This is usually implemented by considering the contribution of one
scattering center by defining a density n(x+) =

∑

i δ(x+ − xi+) and taking
the continuum by an integration in x+

1

N
Tr 〈W †(x⊥)W (y⊥)〉1 scatt ≃ 1 − CF

2

∫

dx+n(x+)σ(y⊥ − x⊥) . (39)

Eq. (39) is the first order in an opacity expansion of the medium, the sum
of all orders exponentiate and the average (33) can be written as

1

N
Tr 〈W †(x⊥)W (y⊥)〉 ≃ exp

{

−CF

2

∫

dx+n(x+)σ(y⊥ − x⊥)

}

. (40)

Eqs. (39) and (40) are the two main medium averages used in the literature
of jet quenching. In order to proceed, the functional form of the dipole cross
section needs to be specified. In the opacity expansion a Yukawa-type elastic
scattering center with Debye screening mass µ is usually taken in (37)

|a(q)|2 =
µ2

π(q2 + µ2)
. (41)

When the number of scattering centers is very large, all of them need to be
resummed and the first orders of the opacity are not enough. In this condi-
tions, it is convenient to take the dipole cross section at leading logarithmic
accuracy [34] and write the small distance component of the cross section

σ(r) ≃ Cr2 . (42)

The proportionality factor C with the squared dipole size is usually taken to
be constant and defines the transport coefficient q̂(ξ) ≡ 2

√
2n(ξ)C, encoding

all the information about the dynamical properties of the medium. This is
the main parameter to be determined by fits to experimental data and to
be compared with theoretical calculations. The Wilson line averages define
this parameter by5

1

N2 − 1
Tr 〈W A†(x⊥)W A(y⊥)〉 ≃ exp

{

− 1

4
√

2

∫

dx+q̂(x+)(x⊥ − y⊥)2
}

.

(43)
Here we have considered a gluon instead of a quark as the fast particle
traversing the medium. This is the most relevant quantity as we will see in
the next sections.

5 The factor
√

2 is included here as the transport coefficient is usually defined in ordi-
nary coordinates, where the longitudinal distance for a z ≃ x+/

√
2.
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It is worth noticing that similar medium averages are used in the study
of deep inelastic scattering (DIS) with nuclei, where a phenomenon of satu-
ration of partonic densities is expected. In this case, the convention is to call
the relevant parameter saturation scale Qsat and the Wilson line average is
given by

1

N
Tr 〈W †(x⊥)W (y⊥)〉 ≃ exp

{

−1

4
Q2

sat(x⊥ − y⊥)2
}

. (44)

Now the saturation scale contains not only the dynamical information
about the target but also the geometry. A simple model for this saturation
scale gives [35]

Q2
sat =

8π2αsNc

N2
c − 1

A1/3 xG(x, 1/(x⊥ − y⊥)2) , (45)

where the factor A1/3 comes from the proportionality to the nuclear medium
— the radius for a nucleus is approximately RA ≃ 1.2A1/3 fm. In (45),
xG(x,Q2) is the gluon distribution of a nucleon inside a nucleus giving an
energy dependence to the saturation scale which, as we have said, is usually
neglected for the case of q̂.

4.4. A simple application: the dipole model

The above rules allow us to write the cross section for the scattering of
a (colorless) dipole of size r2 = x2

⊥ with a medium. Taking the (forward
scattering) amplitude as iT = 1 − S and applying the optical theorem,
σ = 2ImT

σdip
tot (r) = 2 − 2

N
Tr 〈W †(x⊥)W (0)〉 ≃ 2

[

1 − exp

{

−1

4
Q2

sat r2

}]

. (46)

This dipole cross section finds a direct application in the calculation of
the deep inelastic scattering at small values of the Bjorken variable x. The
dipole model tells us that in these conditions, the collision can be seen as
a two-step process in which the virtual photon from the lepton splits into
a qq̄ dipole and then this fluctuation scatters with the hadronic target. The
problem now reduces to compute the photon-dipole vertex Ψγ∗

T,L for a trans-

versely or longitudinaly polarized photon (see e.g. [36]) which factorizes to
give the cross section for the virtual photon–hadron as

σγ∗h
T,L(x,Q2) =

∫

d2r

1
∫

0

dz |Ψγ∗
T,L|2σ

dip
tot (r, x) . (47)
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Eq. (47) is extensively used in the phenomenology of DIS to include sat-
uration effects — simpler to include in configuration space as we do here.
As the photon wave function is known, the problem reduces, in general, to
compute the dipole cross section for different medium averages and including
different resummation techniques for the non-linear terms.

4.5. Relation with the momentum broadening

From the parton S matrix one can readily compute the momentum
broadening. After passing though the medium, the particle distribution
is given by

dN
d2p′

⊥
∝
∫

dp′+δ
(

p′2 − m2
) 1

N
Tr
〈

∣

∣S(p′, p)
∣

∣

2
.
〉

(48)

And the transverse momentum broadening is given by

〈

p2
⊥
〉

=
1

N

∫

d2p′
⊥p′2

⊥
dN

d2p′
⊥

. (49)

From Eq. (31) we find

N
〈

p2
⊥
〉

∝
∫

dp′
⊥

∫

dx⊥dx′
⊥p′

⊥
2
eip′

⊥
(x⊥−x′

⊥
)
∫

DrDr′

×exp

{

i
p+

2

∫

dx+

(

[

dr

dx+

]2

−
[

dr′

dx+

]2
)}

1

N
Tr
〈

W †(r′)W (r)
〉

. (50)

A simple manipulation leads to

N
〈

p2
⊥
〉

∝ lim
∆x⊥→0

−∇
2
∆x⊥

∫

DrDr′ exp

{

i
p+

2

∫

dx+

(

[

dr

dx+

]2

−
[

dr′

dx+

]2
)}

× 1

N
Tr
〈

W †(r′)W (r)
〉

. (51)

In the high energy limit, p+ ≫ µ, we can approximate the path integral by
the classical path with smallest action, dr/dx+ = 0. Performing a similar
manipulation for the normalization we obtain

〈

p2
⊥
〉

= − 1

Tr 〈W †(x̄⊥)W (x̄⊥)〉

∇
2
∆x⊥

Tr

〈

W †
(

x̄⊥ − ∆x⊥
2

)

W

(

x̄⊥ +
∆x⊥

2

)〉

, (52)
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with x̄⊥ = (x⊥ + x′
⊥)/2. If the medium is large in the transverse direction,

the dependence in x̄⊥ drops.
The expression derived above is general. In the particular case of the

multiple soft scattering, we find

〈

p2
⊥
〉

=
1√
2

∫

dx+q̂(x+) . (53)

Thus, we can interpret the q̂ parameter as the momentum broadening per
unit length [37].

Note also that within this approximation, in a homogeneous medium the
number particle distribution at a certain transverse position after passing
though a medium of lenght L is

N (x⊥) =

∫

dp⊥
2π

e−ix⊥p⊥N (p⊥) ∝ Tr
〈

W †(0)W (x⊥)
〉

. (54)

Thus, the particle distribution follows a diffusion equation in transverse
space:

∂+N =
1

4
√

2
q̂∇2

p
⊥

N . (55)

From this fact, the interpretation of q̂ as a jet transport parameter is clear.

5. The medium-induced gluon radiation

With the formalism developed in the last sections we can now compute
the medium-induced gluon radiation needed for jet quenching studies. In this
formalism, the fast particle is produced at a given point inside the medium
where the hard process, h, takes place, see Fig. 5. Then this particle and
the emitted gluon suffer multiple scattering described by the path integral
propagators (26). We will work in the approximation p+ ≫ k+ ≫ k⊥ but
keep terms in k2

⊥/k+ as explained in the previous section.

h p+ p+− k+ = (1−z)p+

k+ = zp+

Fig. 5. The medium-induced gluon radiation diagram.
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5.1. The gluon emission vertex

Let us first compute the amplitude for the radiation when the gluon
does not interact after it is emitted. We start with the case when there is no
scattering either of the quark, i.e. we consider the case of the radiation off
a quark which has been produced in a hard process, h, with amplitudeMh

(see Fig. 6), we fix pi⊥ = 0 to have

M(0)
rad = Mh(pf + k) i(igT a)

2pf · ǫa

(pf + k)2
u(pf )

≃ Mh(−2gT a)
k⊥ · ǫ⊥

k⊥
2 u(pf ) , (56)

where we have used the high-energy approximation to write

pf · ǫ
pf · k ≃ pi · ǫ

pi · k
≃ 2

k⊥ · ǫ⊥
k⊥

2 . (57)

The spectrum of radiated gluon is computed as the radiation over the elastic

pi pf

k

pi pfq

k

Mh Mh

(a) (b)

Fig. 6. Radiation diagrams after a hard process represented by the blob.

cross sections, where by elastic we mean the hard process Mh. Introducing
the relevant phase-space factors we find the double differential spectrum of
radiated gluons in the vacuum

k+
dIvac

dk+d2k⊥
≃ αsCR

π2

1

k2
⊥

, (58)

where CR = CF = (N2
c − 1)/2Nc for quarks and CR = CA = Nc for gluons

correspond to the average over the color states — see Eq. (38). Eq. (58)
is the leading 1/z contribution to the vacuum radiation spectrum. For the
case where one scattering is present, Fig. 6 (b), the amplitude is6

M(1)
rad ≃ −2g

∫

dx+dx⊥igT bAb
−(x)T a k⊥ · ǫ⊥

k⊥
2 e−i(pf +k)⊥·x⊥ u(pf ) . (59)

6 For clarity, we omit the term Mh which cancels when the spectrum is computed, see
Eq. (58), if the momenta q are soft enough as we will standardly assume.
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This expression contains a factorization of the radiation amplitude (56) and
the collision term which can be identified as the first term in the expansion
of the Wilson line. The corresponding contribution resumming an arbitrary
number of scatterings gives then

Mrad
q ≃ −2g

∫

dx⊥W (x⊥, x0+, L+)T a k⊥ · ǫa
⊥

k⊥
2 e−i(pf +k)⊥·x⊥ u(pf ) , (60)

where x0+ and L+ are the positions where the medium begins and ends in
light-cone variables — so that the x+-integral in the Wilson line has these
limits — and the subscript q is included to signal that the gluon does not
interact with the medium.

