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We summarize our results concerning p-brane propagation through the
singularity of the compactified Milne (CM) space. In particular, we present
classical and quantum dynamics of a string. We also present our prelimi-
nary results on the propagation of a membrane. The CM space seems to
be a promising model of the neighborhood of the cosmological singularity
deserving further examinations.

PACS numbers: 98.80.Jk, 11.25.Wx, 98.80.Qc

1. Introduction

In the paper we address, to some extent, the question of mathematical
consistency of a cyclic universe scenario. Such scenario enables to construct
a promising framework that can be used to describe possibly all available
cosmological data. The cyclic universe scenario postulates that:

• evolution of the universe is a sequence of quantum and classical phases,

• each quantum phase can be described in terms of quantum p-branes
propagating in higher dimensional (d > 4) spacetime with the cosmic
singularity,

• each classical phase can be obtained from quantum phase by changing
topology of its spacetime, and vice versa.

We restrict our considerations to the neighborhood of the cosmologi-
cal singularity. The basic criterion for the choice of the model of universe
in the quantum phase is that a reasonable model should allow for propa-
gation of a quantum p-brane (i.e., particle, string, membrane, . . . ) from
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the pre-singularity to post-singularity epoch. If a quantum p-brane can-
not go through the cosmic singularity, the evolution cannot be realized. As
a model of the universe in the quantum phase we choose the compactified
Milne (CM) space. It is the simplest model of the universe with the cosmic
singularity that is implied by string/M theory (and the simplest example of
a time dependent singular orbifold).

2. Model of the universe with a cosmic singularity

We begin with the visualization of 2d compactified Milne space. It is
given by the isometric embedding of 2d CM space into 3d Minkowski space

y0(t, θ) = t
√

1 + r2 , r ∈ R1 , (1a)

y1(t, θ) = rt sin(θ/r) , (1b)

y2(t, θ) = rt cos(θ/r) . (1c)

The surface defined by the equation [r2/(1 + r2)](y0)2− (y1)2− (y2)2 = 0 is
presented in Fig. 1, and the induced metric on it reads

ds2 = −dt2 + t2dθ2 , (t, θ) ∈ R1 × S1 . (2)

It is locally isometric with 2d Minkowski space (except for t = 0)

ds2 = −(dx0)2 + (dx1)2 , x0 := t cosh θ , x1 := t sinh θ . (3)

A line element of the d+ 1 dimensional compactified Milne space reads

ds2 = −dt2 + dxkdxk + t2dθ2 ,
(

t, xk
)

∈ R1 ×Rd−1 , θ ∈ S1 . (4)
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Fig. 1. Compactified 2d Milne space in 3d Minkowski space (r = 0.7).
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For t = 0 one term in the metric (4) disappears so the CM space may be
used to model a big-crunch/big-bang type of the cosmological singularity.

The compactified Milne space is not a manifold, but an orbifold due to
the vertex at t = 0. All Riemann’s tensor components vanish for t 6= 0.
The singularity at t = 0 is of removable type: any time-like geodesic with
t < 0 can be extended to some time-like geodesic with t > 0. The extension
cannot be unique due to the Cauchy problem at t = 0 for the geodesic
equation (compact dimension shrinks away and reappears at t = 0).

Orbifolding S1 to the segment S1/Z2 gives the model of the two flat
parallel “end of the world” branes [1] which collide and re-emerge at t = 0.

3. Classical dynamics of a p-brane

The Polyakov action integral for a test p-brane embedded in a fixed
background spacetime with metric gµν reads

Sp = −1

2
µp

∫

d p+1σ
√−γ

[

γab∂aX
µ∂bX

νgµν − p+ 1
]

, (5)

where µp is mass per unit p-volume, (σa) ≡ (σ0, σ1, . . . , σp) are p-brane
world-volume coordinates, γab is p-brane world-volume metric, γ := det[γab],
(Xµ) ≡ (T,Xk, Θ) ≡ (T,X1, . . . ,Xd−1, Θ) are embedding functions of
p-brane, i.e. Xµ = Xµ(σ0, . . . , σp), corresponding to (t, x1, . . . , xd−1, θ)
directions of d+ 1 dimensional background spacetime.

The total Hamiltonian, HT, corresponding to the Polyakov action has
the form [2]:

HT =

∫

dpσHT , (6a)

HT := AC +AiCi , i = 1, . . . , p , (6b)

where A = A(σa) and Ai = Ai(σa) are any “regular” functions. C and Ci

are the first-class constraints

C := ΠµΠνg
µν + µ2

p det [∂aX
µ∂bX

νgµν ] ≈ 0 , (7a)

Ci := ∂iX
µΠµ ≈ 0 . (7b)

Thus, HT does not generate time translations, but only gauge transforma-
tions.

