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We compute 〈det(Iz − H)(Iz − H)†〉H in the limit of infinite matrix
dimension N for complex random matrices H with invariant matrix dis-
tribution in terms of the eigenvalue distribution of the Hermitian random
matrices HH†. Under the assumption that 1

N
ln〈det(Iz − H)(Iz − H)†〉H

is asymptotically equal to 1

N
〈ln det(Iz − H)(Iz − H)†〉H we reproduce

the eigenvalue distribution of H obtained previously by Feinberg and Zee,
Nucl. Phys. B501, 643 (1997).

PACS numbers: 02.50.Cw, 05.45.Mt, 12.38.–t, 71.20.–b

Recently there has been shown considerable interest to various averages
of products [1–5] and ratios [6–11] of the characteristic polynomials of ran-
dom matrices. This interest is partially motivated by applications to number
theory [1, 4], quantum chaos [12, 13] and quantum chromodynamics [14–19]
and is well deserved in the light of emerging links to combinatorics [20, 21],
representation theory [8–10] and integrable systems [16, 22, 23].

In this short note we want to address another aspect of averages of
characteristic polynomials, namely their relation to the eigenvalue distribu-
tion of random matrices. For Gaussian random matrices, such a relation
comes in very naturally. The joint eigenvalue probability density function
has the form of a multiplicative function of eigenvalues times a power of
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the Vandermonde determinant, see e.g. [24]. By rearranging the factors in
the Vandermonde determinant one can express the eigenvalue correlation
functions in terms of averages of products of characteristic polynomials of
Gaussian random matrices of smaller dimensions. This relation, which is
exact for finite matrix dimensions, is however rarely used as the eigenvalue
correlation functions can be computed by the method of orthogonal poly-
nomials [24]. One notable exception are matrices with complex eigenvalues,
especially the Ginibre ensemble of real matrices, where such representation
of the mean eigenvalue density in terms of averages of the characteristic
polynomials proved to be useful [25–27]. Another case when this relation
was successfully employed can be found in [28].

There is another sort of relation, asymptotic in nature, between the
eigenvalue distribution and the averaged spectral determinant. It was dis-
covered by Berezin [29] in the 1970s. He proved that in the limit of infinite
matrix dimension N

1

N
〈ln det(Iz − H)〉H =

1

N
ln〈det(Iz − H)〉H . (1)

The mean density w(λ) = 1
N
〈∑N

j=1 δ(λ−λj)〉H of eigenvalues of H is encoded

in the left-hand side of (1),

1

N
〈ln det(Iz − H)〉H =

∫

ln(z − λ)w(λ)dλ ,

whilst the right hand side has no evident direct relation to the eigenvalue
distribution of H. Berezin considered a generalised Wigner ensemble of
Hermitian random matrices H, but, as we will argue below, the asymptotic
relation (1) holds for a variety of Hermitian random matrix ensembles.

The asymptotic relation (1) asserts that the limiting distribution of
eigenvalues of H can be read out from the rate of growth of 〈det(Iz − H)〉
with N . This latter quantity is much more convenient for computations,
and that was Berezin’s strategy for obtaining distribution of eigenvalues in
the generalised Wigner ensemble.

Berezin also observed that the asymptotic relation (1) implies a faster

rate of decay of fluctuations of
∑N

j=1 ln(z − λj) around its mean value than
that typical of the sum of independent random variables in the limit N → ∞.
His observation preceded studies of fluctuations of linear eigenvalue statistics
in the 1990’s. These studies established that in a variety of random matrix
ensembles the variance of the linear eigenvalue statistic

∑N
j=1 f(λj) is of

the order of unity and the fluctuations are asymptotically Gaussian, see e.g.

recent publication [30] and references therein. Ignoring the tails of eigenvalue
distribution and applying this limit theorem to the test function ln(z − λ),
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one concludes that

det(Iz − H) = exp





N
∑

j=1

ln(z − λj)



 = exp [N〈ln det(Iz − H)〉H + ξ] , (2)

where the random variable ξ is asymptotically Gaussian with zero mean and
finite variance. The asymptotic relation (1) follows immediately from (2).
This argument can be made mathematically rigorous by taking care of the
tails of the eigenvalue distribution.