The case when the emitted gluon interacts with the medium can be com-
puted similarly and the corresponding contribution from the vertex would
give k1⊥/k1⊥

2, which is now an internal integration variable. In order to
deal with it, we will write the delta function for the momentum conservation
in the radiation vertex as

(2π)4δ4(k1 − pn+1 + pn) =

∫

d4y ei(k−pn+1+pn)·y (61)

and integrate over the three momenta k1, pn+1, pn. By doing this, y signals
now the spatial position of the radiation vertex. Let us define the contribu-
tion from a gluon radiated at y from a quark with momentum pn before the
splitting and pn+1 after it (see Fig. 7), as7

V µ(n)
g =

∫

d4y e−i(pn+1−pn)·y
n
∏

j=1

∫

d4kj

(2π)4
dx2

j ǫµ
(i)(k1)

[

−2g
kj+A−(xj)

k2
j + iǫ

]

× exp {i(kj+1 − kj) · xj} exp {ik1 · y} , (62)

pn pn+1

k

Fig. 7. Radiation vertex when the gluon reinteracts with the medium.

7 We have used here the steps explained in Sec. 4.1, in particular Eq. (24), to simplify
the triple gluon vertices in the high-energy limit.
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(we write kn+1≡kf for the final momentum of the gluon). Writing ǫ−=k1⊥
·ǫ⊥/k1+ and proceeding as explained in Sec. 4.2 it is easy to see that the
“−” component of (62), which will be used later, is

V −(n)
g ≃

∫

d4y e−i(pn+1−pn)·y i

k+
ǫ⊥ · ∂

∂y⊥
G0(y⊥, y+;x1⊥, x1+)A−(x1)

×
n
∏

j=2

∫

d2xj⊥dxj+G0(xj−1⊥, xj−1+;xj⊥, xj+)A−(xj) eikf⊥·xn⊥ , (63)

so that the sum over scattering centers gives8

V −
g ≃ i

k+

∫

d4y e−i(pn+1−pn)·yǫ⊥ ,

× ∂

∂y⊥

∫

d2x⊥G(y⊥, y+;xn⊥, xn+))eikf⊥·xn⊥ . (64)

And we define for future convenience

A−(y) ≡ i

k+
ǫ⊥ · ∂

∂y⊥

∫

d2x⊥G(y⊥, y+;xn⊥, xn+))eikf⊥·xn⊥ . (65)

In the way Eq. (62) has been defined, the amplitude for the process
q → qg corresponds to the replacement A(y) → A(y) for one of the scattering
centers in the derivation of the quark Wilson line described in Sec. 4.1,
so that the calculation is now similar to the one performed before. More
specifically, the amplitude of Fig. 5 can be written as

Mm =

∫ m
∏

i=0

[

d4pi

(2π)4
d4xi

]

eip·x1

×
n
∏

j=0

[

(−2gT aj )
Aaj (xj) · pj

p2
j + iǫ

eipj ·(xj−xj+i)

]

× (−2gT b)
Ab(xn+1) · pn+1

p2
n+1 + iǫ

eipn+1·(xn+1−xn+2)

×
m
∏

k=n+2

[

(−2gT ak )
Aak(xk) · pk

p2
k + iǫ

eipk·(xk−xk+i)

]

eipf ·xm u(pf ) . (66)

The structure in poles and phases is the same as the one studied in Sec. 4.1.
The poles give again an ordering in the longitudinal variable x+, so that the

8 We include here the case when the gluon does not interact once it is emitted inside

the medium, otherwise a factor G0(y⊥
, y+; xn⊥, xn+) should be subtracted.
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position of the radiation contribution A−(x+,x⊥) is ordered with the rest
of the external fields A−(x+,x⊥) to give

Mrad =

L+
∫

x0+

dx+

∫

dy⊥ ei(pf−pi)⊥·y⊥P exp



ig

x+
∫

x0+

dy+A(y+,y⊥)





× i2gT bAb(x+,y⊥)P exp



ig

L+
∫

x+

dy+A(y+,y⊥)



 . (67)

We have made explicit the color matrix T b at the radiation vertex while it
is included as a redefinition of the external fields in the rest of the cases as
done in previous sections. We are interested in the case where the quark is
completely eikonal, so, we fix y⊥ = 0 to get

Mrad
g = − 2g

k+

L+
∫

x0+

dx+

∫

dx2
⊥ eik⊥·x⊥W (0;x0+, x+)

×T bǫ⊥ · ∂

∂y⊥
Gb(y⊥ = 0, x+;x⊥, L+)W (0;x+, L+) . (68)

The total amplitude for the medium-induced gluon radiation is then the
sum of (60) and (68)

Mrad = Mrad
q + Mrad

g . (69)

We will now compute the spectrum of radiated gluons in the presence of
a medium, including all the relevant color factors to perform the medium
averages.

5.2. The medium-induced gluon radiation

The locality of the medium averages, see also below, allows for a simple
diagramatical interpretation, in which three different cases appear when the
amplitude (69) is squared depending on the position of the radiation vertex:
when the gluon is emitted inside the medium in both amplitude and con-
jugate amplitude; when it is emitted inside the medium in amplitude and
outside the medium in conjugate amplitude; and finally when the gluon is
emitted outside the medium in both amplitude and conjugate amplitude,
see Fig. 8. We take the case that x+ < x̄+ to obtain

〈|Ma→bc|2〉 =
g2

N2
c − 1

2Re

[

1

k2
+

L+
∫

x0+

dx+

L+
∫

x+

dx̄+

∫

dxdx̄ eik⊥(x−x̄)
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×
〈

Waa1(0, x0+, x+)T c1
a1b1

∂

∂y
Gc1c(y = 0, x+;x, L+)Wb1b(0, x+, L+)

×W †
bb̄1

(0, x̄+, L+)
∂

∂ȳ
Gcc̄1(x̄, L+; ȳ = 0, x̄+)T c̄1

b̄1ā1
W †

ā1a(0, x0+, x̄+)
〉

− 2

k+

k⊥
k2
⊥

L+
∫

x0+

dx+

∫

dx eik⊥x
〈

Waa1(0, x0+, x+)T c1
a1b1

× ∂

∂y
Gc1c(y = 0, x+;x, L+)Wb1b(0, x+, L+)T c1

bā1
W †

ā1a(0, x0+, L+)
〉

]

+
4g2CR

k2
⊥

, (70)

where we have written an eikonal Wilson line W (x⊥, x1+, x2+) for each
quark propagation between positions x1+ − x2+, the gluon propagators9 by
G(x⊥, x1+;y⊥, x2+) and the corresponding vertex factors as determined in
the previous section. We have also explicitly included the color indices.

+ +

Fig. 8. The three contributions to the squared amplitude of the medium-induced

gluon radiation. The dashed line is the cut indicating the final outgoing particles.

All the medium averages can be written in terms of the Wilson loop
average (43) for gluons. To see how this works, it is useful to draw the
conjugate amplitude as the Wilson line for the corresponding antiparticle in
the amplitude, see Fig. 9.

Taking into account the composition of propagators with x+ < z+ < y+

G(x⊥, x+;y⊥, y+) =

∫

dz⊥G(x⊥, x+;z⊥, z+)G(z⊥, z+;y⊥, y+) . (71)

One can make the substitutions

Waa1(0, 0, x+)W †
ā1a(0, 0, x̄+) −→ W †

ā1a1
(0, x+, x̄+) , (72)

Wb1b(0, x+, L)W †
bb̄1

(0, x̄+, L) −→ Wb1b(0, x+, x̄+) . (73)

9 Notice a small change of notation here on the order of the variables for the propagators
G to more easily follow the lines in the figures.
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a
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b

b
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ā1
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b̄1

c1

c̄1 c

c
x+ x̄+

Fig. 9. The color structure of the medium averages in Eq. (70).

Where we have used that in the averages
〈

Waa1(0, 0, x+)W †
c̄a(0, 0, x+)

〉

= δa1 c̄ , (74)
〈

Wcb(0, x̄+, L)W †
bb̄1

(0, x̄+, L)
〉

= δcb̄1 . (75)

The locality (in x+) of the medium averages we have presented in the pre-
vious sections imply that the only non-zero contribution come from Wilson
lines which overlap in x+. Eqs. (72) and (73) tell us that the contribution
from the quark rescattering outside the longitudinal range (x+, x̄+) cancel
when doing the average. The remaining contribution from the quark lines
can, in fact, be written as a Wilson line in the adjoint representation, i.e.
as if the quark–antiquark propagation in the segment (x+, x̄+) would be
a gluon propagation because, see the Appendix A:

T c1
ab1

W †
aā1

(0, x+, x̄+)T c̄1
b̄1ā1

Wb1 b̄1(0, x+, x̄+) −→ W A
c1c̄1(0, x+, x̄+) . (76)

With these simplifications, only possible in the case that the quark is taken
as completely eikonal, Eq. (70) can be written in terms only of Wilson lines
in the adjoint representation where the medium averages (43) for gluons can
be used

〈|Ma→bc|2〉 =
g2

N2
c − 1

2Re

[

1

k2
+

L+
∫

x0+

dx+

L+
∫

x+

dx̄+

∫

dxdx̄eik⊥(x−x̄)

×Tr
〈

W A(0, x+, x̄+)
∂

∂y
G(y = 0, x+;x, L+)

∂

∂ȳ
G(x̄, L+; ȳ = 0, x̄+)

〉

− 2

k+

k⊥
k2
⊥

L+
∫

x0+

dx+

∫

dx eik⊥x

×Tr
〈

W A(0, x+, L+)
∂

∂y
G(y = 0, x+;x, L+)

〉

]

+
4CRg2

k2
⊥

. (77)
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Using the relation Eq. (71) we have the average of only two Wilson lines at
each segment in Fig. 9 — we write explicitly the two transverse components,
then y and ȳ will be put to 0 again:

Tr
〈

W A(y, x+, x̄+)G(y, x+;x, x̄+)
〉

, (78)

Tr 〈G(y, x̄+;x, L+)G(x̄, L+; ȳ, x̄+)〉 , (79)

Tr
〈

W A(y, x+, L+)G(y, x+;x, L+)
〉

. (80)

The averages (78) and (79), taking x̄+ = L+, give

1

N2
c − 1

Tr
〈

W A(ỹ, x+, x̄+)G(y, x+;x, x̄+)
〉

=

∫

Dr exp





ip+

2

x̄+
∫

x+

dξ ṙ2(ξ)



 exp

[

−1

2
n(ξ)σ(r)

]

, (81)

with the boundary conditions r(x+) = y− ỹ and r(x̄+) = x− ỹ. The other
average gives [42–44]

1

N2
c − 1

Tr 〈G(y, x̄+;x, L+)G(x̄, L+; ȳ, x̄+)〉

=

∫

Dr1

∫

Dr2 exp







i

x̄+
∫

x+

dξ

[

p+

2

(

ṙ2
1(ξ) − ṙ2

2(ξ)
)

+
i

2
n(ξ)σ(r1 − r2)

]







=

∫

Du

∫

Dv exp







i

x̄+
∫

x+

dξ

[

p+

2
u̇(ξ) · v̇(ξ) +

i

2
n(ξ)σ(v(ξ))

]