Hamilton’s equations are

Ẋµ ≡ ∂Xµ

∂τ
= {Xµ,HT} , Π̇µ ≡ ∂Πµ

∂τ
= {Πµ,HT} , τ ≡ σ0 , (8)
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where

{·, ·} :=

∫

dpσ
( ∂·
∂Xµ

∂·
∂Πµ

− ∂·
∂Πµ

∂·
∂Xµ

)

. (9)

The degrees of freedom read

nc =: 2np = 2(d− p) ,

where nc = number of independent canonical variables, np = number of
physical degrees of freedom, d+1 = dimension of spacetime, p+1 = number
of constraints, p = dimension of p-brane.

4. Dynamics of a particle (0-brane)

Classical dynamics of a test particle in the CM space is unstable, however
it can be quantized, i.e. there exists mathematically well defined quantum
dynamics of a particle. For more details see [3, 4].

5. Dynamics of a string (1-brane)

5.1. Classical dynamics of a string

We consider dynamics of a string winding around the θ-dimension in its
lowest energy mode. The string in such a state is defined by the conditions

σp := θ ≡ Θ and ∂θX
µ = 0 = ∂θΠµ . (10)

In the mode (10) the constraints (7) read

C = Πµ(τ) Πν(τ) η
µν + µ̌2

1 t
2(τ) ≈ 0 , C1 = 0 , (11)

where µ̌1 ≡ θ0µ1, and where θ0 = 2π for S1 and θ0 = π for S1/Z2 compact-
ifications, respectively. The equations of motion are

Π̇t(τ) = −2A(τ) µ̌2
1 T (τ) , Π̇k(τ) = 0 , (12)

Ṫ (τ) = −2A(τ) Πt(τ) , Ẋk(τ) = 2A(τ) Πk(τ) , (13)

where A = A(τ) is any function.
In the gauge A(τ) = 1, the solutions are

Πt(τ) = b1 exp(2µ̌1τ) + b2 exp(−2µ̌1τ) , Πk(τ) = Π0k , (14)

T (τ) = a1 exp(2µ̌1τ) + a2 exp(−2µ̌1τ) , Xk(τ) = Xk
0 + 2Π0kτ , (15)
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where b1, b2,Π0k, a1, a2,X
k
0 ∈ R. Elimination of τ leads finally to

Xk(t) = Xk
0 +

Πk
0

µ̌1

sinh−1





µ̌1
√

Πk
0Π0k

t



 , (16)

where t(τ)≡T (τ) plays the role of an evolution parameter. The solution (16)
is smooth at t = 0, and describes stable propagation of a string across the
cosmic singularity.

5.2. Quantum dynamics of a string

In the gauge A = 1, the Hamiltonian of a string is

HT = C = Πµ(τ) Πν(τ) η
µν + µ̌2

1 t
2 . (17)

The quantum Hamiltonian corresponding to (17) has the form

ĤT =
∂2

∂t2
− ∂2

∂Xk∂Xk
+ µ̌2

1t
2 , t ≡ T (18)

(we use the Laplace–Beltrami mapping). According to Dirac’s quantization
method physical states ψ should satisfy the equation

ĤT ψ(t,Xk) = 0 . (19)

Eq. (19) has the form of the Klein–Gordon equation. Due to this analogy
we interpret t as an evolution parameter in our quantum description. To
solve (19) we make the substitution

ψ(t,X1, . . . ,Xd−1) = F (t) G1(X
1) G2(X

2) . . . Gd−1(X
d−1) , (20)

which turns (19) into the following set of equations

d2Gk(qk,Xk)

dX2
k

+ q2k Gk(qk,Xk) = 0 , k = 1, . . . , d− 1 , (21)

d2F (q, t)

dt2
+ (µ̌2

1t
2 + q2) F (q, t) = 0 , q2 := q21 + . . . + q2d−1 , (22)

where q2k, q
2 ∈ R are the separation constants.

Two independent solutions to (21) have the form

G1k(qk,Xk) = cos(qkX
k) , G2k(qk,Xk) = sin(qkX

k) , (23)

(no summation in qkX
k with respect to k).
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Two independent solutions of (22) read

F̃1(q, t) = exp

(−iµ̌1t
2

2

)

H
(

− µ̌1 + iq2

2µ̌1

, (−1)1/4
√

µ̌1 t
)

, (24)

F2(q, t) = exp

(−iµ̌1t
2

2

)

1F1

( µ̌1 + iq2

4µ̌1

,
1

2
, iµ̌1t

2
)

, (25)

where H(a, t) is the Hermite function and 1F1(a, b, t) denotes the Kummer
function.

Now we construct the Hilbert space, H, based on the solutions
(23)–(25). We demand that the solutions are bounded functions on R ×
[−t0, t0]. The function F2(q, t) is bounded, whereas F̃1(q, t) blows up as
|q| → ∞. Therefore, we use the replacement

F1(q, t) :=
√
q exp

(

− π

8µ̌1

q2
)

F̃1(q, t) . (26)

Fig. 2 illustrates the solutions F1 and F2.
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Fig. 2. Example of two independent bounded solutions to Eq. (22), for q = 1,

on [−t0, t0].