If the random matrices H have no symmetry conditions imposed on
them then their eigenvalues are complex and the function ln det(Iz − H) is
ill-defined. This, however, can be easily remedied. Recall that the density
of eigenvalues zj in the complex plane z = x + iy,

ρ(x, y) =
1

N

N
∑

j=1

δ(x − xj)δ(y − yj),

can be obtained from the logarithmic potential of the eigenvalue distribution
by the Poisson equation:

ρ(x, y) =
1

4π

(

∂2

∂x2
+

∂2

∂y2

)
∫ ∫

ln[(x−x′)2 +(y−y′)2]ρ(x′, y′) dx′dy′ . (3)

By writing

∫ ∫

ln[(x − x′)2 + (y − y′)2]ρ(x′, y′) dx′dy′ =
1

N

N
∑

j=1

ln |z − zj |2

=
1

N
ln det(Iz − H)(Iz − H)† ,

one gets back to Hermitian matrices. This procedure is sometimes referred to
as Hermitisation. It is natural to expect that the limit theorem for the linear
statistics of the eigenvalues of Hermitian matrices extends to the matrices
(Iz − H)(Iz − H)†. Under this assumption,

1

N
〈ln det(Iz − H)(Iz − H)†〉H =

1

N
ln〈det(Iz − H)(Iz − H)†〉H (4)

in the limit N → ∞. There is one technicality here, though. In (1) one can
ignore the singularity of the logarithmic function at zero by the analyticity
argument. Namely, the function

∫

ln(z−λ)w(λ)dλ is an analytic function of
z and as such is fully determined by its values high in the complex plane, thus
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avoiding singularities on the real line. However, in (4) one does not have such
a luxury and in order to justify the derivation of (4) on the mathematical level
of rigour, one has to prove that the singularity of the logarithmic function at
zero can be ignored. This is a difficult and challenging problem which at the
moment has only been solved for matrices with stochastically independent
matrix entries [31, 32]. In the context of invariant matrix distributions (6)
independence of matrix entries implies V (t) = t, or in other words the
distribution is Gaussian. It is not clear how to tackle this problem for
invariant non-Gaussian distributions.

The aim of this paper is much more modest. We test the validity of the
asymptotic relation (4) by calculating

Φ(|z|2) =
1

N
ln〈det(Iz − H) det(Iz − H)†〉H (5)

in the limit N → ∞ for a class of complex random matrices defined by the
probability density

P (H) = const × e−N Tr V (HH†) (6)

and then verifying that it reproduces the same formulae for the eigenvalue
distribution as those obtained by Feinberg and Zee [33], see also [34, 35] for
a discussion of features of this eigenvalue distribution.

Our starting point is formula (10) which tells us how to perform the
integration over the ‘angular’ part of H in the spectral determinant det(Iz−
H)(Iz − H)†. The singular value decomposition asserts that H can be
written as V DU where U and V are unitary and D is the diagonal matrix
of the singular values of H. The Jacobian of the transformation from H to
(U, V,D) does not include U or V and is proportional to the square of the
Vandermonde determinant composed of the entries of D, see e.g. [24, 36].
Hence

〈det(Iz − H)(Iz − H)†〉H = 〈〈det(Iz − DU)(Iz − DU)†〉U 〉D ,

where the D-average includes the weight function e−N Tr V (DD†
) and the

Jacobian, and the U -average is over the unitary group U(N) with respect
to the Haar measure. The matrices V disappear because of the invariance
of the Haar measure.

The integration in U can be performed explicitly. Indeed, the coefficient
ck of the characteristic polynomial det(Iz−DU) =

∑

(−1)kckz
N−k is equal

to the sum of all principal minors of order k of the matrix DU . But D is
diagonal, and therefore,

det(zI − DU) =

N
∑

k=0

(−1)kzN−k
∑

1≤i1<...<ik≤N

di1 · · · dikU(i1, . . . ik) , (7)
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where di are the diagonal entries of D and U(i1, . . . ik) are the principal
minors of order k of U ,

U(i1, . . . ik) =

∣

∣

∣

∣

∣

∣

Ui1i1 . . . Ui1ik

. . . . . . . . .
Uiki1 . . . Uikik

∣

∣

∣

∣

∣

∣

.

Multiplying the right-hand side of (7) by its complex conjugate and inte-
grating over U , one gets

〈det(zI − DU) det(zI − DU)†〉U

=

N
∑

k=0

|z|2(N−k)
∑

1≤i1<...<ik≤N

d2
i1
· · · d2

ik
〈|U(i1, . . . , ik)|2〉U .

The cross-product terms 〈U(i1, . . . , ik)U(j1, . . . , jm)〉U vanish because of the
invariance of the Haar measure. Another consequence of this invariance is
that the mean square of the principal minors of U do not depend on the
choice of indices,

〈|U(i1, . . . ik)|2〉U = 〈|U(1, . . . , k)|2〉U .