, (82)

where we have made the change of variables

u(ξ) = r1 + r2 ,

v(ξ) = r1 − r2 . (83)

The integration in u gives a δ-function constraining v to a straight line

vs(ξ) = v(x̄+)
ξ − x+

x̄+ − x+
+ v(x+)

x̄+ − ξ

x̄+ − x+
(84)

the result is [42]

1

N2
c − 1

Tr 〈G(y, x̄+;x, L+)G(x̄, L+; ȳ, x̄+)〉 =

(

p+

2π∆ξ

)2

× exp

{

ip+

2∆ξ

[

(y − x)2 − (ȳ − x̄)2
]

− 1

2

∫

dξn(ξ)σ(w(ξ))

}

, (85)
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with

w(ξ) = (y − ȳ)
L+ − ξ

∆ξ
+ (x − x̄)

ξ − x̄+

∆ξ
, ∆ξ = L+ − x̄+ . (86)

Eq. (81) and (86) allow to compute the average of the first term in (77)

∫

dx dx̄
eik⊥(x̄−x)

N2
c − 1

Tr
〈

W A(ỹ, x+, x̄+)G(y, x+;x, L+)G(ȳ, x̄+; x̄, L+)
〉

=
1

N2
c − 1

∫

dx dx̄ dz eik⊥(x̄−x) Tr
〈

W A(ỹ, x+, x̄+)G(y, x+;z, x̄+)
〉

×Tr 〈G(z, x̄+;x, L+)G(x̄, L+; ȳ, x̄+)〉

=

∫

dz eik⊥·zK(y−ỹ, x+;z + ȳ − ỹ, x̄+) exp

[

−1

2

∫

dξn(ξ)σ(z)

]

, (87)

where we have defined

K (r(x+), x+; r(x̄+), x̄+)=

∫

Dr exp





x̄+
∫

x+

dξ

(

i
p+

2
ṙ2− 1

2
n(ξ)σ(r)

)



 . (88)

Putting all together, we obtain the radiation spectrum in the presence of
a medium.

k+
dI

dk+d2k⊥
=

αSCR

(2π)2k+
2Re

L+
∫

x0+

dx+

∫

d2x e−ik⊥·x

×
[

1

k+

L+
∫

x+

dx̄+ e
− 1

2

L+
R

x+

dξn(ξ)σ(x) ∂

∂y
· ∂

∂x
K(y = 0, x+;x, x̄+)

− 2
k⊥
k2
⊥
· ∂

∂y
K(y = 0, x+;x, L+)

]

+
αSCR

π2

1

k2
⊥

. (89)

5.3. The multiple soft scattering approximation

In Sec. 4.3 we have presented different averaging procedures to solve (89)
with (88). In the multiple soft scattering approximation, valid for opaque
media, the dipole cross section is approximated by its quadratic term and
the medium averages of two Wilson lines are given by (43). In this ap-
proximation, the path integrals (88) correspond to a harmonic oscillator of
imaginary frequency
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K (r(x+), x+; r(x̄+), x̄+)=

∫

Dr exp



i
p+

2

x̄+
∫

x+

dξ

(

ṙ2+i
q̂(ξ)

2
√

2p+

r2

)



 . (90)

In order to proceed, we need to say something about the temporal depen-
dence of the transport coefficient. Two classes of media have been studied:
a static medium in which q̂(ξ) = q̂ is a constant; an expanding medium
in which the density of scattering centers is expected to produce a dilution
as q̂(ξ) = q̂0(ξ0/ξ)

α, with α characterizing the speed of the dilution, and
α = 1 for the Bjorken scaling scenario — see Sec. 2.1. Explicit solutions
for this path integral and the corresponding spectrum (89) are given in the
Appendix B. In the next sections we will present numerical calculations of
these spectra, study their properties and explain how they are included in
present phenomenology of jet quenching in heavy ion collisions.

5.4. Numerical results and heuristic discussion: static medium

In Fig. 10 we present the results for the double-differential medium-
induced gluon radiation spectrum for a quark traversing a static medium.
The results are given as a function of the variables

ωc ≡
1

2
q̂L2 , κ2 ≡ k2

⊥
q̂L

. (91)

Fig. 10. Left: numerical results for the medium induced gluon radiation spectrum

(89) of a quark in a static medium as a function of the dimensionless variables (91).

Right: same but integrated in kt < ω.
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One important feature of the spectrum is the presence of small-k⊥ and large-
ω cuts which can be understood by the formation time of the gluon

tform ≃ 2ω

k2
⊥

. (92)

The presence of this coherence length can be traced back to the non-eikonal
terms in the propagators (31). Recalling that these terms come from keep-
ing k2

⊥/2p+ corrections in the phases and translating light-cone to ordinary
variables

∏

e
i

k2
⊥

2p+
(xi+−x(i+1)+) ≃ ei

k2
⊥

2ω
L , (93)

these contributions define the coherence time (92). When tform ≪ L mul-
tiple incoherent collisions are present and parametrically the spectrum is
proportional to L/tform. In the opposite limit, when tform ≫ L the gluon
formation time is much larger than the medium size and the whole medium
acts as a single scattering center. As a result, a reduction of the gluon ra-
diation is produced in the last case. This is the generalization to QCD of
the Landau–Pomeranchuk–Migdal effect [39, 40, 45]. The numerical effect
appears clearly in Fig. 10 as a suppression of the spectrum for small values
of κ2. An important consequence is that the spectrum is neither collinear
divergent (i.e. it can be safely integrated to k⊥ = 0) nor infrared divergent
(i.e. it can be integrated to ω = 0) as can be seen in Fig. 10. In contrast, the
vacuum part of the spectrum (89) present both collinear and soft divergences

dIvac

dωd2k⊥
=

αsCR

π2

1

k2
⊥

1

ω
. (94)

The position of the infrared cut in the k⊥-integrated spectrum, Fig. 10 right-
hand side, can also be understood in terms of the formation time: integrating
the spectrum in the kinematically allowed region 0 < kt < ω, and noticing10

that 〈k2
t 〉 ∼ √

q̂ω then a suppression of the spectrum for ω . q̂1/3 should
appear.

5.5. Expanding medium

In the physical situation of a heavy-ion collision, the medium formed
is rapidly evolving and expanding both longitudinally and (as data seem
to indicate) also transversely. A simple way of including at least part of
the effect of this evolution in the formalism is to consider a medium which
is diluting with time, so that the density of scattering centers decreases
with some power-like behavior n(ξ) ∼ 1/ξα. The corresponding transport

10 This can be estimated by taking 〈k2
t 〉 ∼ q̂tform, using Eq. (92) 〈k2

t 〉 ∼
√

q̂ω.
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coefficient will follow a similar behavior q̂(ξ) = q̂0(ξ0/ξ)
α as discussed before.

In the Appendix B the corresponding spectra for different values of α are
computed. For practical applications, however, it is very convenient to use
a scaling law which relates any expanding medium to an equivalent static
scenario with time-averaged transport coefficient

¯̂q =
2

L2

L+ξ0
∫

ξ0

dξ(ξ − ξ0)q̂(ξ) . (95)

The quality of this scaling for different values of α is presented in Fig. 11.
Although some deviations appear for small values of R ≡ ωcL they are,
in practice, of limited relevance as they occur only when the radiation is
anyway small — small lengths and/or q̂.

Fig. 11. The gluon energy distribution for different values of the expansion param-

eter α = 0, 0.5, 1 and 1.5 and the corresponding scaling using Eq. (95). Figure

from [38].

5.6. Massive quarks

It is now also simple to introduce the case of massive quarks into the
formalism in the limit M ≪ E. In order to do so, let us observe that when
solving the poles in pi− in each quark propagator, Eq. (14) now reads

∫

dk−
ei(x1+−x2+)k−

2p+k− + iǫ
= −Θ(x2+ − x1+)

2πi

2p+
exp

{

i
M2

p+
(x1+ − x2+)

}

. (96)
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This introduces only a multiplicative factor in the eikonal trajectories. This
factor depends on the energy of the quark. The relevant “+′′ component
of the momentum is thus p+ before the gluon splitting and (1 − z)p+ after
the gluon splitting. So, the total contribution from the amplitude times the
complex conjugate amplitude to be included in the integrand of (89) is

exp

{

i
M2

p+
(x0+ − x+)

}

× exp

{

i
M2

(1 − z)p+
(x+ − L+)

}

× exp

{

−i
M2

p+
(x0+ − x̄+)

}

× exp

{

−i
M2

(1 − z)p+
(x̄+ − L+)

}

(97)

which, expanding 1/(1− z) ≃ 1− z and writing in terms of the gluon energy
is just [46]

exp

{

i
x2M2

k+
(x+ − x̄+)

}

. (98)

So, in the limit of small-z and M ≪ E, the leading mass correction to the
medium-induced gluon radiation corresponds to include the multiplicative
factor (98) inside the integrand of (89) — see also [46–49].

In Fig. 12 we compare the spectra of gluons radiated off massless and
massive quarks. The effect of including quark masses into the propagators
is to reduce the amount of radiation. This is known in the vacuum under
the name of dead cone effect, as the mass terms in the propagators define
a minimum angle θdc ∼ M/E below which the radiation is suppressed. In
the medium the situation is a bit more complicated because as we have
discussed, formation time effects already suppress the radiation for small

Fig. 12. k2
t (left-hand side) and angular, (right-hand side) spectra of medium-

induced radiated gluons off a massless (red), charm (blue) and bottom (green)

quarks [46].
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angles. In this case, two competing effects exist, on the one hand, there is
a genuine suppression produced by mass terms in the propagators; on the
other hand, the formation time is now smaller tform ∼ 2ω/(M2+k2

⊥) and the
LPM suppression appears at smaller values of k⊥, enhancing the radiation
at small angles as compared with the massless case. This effect is, however,
restricted to a limited region of phase space, negligible for most observables,
and the net effect of the mass terms is to reduce the amount of radiation.
The energy loss of heavy quarks is, in this manner, smaller than that for light
quarks and the formalism predicts an one-to-one correspondence between the
two. This smaller radiation translates, in general, into smaller suppression
of high-p⊥ heavy than light quarks.

6. Application of the formalism for jet quenching studies

As we discussed in Sec. 3, the cross section for producing a hadron h at
high transverse momentum pT and rapidity y can be written in the factorized
form

dσAB→h

dp2
Tdy

=

∫

dx2

x2

dz

z
x1fi/A(x1, Q

2)x2fj/B(x2, Q
2)

dσ̂ij→kl

dt̂
D

vac/med
k→h (z, µ2

F ) ,

(99)
where a summation over flavors is implicit — see e.g. [50] for an explicit
expression including kinematical limits, etc. For proton–proton collisions,
parton distribution functions, fi/p(x,Q2), and vacuum fragmentation func-

tions, Dvac
k→h(z, µ2

F ), are known from global fits to experimental data us-
ing the DGLAP evolution equations [12]. In the nuclear case, the PDFs
are known from similar global fits [22–28]. On the other hand, the FF,
Dmed

k→h(z, µ2
F ), contain the information about the medium we want to study.