We introduce generalized solutions by

hs(t, ~X) :=

∫

Rd−1

f(q1, . . . , qd−1)Fs(q, t)
∏

k

exp(−iqkXk)dq1 . . . dqd−1 , (27)

where f ∈ L2(Rd−1), s = 1, 2 and where q2 = q21 + . . . q2d−1, (
~X) ≡ (X1, . . . ,

Xd−1). Eq. (27) includes (23) due to the term exp(−iqkXk), with qk ∈ R.

One can verify that ĤThs = 0.
Eq. (27) defines a modified Fourier transform of the product fFs. Thus,

due to the Fourier transform theory it defines the mapping

L2
(

Rd−1
)

∋ f −→ hs ∈ L2
(

[−t0, t0] ×Rd−1
)

. (28)
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Replacing f by consecutive elements of a basis in L2(Rd−1) creates, roughly
speaking, a basis in the Hilbert space H ⊂ L2([−t0, t0] ×Rd−1).

Example: L2(Rd−1) :=
⊗d−1

k=1 L
2
k(R), where L2

k(R) ≡ L2(R) with the
basis fn ∈ L2(R) defined as

fn(q) :=
1

√

2nn!
√
π

exp

(−q2
2

)

Hn(q) , n = 0, 1, 2, . . . , (29)

where Hn(q) is the Hermite polynomial. The orthonormal basis (29) can be

used to define a sequence of vectors
⊗d−1

k=1 fnk
(qk) ∈ L2(Rd−1), and further

used to create a sequence of vectors in H ⊂ L2([−t0, t0] × Rd−1), owing to
(28). Obtained set of vectors can be used to build another set of independent
vectors by a standard method, and turned into an orthonormal basis by
making use of the Gram–Schmidt procedure. Completion of the span of
such an orthonormal basis defines the Hilbert space H ⊂ L2([−t0, t0]×Rd−1).
For more details see [5].

6. Dynamics of a membrane (2-brane)

The physical phase space of a membrane (in the zero-mode, winding
around the θ-dimension) is defined by the constraints

C = Πµ(τ, σ) Πν(τ, σ) ηµν + κ2 t2(τ, σ)X́µ(τ, σ)X́ν(τ, σ) ηµν ≈ 0 , (30)

C1 = X́µ(τ, σ) Πµ(τ, σ) ≈ 0 , C2 = 0 , (31)

where X́µ := ∂Xµ/∂σ, σ ≡ σ1, and where κ ≡ πµ2. For some states of
a membrane the expressions for C and C1 are well defined [6]. To examine
the algebra of constraints we “smear” the constraints as follows

Ǎ :=

π
∫

0

dσ f(σ)A(τ, σ) , f ∈ C∞

0 [0, π] . (32)

The Lie bracket is defined as

{Ǎ, B̌} :=

π
∫

0

dσ
( ∂Ǎ

∂Xµ

∂B̌

∂Πµ
− ∂Ǎ

∂Πµ

∂B̌

∂Xµ

)

. (33)

Constraints in an integral form satisfy the algebra

{Č(f1), Č(f2)} =

π
∫

0

dσ (f1f́2 − f́1f2)4κ
2t2(τ, σ)C1(τ, σ) , (34)



3954 P. Małkiewicz, W. Piechocki

{Č1(f1), Č1(f2)} =

π
∫

0

dσ (f1f́2 − f́1f2)C1(τ, σ) , (35)

{Č(f1), Č1(f2)} =

π
∫

0

dσ (f1f́2 − f́1f2)C(τ, σ) . (36)

Quantization of the dynamics of a membrane means finding an essentially
self-adjoint representation of this algebra on a dense subspace of a Hilbert
space. However, the “structure constant”, t2, is not a constant, but a function
on the phase space. Little is known about representations of such type of
an algebra. Work is in progress.

7. Conclusions

The results we have obtained demonstrate that:

• classical dynamics of a particle can be quantized despite the fact that
it is unstable,

• dynamics of a string in the zero-mode of winding string is well defined
both at classical and quantum levels,

• quantizing dynamics of a membrane appears to be a challenge.

As our next steps we plan:

• quantization of dynamics of a membrane,

• obtaining classical phase from quantum phase, and vice versa,

• quantization of CM space (by making use of LQG methods) to see
what type of singularity we are dealing with: Is it a big-crunch/big-
bang (change of spacetime dimension) or big-bounce (no change of
dimensionality of spacetime),

• making predictions for the CMB polarization spectra: tensor-to-scalar
ratio and spectral index of the scalar perturbations, to compare with
cosmological observations to be done by Planck, BPol, Spider and
Polatron missions.

One of us (W.P.) would like to thank the organizers for inspiring at-
mosphere at the Meeting. This work was supported in part by the Polish
Ministry of Science and Higher Education Grant 0542/B/H03/2007/33,
2007–2008.
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