The numbers 〈|U(1, . . . , k)|2〉U , k = 1, . . . , N , can be obtained from the
generating function

〈det(zI − U)(zI − U)†〉U =
N

∑

k=0

|z|2(N−k)Ck
N 〈|U(1, . . . , k)|2〉U . (8)

The evaluation of the left-hand side is a standard random matrix computa-
tion. This integral is effectively in the eigenvalues of U ,

〈det(zI − U)(zI − U)†〉U

=
1

N !

2π
∫

0

dθ1

2π
· · ·

2π
∫

0

dθN

2π

N
∏

j=1

|z − eθj |2
∏

1≤j<k≤N

|eθj − eθk |2

=
1

N !

2π
∫

0

dθ1

2π
· · ·

2π
∫

0

dθN

2π
det[fj(θk)]

N
j,k=1 det[f̄j(θk)]

N
j,k=1 ,

where fj(θ) = (z − eiθ)ei(j−1)θ , j = 1, . . . , N , see e.g. [24]. An application
of the Gramm formula,

∫

. . .

∫

det[fj(xk)] det[gj(xk)]

N
∏

k=1

dxk = N ! det

[
∫

fj(x)gk(x)dx

]

,
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then yields

〈det(zI − U)(zI − U)†〉U =

N
∑

k=1

|z|2(N−k).

Hence 〈|U(1, . . . , k)|2〉U = 1
Ck

N

, and

〈det(zI − DU) det(zI − DU)†〉U =

N
∑

k=0

|z|2(N−k) 1

Ck
N

∑

1≤i1<...<ik≤N

d2
i1
· · · d2

ik

= (N + 1)

∞
∫

0

det(I|z|2 + tD2)

(1 + t)N+2
dt , (9)

where we have used the integral representation for the Beta function,

1

Ck
N

= (N + 1)

∞
∫

0

tkdt

(1 + t)N+2
.

Making now the substitution t → t/|z|2 in the obtained integral (9) and
going back to the matrices H we arrive at the desired formula

〈det(Iz − H) det(Iz − H)†〉H = (N + 1)|z|2(N+1)

∞
∫

0

〈det(It + HH†)〉H
(t + |z|2)N+2

dt .

(10)
It reduces the integration over the eigenvalues and eigenvectors of H in
the spectral determinant 〈det(Iz − H)(Iz − H)† which is very difficult to
perform to an integration over the eigenvalues of W = HH†. Conveniently,
the latter problem is Hermitian. The matrices W belong to the well studied
class of unitary invariant ensembles and various formulas are known for the
eigenvalue distribution. This makes the computation of the right-hand side
of (10) in the limit N → ∞ easy.

Before we proceed to this computation we would like to make one remark.
The derivation of (10) given here can be generalised to the higher moments
of det(Iz − H). This generalisation uses Schur function expansions and a
Selberg-type integral and leads to the following formula [37, 38]

〈det(I − AU)m det(I − U †B†)n〉U ∝
∫

Cn×m

det(I + QQ† ⊗ AB†)

det(I + QQ†)N+n+m
dQ ,

where the integration on the left is over the unitary group U(N) and the inte-
gration on the right is over the complex matrices Q of size n × m, n,m ≥ 1.
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This formula can also be obtained by using Zirnbauer’s colour–flavour trans-
formation [39, 40]. In fact, the two approaches are closely related, for a
discussion see [38].

Now, we can to compute the function Φ(|z|2) of equation (5) in the limit
N → ∞. In this limit

〈det(It + HH†)〉H = exp

[

N

∫

ln(t + λ)w(λ)dλ

]

,

where w(λ)dλ is the limiting distribution of eigenvalues of W = HH†.
Therefore, by (10),

Φ(|z|2) = ln |z|2 +
1

N
ln

∞
∫

0

exp
{

N
[∫

ln(t + λ)w(λ)dλ − ln(t + |z|2)
]}

(t + |z|2)2 dt .

(11)
For large N , the main contribution to the integral on the right comes from
the small intervals around the points of maximum of

φ(t) =

∫

ln(t + λ)w(λ)dλ − ln(t + |z|2) .

The equation for the stationary points of φ(t) reads

∫

w(λ)dλ

t + λ
− 1

t + |z|2 = 0 , (12)

or, by rearranging,

1 − t
∫ w(λ)dλ

t+λ
∫ w(λ)dλ

t+λ

= |z|2 .

If w(λ) is not a delta-function, then the left-hand side in the above equation
increases monotonically with t, taking the value 1/m−1 at t = 0, and the
value m1 at t = +∞,

m±1 =

∫

λ±1w(λ)dλ .