In the following we explain how the formalism of medium-induced gluon ra-
diation can be implemented in (99) to compute the medium modification of
the fragmentation functions and how to use them to characterize the medium
properties.

6.1. Medium-modified fragmentation functions

The theoretical description of the fragmentation of a high-pT particle in
the presence of a medium is not completely known from first principle calcu-
lations and some degree of modeling is needed. One possibility is to include
all the modifications of the fragmentation functions into a modified splitting
function in the DGLAP evolution equations. For a simplified discussion let
us take into account only gluon FF — including other flavors translate into
a summation over flavors — whose DGLAP evolution is
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t
∂

∂t
Dg→h(x, t) =

1
∫

x

dz

z

αs

2π
Pgg(z)Dg→h

(x

z
, t
)

, (100)

where t ≡ µ2
F and Pgg(z) is the splitting function describing the probability

that a daughter gluon has been radiated from a parent gluon with fraction
of momentum z. The probabilistic interpretation of the DGLAP evolution
is more clear from its equivalent (at LO) integral formulation (see e.g. [13])

D(x, t) = ∆(t)D(x, t0) + ∆(t)

t
∫

t0

dt1
t1

1

∆(t1)

∫

dz

z
P (z)D

(x

z
, t1

)

. (101)

The first term on the right-hand side in this expression corresponds to the
contribution with no splittings between t0 and t while the second one gives
the evolution when some finite amount of radiation is present. The evolution
is controlled by the Sudakov form factors

∆(t) = exp



−
t
∫

t0

dt′

t′

∫

dz
αs(t

′, z)

2π
P (z, t′)



 , (102)

with the interpretation of the probability of no resolvable branching between
the two scales t and t0. The definition of the Sudakov form factors and
its probabilistic interpretation depend on the cancellation of the different
divergencies appearing in the corresponding Feynman diagrams, see e.g. [51].
Although such cancellation has never been proved on general grounds for
partons re-scattering in a medium, it has been found in [52] that, under
certain assumptions, all the medium effects can be included in a redefinition
of the splitting function

P tot(z) = P vac(z) + ∆P (z, t) . (103)

This possibility was exploited in [54] where the additional term in the split-
ting probability is just taken from the medium-induced gluon radiation by
comparing the leading contribution in the vacuum case — see Eq. (3)

∆P (z, t) ≃ 2πt

αs

dImed

dzdt
. (104)

Implementing (103) and (104) into (101) the medium-modified fragmen-
tation functions can be computed — see also [55] for a related approach.
Only the initial conditions of the evolution need to be specified. In [54] the
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KKP set of FF [56] was used for the vacuum as well as for the medium at
the initial scale Q2

0, i.e. Dmed(x,Q2
0) = Dvac(x,Q2

0). In this model all the
medium-effects are built during the evolution. The motivation for this ansatz
is the following: in hadronic collisions, particles produced at high enough
transverse momentum hadronize outside the medium. So, this assumes that
the non-perturbative hadronization is not modified by the medium, whose
effect is only to modify the perturbative associated radiation11. All present
radiative energy loss formalisms rely on this assumption.

The fact that the medium-induced gluon radiation is infrared and
collinear finite allows for a simplification of this formulation, valid when
E ∼ Q ≫ 1. Under these conditions, Eqs. (101) and (102) can be written
as [54]

Dmed(x, t) = p0D
vac(x, t) +

∫

dǫ

1 − ǫ
p(ǫ)Dvac

(

x

1 − ǫ
, t

)

, (105)

with the probability of energy loss given by a Poisson distribution

p0 = exp



−
∞
∫

0

dω

ω
∫

0

dk⊥
dImed

dωdk⊥



 (106)

p(∆E) = p0

∞
∑

k=1

1

k!

∫





k
∏

i=1

dωi

ωi
∫

0

dk⊥
dImed(ωi)

dωdk⊥



 δ





k
∑

j=1

ωj−∆E



 (107)

and ǫ = ∆E/E. The total distribution is normally written as

P (∆E) = p0δ(∆E) + p(∆E) . (108)

Eqs. (106), (107) and (108) are normally called quenching weights. They
have been first proposed in [53] and together with Eq. (105) constitute the
basis of most of the phenomenology of jet quenching in heavy-ion collisions.
Notice that the probability that a parton loses no energy when traveling
through the medium, given by p0, can be large if the medium length and/or
the transport coefficient are small. In Fig. 13 we plot this probability and
the corresponding medium-modified fragmentation functions. Also plotted
are the results from [54] when the medium effects are included at every
individual splitting — notice that for the case of hadronic collisions, the
most relevant virtuality is precisely that of the order of the initial parton
energy, µF ∼ E.

11 For processes with different kinematic conditions [57] this assumption could not hold,
but the negligible effects seen in dAu data at RHIC [10] indicate that this is a rea-
sonable assumption for particle production at high-pt in nuclear collisions.
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Fig. 13. Left: the probability that a parton loses no energy when traveling through

the medium (106) as a function of the variable R ≡ ωcL = 1/2q̂L3, figure from [38].

Right: medium-modified fragmentation functions computed in a DGLAP approach

[54] and compared with the quenching weights results explained in the text.

A similar formalism is used for heavy quarks, for which, as we have
seen, the energy loss is predicted to be smaller due to suppressed radiation
controlled by mass terms (98).

6.2. The suppression of the inclusive high-pT yields

Fig. 13 shows clearly that one of the effects of the additional medium-
induced radiation on particles produced at high transverse momentum is
the softening of the spectrum due to the energy loss of the leading particle.
The typical values of the fraction of momentum in hadronic collisions from
(99) are z ∼ 0.5 − 0.7. The softening of the FF translates, in this way, in
a suppression in the production of particles at high-pT in the presence of
a medium.

In the massless case, the only parameters in the medium-induced gluon
radiation are the transport coefficient and the length of the traversed medium.
The later is given by the geometry of the system while the formed is a fitting
parameter — all the medium properties are encoded in q̂, so that measuring
it we will learn about the properties of the medium. Although the geometry
could, at first sight, seem a trivial feature in the calculation, different ge-
ometries lead to different values of the extracted properties of the medium.
In Fig. 14 the suppression computed with a static medium and medium den-
sity given by a Wood–Saxon parametrization is presented. The fit to the
light meson suppression leads to quite large values of the transport coeffi-
cient [58, 59]

q̂ ≃ 5 . . . 15GeV2/fm , (109)



Introductory Lectures on Jet Quenching in . . . 3765

but determined with a large uncertainty. This feature can be understood
as due to the dominance of surface emission: those particles produced close
to the surface have also large probability to exit the medium essentially un-
affected — see p0 in Fig. 13. In order to reproduce the large suppression
observed, the value of q̂ needs to be large, but at some point increasing this
value translates only into a small reduction of the skin from which the par-
ticles abandon the medium unaffected. It is worth mentioning here that the
use of more sophisticated medium profiles, as given e.g. by hydrodynamical
simulations, could lead to slightly smaller results [65].

Fig. 14. Left: nuclear modification factor, RAA, for light hadrons in central AuAu

collisions [58]. Data from [60]. Right: RAA for non-photonic electrons with the

corresponding uncertainty from the perturbative benchmark on the relative b/c

contribution [61]. Data from [62,63].

In the massive case, once the value of q̂ is known, the formalism pro-
vides a prediction with no extra free parameter. At present, the suppression
for charm or bottom mesons has not been directly measured. These quan-
tity is indirectly measured through the non-photonic electrons, expected to
be mainly originated from semileptonic decays of the corresponding heavy
mesons. In Fig. 14 the suppression from charm and beauty is presented.
Also presented is the combination to the final electron yield from charm and
beauty decays as given by the Fixed-Order-Next-to-Leading-Log (FONLL)
description of the heavy quark production [64] . The band is just the effect
of varying the masses mc and mb as well as the corresponding renormaliza-
tion scales as standardly uncertainties are computed in perturbative QCD
calculations. The description of the data is reasonable but an experimental
separation between the charm and beauty contributions will lead to a def-
inite answer on whether other effects could be present. RHIC experiments
will be upgraded to address this issue. The LHC experiments have capabil-
ities to distinguish charm and bottom — see some predictions in Fig. 15.
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Fig. 15. RAA for D’s (left) and for electrons coming from bottom decays (right) at

y = 0 for 10% PbPb collisions at
√

s = 5.5 TeV/A, for different q̂ (in GeV2/fm).

Figures from [66].

6.3. Jets in heavy-ion collisions

The amount of information about the medium extracted by measuring
inclusive particle suppression is limited as we have just seen. More differen-
tial observables could lead to a more accurate determination of the transport
coefficient and to pindown the interplay with geometry. Relevant questions
are where and how the energy of the initial parton is lost by interactions with
the medium. For that, reconstructing the whole history of the parton while
traveling through the medium would clearly be an ideal situation. Fortu-
nately, some experimental handle on this is provided by jet measurements.

Jets are extended objects composed of collimated bunches of particles
contained into a reduced region of phase space extending in azimuthal an-
gle, ∆Φ, and rapidity, ∆y. A jet can be characterized by the opening angle
R =

√

∆Φ2 + ∆η2 defining a cone around the jet axis where the energy is
deposited, but more sophisticated definitions are possible [68]. The descrip-
tion of jets in the vacuum, as e.g. in experiments of e+e− annihilation, is
one of the most precise tests of perturbative QCD. With different degrees
of refinement, a jet is computed as the output of a parton branching pro-
cess starting by a highly virtual quark or gluon produced in the elementary
partonic collision. Each branching is controlled by the splitting function,
known at LO, NLO and NNLO.

In the medium case, with modified splitting probabilities, the jet prop-
erties are modified. We have already presented modifications to the longitu-
dinal structure as given by the fragmentation functions. Jet properties are,
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however, richer and the transverse structure is expected to present a broad-
ening produced by the multiple scattering in the medium. How the parton
branching process is modified by the presence of a medium is still not known
and, again, some modelization is needed. Clearly, the modification of the
splitting function (103) provides a suitable model for implementation in, e.g.
Monte Carlo generators. Simple estimates of the effect were performed in
Ref. [67] where the jet energy redistribution as given by the medium-induced
gluon radiation (89) was studied.

One of the main experimental issues in jet measurements is the calibra-
tion of the jet energy — all the energy from particles belonging to the same
jet need to be reconstructed. Two sources of error appear with opposite
dependence on the definition of the jet size R: (i) out-of-cone fluctuations,
which decrease for larger jet sizes, due to radiation happening to angles
larger than R; (ii) background fluctuations, which increase for larger R,
consist on energy from other sources which enters the jet cone. Clearly,
the high multiplicity environment of a heavy ion collision complicates the
background subtraction which is under study by the different collaboration
at the LHC [69–72]. Noticing that most of the particles in the background
are produced at small transverse momentum, the simplest way of controlling
them is by introducing small-pT cuts in the measurement.

At RHIC, real jet measurements in AuAu collisions are not possible due
to the limited kinematic reach in transverse energy of the jet and the asso-
ciated large background. For this reason, two- and three-particle correlation
analysis are performed as an alternative way of studying the jet structure.

Here, one “trigger” particle is chosen within some range of ptrig
T and corre-

lated with “associated” particles at a relative angle ∆Φ in a range of passoc
T

usually smaller than the one for the trigger particle. A typical hard process,
with two back-to-back partons in the transverse plane, will appear in the
final state as a two gaussian-like structures one centered at ∆Φ = 0, corre-
sponding to the trigger particle, and one at ∆Φ = π, corresponding to the
parton in the opposite direction.

An important step forward is the first measurement of two particle az-
imuthal correlations at large transverse momentum, with negligible combi-

natorial background [73]. By choosing 8 < ptrig
T < 15GeV the correlations

of associated particles with passoc
T > 6GeV present the typical two-jet event

topology both in pp, dAu and central AuAu collisions. These data support
the picture of a very opaque medium with large energy losses, but with
a broadening of the associated soft radiation hidden underneath the cut-
off. Lowering this transverse momentum cut-off needs of a good control on
the background subtraction, but the different collaborations agree in the
presence of non-trivial angular structures [74]: the two-particle-correlation
signal around the direction opposite to the trigger particle presents a dip in
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central collisions, in striking contrast with the typical Gaussian-like shape in
proton–proton or peripheral AuAu collisions. The origin of this structure is
still unclear. In the presence of an ordering variable (as virtuality or angu-
lar ordering in the vacuum parton shower) the implementation of (103) with
the usual Sudakov form factors (102) produce similar angular structures for
energies ω . 2q̂1/3 ∼ 3GeV in central AuAu [75]. At present, the most
widely accepted interpretation is in terms of shock wave formation due to
the hydrodynamical behavior of the energy deposition in the medium [76].
Cherenkov gluons have also been proposed as a possible source of these non-
trivial angular structures [77]. Theoretical improvements on the used mod-
els, together with new experimental data, would help elucidating the origin
of this interesting effect, which takes place, however, in a rather complicate
kinematical region between the soft and the hard parts of the spectra.

6.4. Is there an energy dependence on q̂?

In all the application we have discussed q̂ has been treated as a con-
stant. This is a good approximation in the description of high transverse
momentum particles at RHIC. However, the LHC will explore jets in a much
broader range of energies which could allow to study the energy dependence
of the momentum broadening.

As we have seen in Sec. 4.3, q̂ can be related to saturation physics. In
fact, the momentum broadening of a probe propagating through the plasma
can be expressed as

q̂R ≈ CR

Nc

Q2
s

L
, (110)

where R is the color representation of the probe Q2
s is the saturation scale of

the medium and L is the length. The quenching spectrum depends on the
gluon broadening. The saturation scale depends on the value of x probed in
the interaction of the particle with the medium

In a thermal medium, the saturation scale for typical thermal particles is
given by µD ∼ gT [93]. As the energy of the probe increases, the saturation
scale increases because of evolution. In [93] it is argued that the typical x
probed by a parton propagating in the medium is

x ∼ Q2
s

ET
, (111)

where E is the energy of the probe. Thus, the saturation scale grows and
so does q̂. Since saturation is a non-linear process, it is not surprising that
a non linear dependence of the Q2

s with the medium length appears too.
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This effect has been studied in [93], where a simplified treatment of the
evolution, based on the leading logarithmic approximation was performed.
Their findings are summarized in Fig 16. A significant dependence on the
jet energy of q̂ is observed which could be measured in the LHC. As also
proposed in [93], the broadening could be measured directly by studying
the jet acoplanarity as a function of the jet energy, which constitutes a new
observable for heavy ion collisions.
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Fig. 16. Jet quenching parameter q̂ as a function of the jet energy for different

path lengths. The square (triangle) marks the value of q̂ for thermal particle at

T = 0.4 GeV (T = 0.6 GeV). Lc = 1/xT is the coherence length, i.e. the length

below which the particle scatters coherently with the medium. Above this length,

no dependence on L is observed. Figure from [93].

7. New developments

In Sec. 5 we have seen that the spectrum of radiated gluon can be ex-
pressed in terms of the expectation value of two adjoint light-like Wilson
lines. The phenomenological applications of the formalism described in
Sec. 6 are based in a particular model of this object, based on perturba-
tion theory. As we have seen, the value of q̂ extracted from the data is
3–4 times larger than what one expects from perturbation theory. This fact
suggests that strong coupling non-perturbative effects are important.

The computation of these effects in QCD is hard. Lattice QCD gives
non-perturbative access to equilibrium properties. However, it is very com-
plicated to extract dynamical quantities from the lattice, since the compu-
tations are performed in Euclidean time. What is more, the object we are
interested in involves light-like trajectories, which is an intrinsic Minkowski
property.

This difficulty has led recently to significant interest in strong coupling
computation in N = 4 Super-Symmetric Yang–Mills in the infinity number
of colors limit. This is, like QCD, a SU(Nc) gauge theory. However, unlike
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QCD, it is a supersymmetic theory with no conformal anomaly. It also posses
a different matter content, since apart from the common gluons, it contains
fermions and scalars in the adjoint color representation. Despite of all these
differences, computations in this theory are of interest due to a recent the-
oretical development, the AdS/CFT correspondence. This correspondence
allows to address the dynamical (real time) properties of the gauge theory at
strong coupling in a regime in which traditional non perturbative methods,
such as lattice, are not applicable.

Even though the relation between QCD and N = 4 SYM is still ques-
tionable there are experimental (strong elliptic flow and particle suppression)
and theoretical indications (lattice computations of the coupling constant)
that suggest that the relevant physics of QCD close to the phase transition
is the one of the strong coupling. Thus, the computations within the frame-
work described below are of great value, since the AdS/CFT correspondence
is the only method known to address these problems in a dynamical gauge
theory. One of the great success of this approach is the computation of
η/s = 1/4π. Current fits of hydrodynamical models to the elliptic flow yield
a value of the shear viscosity close to that predicted from the AdS/CFT
correspondence. This is a remarkable achievement for a theory in principle
so different from QCD. Below we will review another computation in which
a similar success has been obtained, the jet quenching parameter, and the
momentum diffusion coefficient.

7.1. Brief introduction to the AdS/CFT correspondence

In this subsection we will introduce the basic concepts of the AdS/CFT
correspondence [78] necessary for the computation of light-like Wilson lines
within this framework. It is not the scope of this lectures to give a systematic
introduction to this subject, which can be found in excellent reviews such
as [79, 80].

In its weakest form, the AdS/CFT correspondence states that type II B
Supergravity (SUGRA) in a particular gravitational background, the Anti
de Sitter space times a five dimensional sphere AdS5 × S5, is dual to the
large number of colors (Nc → ∞), strong coupling limit of N = 4 SYM,
a conformal field theory. SUGRA is a supersymmetric theory of gravity in
10 dimensions and it can be obtained as the low energy effective action of
Type II B string theory. From this point of view, SUGRA is the effective
theory that describes the string excitation with energy E2 ≪ 1/α′, the string
tension.

The AdS5 space is a five dimensional space with constant (negative)
curvature, R−1. A convenient choice for the AdS5 × S5 background metric
is given by
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ds2 = − r2

R2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

r2
dr2 + R2dΩ5 , (112)

where dΩ5 is the metric of the five dimensional sphere. As can be seen,
in the boundary, r → ∞, the metric tends to the usual Minkowski metric
(times a prefactor).

The duality maps the operators of the field theory to the boundary values
of the SUGRA fields. In the gravity theory, all the dynamics are described by
the classical equations of motion of those fields with the boundary conditions
dictated by the correspondence. The expectation value of the operators in
the field theory are obtained by evaluating the action of the gravity field on
the classical solution. The coupling constant of the gauge theory, gYM, is
related to the string tension and the curvature as

R2 =
√

g2
YMNcα

′ =
√

λα′ , (113)

where we have defined the ’t Hooft coupling λ = g2
YMNc. The SUGRA

approximation is valid if R2 ≫ α′, thus, the ’t Hooft coupling λ → ∞.
In order to describe the field theory at finite temperature, it is necessary

to introduce a “black brane”. From the SUGRA point of view, this object is
analog to an extended black hole which leads to a 3 dimensional horizon at
a given value of the coordinate r0. In the presence of this object, the metric
Eq. (112) is modified

ds2 =
r2

R2

(

−fdt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

r2

1

f
dr2 + R2dΩ5 , (114)

where f = 1 − r4
0/r

4. The Hawking temperature of the black brane is the
temperature of the field theory. In the metric Eq. (114), the temperature is
given by

T =
r0

πR2
. (115)

7.2. Wilson lines in AdS/CFT

According to the correspondence, an external heavy probe in the fun-
damental representation of the gauge group (“quark”) is described in the
dual theory by a classical string which pends from the boundary of the AdS
space [81]. The string is a two dimensional surface parametrized by the
internal coordinates τ, σ 12

(τ, σ) → XM =
(

t(τ, σ), xi(τ, σ), r(τ, σ)
)

, (116)

12 The string also has coordinates in the 5-dimensional sphere. However in all the appli-
cations below these remain constant and, thus, we will suppress them for simplicity.
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where the index i = 1, 2, 3. In analogy with the relativistic point particle,
the action of the string is given by its area; this is known as the Nambu–Goto
action

SNG = − 1

2πα′

∫

dσdτ
√

−det {GMN∂aXM∂bXN} , (117)

where a, b = τ, σ and GMN is the background metric Eq. (112), (Eq. (114)
if we are interested in a finite temperature system).

As we have obtained in the previous sections, the propagation of a heavy
probe in the field theory is described in terms of a Wilson line in the fun-
damental representation along the path of the quark. This path is also the
boundary condition to solve the equations of motion derived from Eq. (117).
After the solution of the classical equation of motion is found XM

cl , the ex-
pectation value of the corresponding Wilson line is given by

〈W 〉 ∝ e−iSNG(XM
cl ) . (118)

As a simple example, let us consider a single massive quark at rest. Its
space time trajectory is described by a line at constant position x0. Due to
symmetry, the solution of the Nambu–Goto action with the lowest action is
the surface

XM
cl =

(

t, xi
0, r
)

. (119)

According to the correspondence, the expectation value of the Wilson line is

〈W 〉 ∝ exp











− i

2πα′

T /2
∫

−T /2

dt

rmax
∫

ro

dr











, (120)

where rmax is an upper cut off. At zero temperature we can set r0 = 0. In
this case, the divergent prefactor is naturally interpreted as the mass of the
quark

M =
rmax

2πα′ . (121)

At finite temperature, the free energy of a single quark is given by

F1 = − r0

2πα′ = −
√

λT

2
. (122)

It has been also shown in [82] that as long as M ≫ −F1 the thermal mass
of the quark is given by

Mth = M −
√

λT

2
. (123)
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7.3. Computing the jet-quenching parameter

We now turn our attention to the computation of two parallel Wilson
lines in the fundamental representation [83, 84].

〈

Tr
[

W †
C
(

x1 = −y

2

)

WC
(

x =
y

2

)]〉

, (124)

where C is the line of constant rapidity

tC = t′ cosh η , x3C = −t′ sinh η . (125)

Light-like trajectories are obtained by taking the limit η → ∞ The line cover
the interval t′ = (−T ′/2,T ′/2) with T ′ >> y. In this limit, we can assume
that the dynamics are independent of t′. Due to this, it is convenient to
introduce the following change of coordinate (boost to the rest frame)

dt = dt′ cosh η − dx′
3 sinh η , (126)

dx3 = −dt′ sinh η + dx′
3 cosh η . (127)

To continue further, we need to choose a particular set of coordinates
(τ, σ). Since the string solution we are interested on is independent of t′,
we choose τ = t; it is also convenient to chose σ = x1. It is also clear that
the action is smaller if the the string world-sheet does not extend in the
longitudinal direction x′

3. Thus, we need to find a solution

XM
cl =

(

t′, x1, 0, 0, r(x1)
)

, (128)

which should be symmetric under the change x1 → −x1. Thus, if the string
connects the two endpoints, it should have turning point at x1 = 0, i.e.

ṙ(x1 = 0) = 0 , (129)

where ṙ = dr/dx1.
The Nambu–Goto action reads,

S = − 1

2πα′ T
′2

y/2
∫

0

dx1

√

1

R2

(

r4 − r4
0 cosh2 η

)

(

1

R2
+

R2ṙ2

r4 − r4
0

)

. (130)

Note that this expression remains real only if r > r0 cosh η (r > r0 since
the string is outside the horizon). As we have seen, the maximum value of
r, rmax is proportional to the mass of the probe Eq. (121). Thus, for a given
value of the mass, there is a critical value of the rapidity

cosh ηc =
M2

(√
λT
2

)2 , (131)
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above which, the Wilson loop is exponentially suppressed. It is clear, then,
that the limits M → ∞ and η → ∞ do not commute. According to [84],
the light-like Wilson loops are obtained by taking the η → ∞ first and then
M → ∞. In this limit, the action is simplified to

S = − i

πα′ T
′ cosh η

y/2
∫

0

dx1
r2
0

R

√

1

R2
+

R2ṙ2

r4 − r4
0

. (132)

Since the action does not depend on x1, we have a conserved Hamiltonian

h = L− ṙ
∂L
∂̇r

, (133)

where

L =

√

1

R2
+

R2ṙ2

r4 − r4
0

. (134)

From this expression, we obtain

ṙ =
1

R3h

√

(

r4 − r4
0

)

(1 − R2h2) . (135)

Thus, in order to have real coordinates, R2h2 ≪ 1. Note also that in this
approximation, the only point where the ṙ vanishes in the horizon r = r0.
Thus, the string world-sheet always touches the horizon.

From Eq. (135) we obtain an expression for the position of the string x1

x1(r) =
R3h√

1 − R2h2

r
∫

0

dr
1

√

r4 − r4
0

. (136)

The constant of motion is determined by the condition

x1(r → ∞) =
y

2
, (137)

which leads to

y

2
=

R3h

r0

√
1 − R2h2

√
π

Γ (5
4)

Γ (3
4)

. (138)

Substituting Eq. (136) into the action Eq. (132) we find

S = −i
√

λT
√

π
Γ (5

4)

Γ (3
4)

L

√

√

√

√1 +

(

yT

2

√
π

Γ (3
4)

Γ (5
4)

)2

, (139)

where L = T ′ cosh η is the length traveled by the parton.
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At small transverse distance we obtain
〈

Tr
[

W †
C

(

x1 = −y

2

)

WC
(

x =
y

2

)]〉

∝ exp

{

−
√

λT
√

π
Γ (5

4)

Γ (3
4)

L

(

1 +
y2T 2

8
π

Γ 2(3
4 )

Γ 2(5
4 )

)}

. (140)

The term independent of the transverse position y corresponds to two in-
dependent quarks. In [84] it is argued that this contribution should be
subtracted. The remaining piece has the form of Eq. (43) and we can read

q̂F =
√

λT 3 π3/2

2

Γ (3
4)

Γ (5
4)

. (141)

The index F indicates that the calculation has been performed with Wilson
lines in the fundamental representation. This is not quite the object that
appears in the radiative spectrum, where the Wilson lines were evaluated in
the adjoint representation. However, these two objects are related in SU(Nc)
theories [83]

TrWA = Tr WF Tr W †
F − 1 (142)

and thus in the large Nc limit we obtain

q̂ =
√

g2Nc T 3π3/2 Γ (3
4)

Γ (5
4)

. (143)

Despite the fact that the above computation is performed in the infinite
coupling, infinite number of colors limit, we would like to have a numeric
estimate as a comparison to perturbative expectations. To do so, we will
assume typical values for αs = 0.3 and Nc = 3 of RHIC physics. Recalling
that αs = g2/4π, we obtain

q̂ = 4.5, 10.6, 20.7GeV2/fm for T = 300, 400, 500MeV . (144)

Remarkably, the values obtained are much larger than the typical scale of the
medium, set by the temperature. This is also what it has been observed in
the phenomenological fits presented in Sec. 6. What is more, these numeric
values are comparable to what was obtained in the phenomenological fits
to RHIC data. Once again, this is a remarkable success, since the theory
in which this parameter has been obtained, N = 4 SYM, is not QCD.
This observation, together with the small values of the viscosity at RHIC,
constitute a compelling indication (but, clearly, not an evidence) that the
relevant physics at RHIC are those of strong coupling.
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However, we should be careful in comparing this values to RHIC phe-
nomenology. As we can see, the jet quenching parameter depends explicitly
in the number of colors and the coupling. This is different from other trans-
port parameters computed in AdS/CFT such as the shear viscosity. The
explicit dependence on the number of colors hints that, unlike the η/s ratio,
the result Eq. (143) is not universal. This statement has been corrobo-
rated by explicit calculation in other theories with gravity duals. In fact,
the number of colors is the only measurement of the medium density in the
N = 4 SYM theory. Based on this and on the explicit computations in other
theories, the authors of [84] have proposed the following scaling

q̂QCD =

√

sQCD

sN=4
q̂N=4 ≈ 0.6 q̂N=4 , (145)

where sQCD and sN=4 are the entropy density of QCD and N = 4 SYM,
respectively. Even with this correction, the obtained values are comparable
with those obtained from the phenomenological fits.

7.4. Momentum broadening in gauge theories

In the previous discussion, we have elevated the dipole formula Eq. (43)
to a non perturbative definition of the jet quenching parameter, the medium
scale responsible for the emission of hard gluons. The values obtained for
this parameter are in surprisingly good agreement with those obtained from
experimental data. This is a great success, however the correspondence is
a powerful theoretical tool that allows to address issues that go beyond the
estimation of the value of parameters.

One of those issues is the relation of q̂ with the momentum broadening.
In Sec. 4.5 we have shown that in the dipole approximation q̂ coincides with
the mean momentum transferred squared per unit length. Since this is a
quantity that could potentially be explicitly measured, it is interesting to
check whether this relation still holds at strong coupling.

The goal is to compute the momentum broadening of a probe within the
AdS/CFT correspondence. We study a very heavy (almost) static probe. In
this case, its motion in the plasma can be described by a classical equation
of motion under a random force

dpi

dt
= Fi , (146)

where the force F is due to the thermal fluctuations of the (chromo) electric
fields in the bath [85]



Introductory Lectures on Jet Quenching in . . . 3777

F ≡
∫

d3xQ†(t,x)T aQ(t,x)Ea(t, x) , (147)

with Q(x, t) the heavy quark field.
When the quark mass is very heavy, the time required to change its

momentum is much greater than the typical scale of the medium, T . Thus,
the distribution of “kicks” can be characterized by its second moment,

〈Fi(t)Fj(t
′)〉 = κδijδ(t − t′) , (148)

where the constant κ is the mean squared momentum transferred to the
probe. From this, it is clear that

κ =

∫

dt 〈F(t)F(0)〉HQ , (149)

where the average is taken with the partition function of the gauge theory
plus the heavy quark.

In this expression there is a technical subtlety. The correlator in Eq. (149)
is not time ordered and, thus, its extraction from the partition function
should be treated with care. It is convenient to express κ in terms of the
retarded correlator. By using the Kubo–Martin–Schwinger (KMS) [86] re-
lations we can relate it to the retarded correlator

κ = lim
ω→0

(

−2T

ω
Im GR(ω)

)

, (150)

where

iGR(t) = θ(t) 〈[F(t),F(0)]〉HQ . (151)

This is a rather technical step but it is motivated by the fact that there is
a well defined prescription to compute retarded correlators in the AdS/CFT
correspondence.

The partition function of the bath in the presence of a heavy quark is
given by [87]

ZHQ =
∑

s

〈

s
∣

∣

∣
e−βH

∣

∣

∣
s
〉

=

∫

d3x
∑

s′

〈

s′
∣

∣

∣Q(x,−T )e−βHQ†(x,−T )
∣

∣

∣ s′
〉

, (152)

where the states |s′〉 are states of the gauge theory without the heavy quark.
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As is well know, the Hamiltonian in the partition function can be un-
derstood as evolution in the imaginary time direction. The description of
dynamical processes requires the introduction of a time contour that spans
the real-time axis and extends towards the imaginary direction. This is
known as the Schwinger–Keldysh contour which is illustrated in Fig. 17.
In equilibrium, the partition function is independent of the initial time T .
However, in computing a real time correlator it is necessary to specify the
time in which the bath was created, since the phase of the heavy quark
depends on it.

t

−i

−iβ/2

−T T0

t

β

Fig. 17. Schwinger–Keldysh contour. The crosses represent the points of insertions

of the electric field operators while the dashed lines are the paths of the Wilson

lines connecting those insertions. The periodic boundary condition in imaginary

time makes the force–force correlator Eq. (153) gauge invariant.

As in the case of the energetic probe, the propagator of the heavy quarks
field leads to a Wilson line. After some simple algebra, the force–force
correlator can be expressed as

〈TC [F(tC)F(0)]〉HQ

=
1

ZHQ
〈Tr[U(−T − iβ, tC)E(tC)U(tC , 0)E(0)U(0,−T )]〉 , (153)

where TC denotes order along the time contour.
The expression above can be obtained from a Wilson line along the time

contour with a deformation in the ŷ direction δy

WC [δy] = TC exp







−i

∫

C

dt (A0 + δẏAy)







, (154)
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by taking (functional) derivatives on the path

〈TC [F(tC)F(0)]〉HQ =
1

〈WC [0]〉

〈

δ2WC [δy]

δy(tC) δy(0)

〉∣

∣

∣

∣

δy=0

. (155)

Thus, the broadening is obtained by studying small fluctuations of the Wil-
son line along the heavy quark path.

7.5. AdS/CFT Computation of the broadening

As we saw in Sec. 7.2, a static Wilson line in the gauge theory is described
in the gravity theory by a single string pending down from the boundary of
AdS. Our task is to study how small fluctuations in the boundary along a
path δy propagate into the bulk. This is illustrated in Fig. 18.

y

Boundary

Horizon

r= 8

r=r0

xδ

1/2

Boundary

Horizon

r= 8

r=r

xvt

r=cosh η r

0

0

Fig. 18. Left: static string solution. The dashed line represents the fluctuations in

the transverse coordinates. Right: trailing string corresponding to a probe moving

at finite velocity. The string approaches logarithmically to the horizon. There is

a new scale appearing at r =
√

cosh η r0.

The string solution is a surface parametrized by

XM
cl = (t, r, 0, y(t, r), 0) , (156)

which minimizes the Nambu–Gotto action, Eq. (117), and with boundary
condition

y(t, r → ∞) = δy(t) . (157)

Since the boundary conditions are set at r → ∞ it is convenient to introduce
the variable

u =
r2
0

r2
. (158)
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We also introduce the dimensionless variables

πT t = t̄ , (159)

πTy = ȳ . (160)

Since we are interested in small fluctuations, we expand the action to quad-
ratic order and we obtain

SNG =
R2

2πα′

∫

dt̄ du

2u3/2

[

1 − 1

2

(

˙̄y
2
‖

f
− 4fu

(

ȳ′‖
)2
)]

, (161)

where f = 1 − u2. Performing a Fourier transform

ȳ(t, u) =

∫

e−iwt̄ ȳ(w)Yw(u)
dw

2π
, (162)

where Yw(u = 0) = 1 and, thus, ȳ(w) is the Fourier transformed of the path
on the boundary. The equations of motion are

∂2
uYw − (2 + 6u2)

4uf
∂uYw +

w
2

4uf2
Yw = 0 . (163)

This differential equation has a regular singular point at the horizon, u = 1.
Close to this point its solutions behave as

Yw = (1 − u)±iw/4 F±(u) , (164)

where the functions F±(u) are regular. These two solutions correspond to
modes that are in-falling (−) and outgoing at the horizon (+). This can
be seen from the fact that, close to the horizon, the lines of constant phase
follow the path t̄ = ± ln(1 − u)/4. Retarded correlators are obtained by
imposing the physically intuitive condition that all the modes close to the
horizon are in-falling [88, 89].

The above prescription for the retarded correlators imposes the boundary
condition at the horizon. Our task is to find the regular function F−(u).
Inserting Eq. (164) into Eq. (163) we find

∂2
uF−(u) +

(

iω

2f
− 2 + 6u2

4uf

)

∂uF−(u)

+

(

2u − 1 − 3u2

8f2u
iw +

4 − u

16f2u
w

2

)

F−(u) = 0 . (165)
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Since F−(u) is regular, we can expand it in a power series in w. Taking into
account the boundary condition Eq. (162) we find

F−(u) = 1

+
iw

8

{

π − 4 tan−1(
√

u) − 6 log 2 + 4 log(1 +
√

u) + 2 log(1 + u)
}

+ O(w2) . (166)

Finally, the retarded correlator can be computed from the quadratic
action. Following the prescription for Lorentzian correlators [88] we obtain

GR(ω) = −A(u)Y−ω(u)∂uYω(u)|u→0 , A(u) =
R2 (πT )2

πα′
f

u1/2
. (167)

Inserting Eq. (166) into Eq. (167) and Eq. (150) we have

κ = lim
ω→0

−2T

ω
ImGR(ω) (168)

=
√

λ T 3 π , (169)

where, as before, R2/α′ =
√

λ.
Our computation of the momentum diffusion constant κ has the same

temperature and coupling dependence than the jet-quenching parameter.
This is not surprising, since the theory is conformal and the

√
λ dependence

is common in the observables that involve semiclassical strings in AdS. How-
ever, the numeric coefficient is different. In fact, the relation between q̂ and
the momentum broadening derived in Eq. (55) would imply

q̂F = 2κ , (170)

which does not hold. However, before drawing any conclusion we must point
out that the computation we just performed is in the static limit, while the
q̂ is in the light-like limit. Thus, in the next subsection, we extend the above
computation to quarks moving with a finite velocity.

7.6. Drag force and broadening at finite velocity

We study now a single heavy quark propagating in the thermal bath at
a finite rapidity η along the x1 direction [82, 90]. As before, the quark is
described in the gravity theory by a semiclassical string. Assuming that the
quark is in a stationary situation, the string may be parametrized as

XM = (t, vt + ξ(r), 0, 0, r) (171)
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with v = tanh η and ξ(r → ∞) = 0. With this parametrization, the Nambu–
Gotto action is

SNG =
1

2πα′ T
∞
∫

r0

dr

√

1/ cosh2 η − r4
0/r

4

f
+

r4

R4
fξ′2 . (172)

Since the action only depends on ξ′, the solutions to the equations of motions
compatible with the specified boundary conditions are parametrized in terms
of a constant of motion

r4

R4
fξ′

1
√

1/ cosh2 η−r4
0/r4

f + r4

R4 fξ′2

= C . (173)

For these solutions, the classical action is given by

Scl =
1

2πα′

∞
∫

r0

dr
f − C2R4/r4

f
(

1/ cosh2 η − r4
0/r

4
) , (174)

Note that the action has an imaginary part unless

Cs = ± r2
0

R2
sinh η . (175)

Thus, for sufficiently long times, all other solutions are (exponentially) sup-
pressed and the only relevant ones are those fulfilling Eq. (175). Inserting
Eq. (175) into Eq. (173) we have

ξ′ = ±R2r2
0

r4f
v , (176)

which can be easily solved

ξ = ± v

2πT

(

arctan
(r0

r

)

− arctanh
(r0

r

))

. (177)

From these two solutions, only the (+) one is physical, since the string trails
back form the quark13. This string solution is illustrated in Fig. 18.

As opposed to the static case discussed in the previous section, the sting
bends behind the probe. Since the string has tension, work must be per-
formed in order to keep the stationary situation. The momentum flux from
the boundary to the bulk along the string is given by [82,90]

π1
µ = − 1

2πα′ Gµν

(

X ′Ẋ
)

X
′ν − (X ′)2

(

Ẋ
)2

√
−h

, (178)

13 A more rigorous derivation of this fact can be found in [82,90].
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where X ′, Ẋ represent the derivatives with respect to σ and τ respectively,
and

−h =
(

X ′Ẋ
)

−
(

X ′)2
(

Ẋ
)2

, (179)

the determinant of the induced metric. Substituting the solution Eq. (177)
into this expression we find that there is a non vanishing flux of momentum in
the x direction. This means that the probe loses momentum at a rate [82,90]

dp

dt
= π1

x = −π

2

√
λT 2 v√

1 − v2
. (180)

The reader may immediately find that the velocity dependence is that of the
relativistic momentum. Multiplying and dividing by the mass we find

dp

dt
= −ηDp , ηD = π

√
λT 3 1

2TM
. (181)

At small momentum, the hard probe is expected to follow Langevine dynam-
ics [91] where the average momentum loss has the drag form of Eq. (181).
For slow probes, the fluctuation dissipation theorem relates the value of the
drag force and the momentum broadening

ηD = κ
1

2TM
. (182)

From this expression we see that the drag coefficient and the momentum
broadening computed before fulfill this relation. The combination of these
two independent computations can be taken as an explicit check of the
AdS/CFT correspondence.

Remarkably, Eq. (181) is, in principle, valid for all momentum. As in
the previous section, we would like to compute the (transverse) momentum
broadening of the probe at a finite velocity. As in the previous case, we
need to study small transverse fluctuation of the string and compute the
retarded correlator. The computation is greatly simplified if we introduce
the following change of coordinates [92]:

t̂ =
1√

cosh η

(

t +
1

2
arctan

(r0

r

)

− 1

2
arctanh

(r0

r

)

(183)

−1

2

√

cosh η arctan
(

√

cosh η
r0

r

)

+
1

2

√

cosh η arctanh
(

√

cosh η
r0

r

)

)

,

r̂ =
r√

cosh η
. (184)
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In these coordinates, the induced metric in the string hab =GMN∂aX
M∂bX

N

is

ht̂t̂ = − r̂2

R2
f(r̂) , (185)

hr̂r̂ =
R2

r̂2
R2 1

f(r̂)
, (186)

ht̂r̂ = 0 , (187)

where f(r̂) = 1 − r4
0/r̂

4. This is formally the same as the induced metric in
the static string studied in Sec. 7.5 but replacing the (t, r) coordinates with
(t̂, r̂).

Since the induced metric has the same functional form, the equation
of motion for transverse fluctuations is also the same as in the static case.
However, there is a subtlety: from the point of view of the moving string the
horizon is lifted from its original location r0 up to a higher scale r0

√
cosh η.

This is the scale where the local speed of light in the AdS space coincides
with the speed of propagation of the probe. Thus, for excitations originated
in the boundary, this scale plays the role of the black hole.

To obtain the momentum broadening we repeat the same steps as be-
fore. The only difference is that the in-falling boundary condition should be
imposed at the lifted horizon. Since, as we have remarked, the equations in
these coordinates are the same, we do not repeat the computation and write
only the final result [92]

κT =
√

cosh η
√

λT 3π . (188)

The obtained transverse momentum broadening grows with the rapidity
of the particle propagating in the medium. This is an unexpected result,
since the jet quenching parameter q̂ yields an energy independent result. As
mentioned, these quantities coincide in perturbation theory but they do not
seem to do at strong coupling. However, before drawing this conclusion we
should note that the computation presented in this section is not valid for
arbitrarily large values of the rapidity.

Since the quark loses momentum, the stationary situation is only reached
when there is an external source. This can be thought of as a non vanishing
electric field E coupled to the quark living on the brane. The magnitude of
the electric field grows with the velocity of the quark

E =
π

2

√
λT 2 v√

1 − v2
. (189)

However, the brane does not support arbitrary values of the electric field,
since it becomes unstable under pair creation. This occurs at a critical value
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of the electric field [92]

Ec =
M2

√
λ

. (190)

As a result, there is an upper limit on the rapidity of the probe described
by the solution Eq. (177)

cosh η <

(

M√
λT

)2

. (191)

The limiting value of the rapidity coincides (parametrically) with the one
encountered in the computation of the jet quenching parameter, Eq. (131).
Thus, the computations based on the trailing string cover a different range
of rapidities than the computation of the jet quenching parameter.

Thus, we cannot yet resolve the issue of whether the broadening and the
q̂ are related beyond perturbation theory. However, it is remarkable that we
have obtained an energy dependent result for “small” values of the rapidity,
while the ultra-relativistic limit is rapidity independent, as indicated by q̂.
Having a consistent dynamical picture that is valid in both regimes would
be desirable and could lead to new observables able to point out whether
the matter created at RHIC is indeed strongly coupled.

The computation of the broadening is also interesting on its own. Slowly
moving quarks follow Langevine dynamics and the heavy quark diffusion
constant obtained from our computations

D =
2T 2

κ
≈ 0.9

2πT

(

1.5

αsNc

)1/2

, (192)

is comparable with the value obtained from fits to the single electron suppres-
sion and v2 (originated from charm and bottom quarks) within a Langevine
model [91]. The energy dependence of the broadening constitutes a new ob-
servable which could, in principle, be measured by measuring the jet acopla-
narity with fully reconstructed jets [93].

As a final remark, we would like to mention that the drag forced ob-
tained for the heavy quarks is limited to the same constraint in the value
of the rapidity. At very large rapidities (close to the light-cone) the mass
of the probe should be irrelevant for its dynamics. Even though an explicit
calculation has not been performed, it is clear that the mass dependence
obtained in Eq. (181) is not valid in the ultra-relativistic limit.
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8. Last comments

The formalism described in Sec. 4 to 6 and others [52, 95] have been
very successful for the description of high-p⊥ data from RHIC, specially for
the inclusive yields. We have already commented on some limitations which
would need to be addressed for the applications to the LHC, where the reach
in the pT spectrum will be enhanced by more than one order of magnitude
and other observables as jets will be available for the first time in heavy-ion
collision experiments.

The main conclusion from the phenomenological studies of jet quenching
is the characterization of the produced medium as extremely dense. We have
quoted the values from [58,59] of q̂ ≃ 5 . . . 15GeV2/fm. A perturbative esti-
mate of the transport coefficient [94] underestimates this result by a factor
of at least 5. This seems to indicate that the typical cross sections in the
medium averages described in Sec. 4 are much larger than the perturbative
estimates based on a free gas of quarks and gluons.

Several results from RHIC point, in fact, to this direction, as the small
viscosity needed to reproduce the soft bulk data. Most of these phenomeno-
logically accessible quantities are dynamical parameters for which the lat-
tice calculations at finite temperature are not well suited. For these reasons,
a flourishing activity on the relation of these findings with theoretically com-
putable quantities in String Theory by the AdS/CFT correspondence has
recently started. Although still highly speculative, this connection is open-
ing new ways of facing the challenges on the study of collective properties
at the fundamental level.

C.A.S. would like to thank the organizers of the XLVII Cracow School of
Theoretical Physics in Zakopane, Poland, for the nice atmosphere during the
meeting. C.A.S. is supported by the FP6 of the European Community under
the contract MEIF-CT-2005-024624. The work of J.C.S. was supported by
the Director, Office of Science, Office of High Energy and Nuclear Physics,
Division of Nuclear Physics, and by the Office of Basic Energy Sciences, Di-
vision of Nuclear Sciences, of the US Department of Energy under Contract
No. DE-AC03-76SF00098.

Appendix A

Let W (x+,x⊥) be the Wilson line at x⊥ in the fundamental representa-
tion. Thus, it verifies

−i∂+W (x+,x⊥) = Aa
+(x+,x⊥)taW (x+,x⊥) . (A.1)



Introductory Lectures on Jet Quenching in . . . 3787

We now define the object

W bc
A (x+,x⊥) =

1

N
Tr
[

W †(x+,x⊥)tbW (x+,x⊥)tc
]

. (A.2)

Taking the derivative with respect to x+ we find

−i∂+W bc
A (x+,x⊥) = Aa

+

1

N
Tr
[

W †(x+,x⊥)
[

tb, ta
]

W (x+,x⊥)tc
]

. (A.3)

Thus

−i∂+W bc
A (x+,x⊥) = Aa

+if bad W dc
A (x+,x⊥) . (A.4)

Using that

(T a
A)bd = −ifabd (A.5)

we find

−i∂+WA (x+,x⊥) = A+TAWA (x+,x⊥) . (A.6)

Thus, it is the Wilson line in the adjoint. The normalization guarantees that
W at the origin is the identity.

Appendix B

For consistency with previous approaches, used, in particular in Sec. 6,
we present here the analytical results in ordinary variables — this means
making the changes ω ≃ k+/

√
2, x ≃ x+/

√
2

ω
dI

dωd2k⊥
=

αSCR

(2π)2ω
2Re

L+x0
∫

x0

dx

∫

d2x e−ik⊥·x

×
[

1

ω

L+x0
∫

x

dx̄ e
− 1

2

L
R

x̄

dξn(ξ)σ(x) ∂

∂y
· ∂

∂x
K(y = 0, x;x, x̄)

− 2
k⊥
k2
⊥
· ∂

∂y
K(y = 0, x;x, L)

]

+
αSCR

π2

1

k2
⊥

. (B.1)

Notice that the definition of the transport coefficient, q̂, differs also by a fac-
tor

√
2 [83], so the path integral is [38–41]

K (r(x), x; r(x̄), x̄|ω) =

∫

Dr exp



i
ω

2

x̄
∫

x

dξ

(

ṙ2 + i
q̂(ξ)

2ω
r2

)



 , (B.2)
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which corresponds to a 2-dimensional harmonic oscillator with time-depen-
dent imaginary frequency

Ω2
α(ξ0)

ξα
= −i

q̂(ξ)

2ω
= −i

q̂0

2ω

(

ξ0

ξ

)α

(B.3)

and mass ω. The solution of (B.2) can be written in the form [38,40]

K(r1, x; r2, x̄|ω) =
ω

2π iD(x, x̄)
exp [iScl(r1, x; r2, x̄)] . (B.4)

Here, the classical action Scl in (B.4) takes the form

Scl(r1, x; r2, x̄) =
ω

2

[

rcl(ξ) ·
d

dξ
rcl(ξ)

]

∣

∣

∣

∣

∣

x

x̄

, (B.5)

where the classical path rcl(ξ) satisfies the homogeneous differential equation
[

d2

dξ2
− Ω2

α(ξ0)

ξα

]

rcl(ξ) = 0 , (B.6)

with initial conditions

rcl(x) = r1 , and rcl(x̄) = r2 . (B.7)

The fluctuation determinant D(ξ, ξ′) in (B.4) satisfies
[

d2

dξ2
− Ω2

α(ξ0)

ξα

]

D(ξ, ξ′) = 0 , (B.8)

with initial conditions

D(ξ, ξ) = 0 , and
d

dξ
D(ξ, ξ′)|ξ=ξ′ = 1 . (B.9)

In practice, D(ξ, ξ′) is found by combining the two independent (scalar)
solutions f1, f2 of (B.6),

D(ξ, ξ′) = N
(

f1(ξ) f2(ξ
′) − f2(ξ) f1(ξ

′)
)

, (B.10)

and fixing the norm N by the initial condition (B.9). The solution of (B.2)
can be written in terms of D(ξ, ξ′) and two ξ- and ξ′-dependent variables
c1, c2,

K (r(x), x; r(x̄), x̄|ω) =
i ω

2πD(x, x̄)

× exp

[

− −iω

2D(x, x̄)

(

c1r
2
1 + c2r22 − 2r1 · r2

)

]

. (B.11)
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The particular form of the coefficient variables c1 and c2 depend on α. Most
of the phenomenologically relevant values are for α < 2 for which the two
independent solutions of the homogeneous differential equation (B.6) are [40]

f1(ξ) =
√

ξ Iν

(

2ν Ωα(ξ0) ξ
1
2ν

)

, (B.12)

f2(ξ) =
√

ξ Kν

(

2ν Ωα(ξ0) ξ
1
2ν

)

, (B.13)

where Iν and Kν are modified Bessel functions with argument

ν =
1

2 − α
. (B.14)

In terms of the variable

z(ξ) = 2νΩα(ξ0)ξ
1
2ν , (B.15)

the solution (B.11) is given by [we use z ≡ z(ξ), z′ ≡ z(ξ′)]

D(ξ, ξ′) =
2ν

(2νΩα(ξ0))2ν
(zz′)ν

[

Iν(z)Kν(z′) − Kν(z)Iν(z′)
]

, (B.16)

c1 = z

(

z′

z

)ν
[

Iν−1(z)Kν(z′) + Kν−1(z)Iν(z′)
]

, (B.17)

c2 = z′
( z

z′

)ν [
Kν(z)Iν−1(z

′) + Iν(z)Kν−1(z
′)
]

. (B.18)

We now write the three contributions from (B.1) as

ω
dI

dωd2k⊥
=

αs

π2
CF (I4 + I5 + I6) = ω

dImed

dωd2k⊥
+ ω

dIvac

dωd2k⊥
, (B.19)

with, I6 = 1/k2
⊥. I4 and I5 define the medium-induced part Imed which,

using (B.11)–(B.18) leads to

I4 =
1

4ω2
2Re

L+x0
∫

x0

dx

L+x0
∫

x

dx̄

( −4A2
4D̄4

(D̄4 − iA4B4)2
+

iA3
4B4 k2

⊥
(D̄4 − iA4B4)3

)

× exp

[

− k2
⊥

4 (D̄4 − iA4 B4)

]

, (B.20)

I5 =
1

2ω
2Re

L+x0
∫

x0

dx
−i

B2
5

exp

[

−i
k2
⊥

4A5 B5

]

, (B.21)
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where

A4 =
ω

2D(x̄, x)
, B4 = c1(x̄, x) , D̄4 =

1

2

L+x0
∫

x̄

dξn(ξ)σ(r) , (B.22)

A5 =
ω

2D(L + x0, x)
, B5 = c1(L + x0, x) . (B.23)

In the case of a static medium, α = 0, the functions I±1/2(z) and K±1/2(z)
entering (B.11) have explicit expressions in terms of exponentials and the
results are simply

A4 =
ωΩ

2 sin(Ω(x̄ − x))
, B4 = cos(Ω(x̄ − x)) , D̄4 =

1

2
n0C(L − x̄) .
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