Thus, if |z|2 < 1/m−1 then φ(t) increases monotonically with t and the
weight of the integral on the right-hand side in (11) is concentrated in the
vicinity of t = 0. Hence, in the limit N → ∞,

Φ(|z|2) =

∫

(ln λ)w(λ)dλ , |z|2 <
1

m−1
. (13)
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If |z|2 > m1 then φ(t) decreases monotonically with t and the weight of
the integral on the right-hand side in (11) is concentrated in the vicinity of
t = +∞. A quick calculation shows that, in the limit N → ∞,

Φ(|z|2) = ln |z|2 , |z|2 > m1 . (14)

For 1/m−1 < |z|2 < m1, the equation for the stationary points of φ(t) has
exactly one solution. At this point the function φ(t) is maximal. Therefore,
in the limit N → ∞,

Φ(|z|2) = ln |z|2 +

∫

ln(t0 + λ)w(λ)dλ − ln(t0 + |z|2) ,
1

m−1
< |z|2 < m1 ,

(15)
where t0 is determined by equation (12).

Let us now check whether the obtained formulas reproduce the eigenvalue
distribution found by Feinberg and Zee [33]. Because of the invariance of
the matrix distribution (6), the mean eigenvalue density is invariant with
respect to the rotations z → zeiθ,

〈ρ(x, y)〉H = ρ(r), r2 = x2 + y2,

and the eigenvalue distribution can be described by the integrated density
of the radial parts of eigenvalues,

γ(r) =

∫ ∫

x2+y2≤r2

〈ρ(x, y)〉Hdxdy = 2π

r
∫

0

ρ(r′)r′dr′ . (16)

In other words, Nγ(r) is the expected number of the eigenvalues of H in the
disk |z| ≤ r. The function γ(r) can be easily found from the electrostatic
potential

Φ̃(|z|2) =
1

N

〈

ln det(Iz − H)(Iz − H)†
〉

H
.

By the Poisson equation (3),

ρ(r) =
1

π

[

∂

∂r2
+ r2 ∂2

(∂r2)2

]

Φ̃(r2) .

On substituting this back into equation (16), we obtain the expression for
the integrated radial eigenvalue density in terms of the logarithmic potential,
γ(r) = r2∂Φ̃(r2)/∂r2. Referring now to the asymptotic relation (4), we

replace Φ̃(|z|2) in the limit N → ∞ by the function Φ(|z|2) of equation (5),

γ(r) = r2 ∂Φ(r2)

∂r2
.
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From (13) and (14) we immediately conclude that γ(r) = 0 for all r2 <
1/m−1 and γ(r) = 1 for all r2 > m1, thus recovering the mean feature of
the eigenvalue distribution found by Feinberg and Zee. Namely, depending
on the tail at the λ = 0 boundary of the eigenvalue distribution of the radial

part of H, the eigenvalues of H are distributed either in the disk r2 ≤ m1,
or, in the annulus 1/m−1 ≤ r2 ≤ m1. One cannot have the eigenvalue
distribution of H supported by several disjoint rings. This is in a stark
contrast to Hermitian invariant ensembles where the eigenvalue distribution
can be supported by disjoint intervals on the real axis, see the discussion
in [34].

On the support of the eigenvalue distribution,

γ(r) =
t0

t0 + r2
,

1

m−1
< r2 < m1 , (17)

where t0 is the unique solution of equation (12). One arrives at this formula
by differentiating the function Φ given by (15) and noting that dφ(t)/dt = 0
at t = t0.

Equation (17) gives the radial density γ(r) of the eigenvalue distribution
of H in terms of the solution of the equation

∫

w(λ)dλ

t0 + λ
=

1

t0 + r2
. (18)

There is a one-to-one correspondence between γ and t0. This can be used
to rewrite the equation for t0 as an equation for γ:

γ

1 − γ

[

1 − γ − r2

∫

w(λ)dλ

λ + r2γ
1−γ

]

= 0 . (19)

This is the equation obtained by Feinberg and Zee.
Of course equations (18) and (19) can only be solved explicitly in excep-

tional cases. One such case is the Ginibre ensemble of complex matrices [41]
which corresponds to V (t) = t in (6). In this case W = HH† is the Wishart
ensemble of random matrices. The eigenvalue distribution in this ensemble
obeys the Marchenko–Pastur law,

w(λ) =
1

2π

√

4 − λ

λ
, 0 < λ < 4 .

A quick calculation shows that m1 = 0, m−1 = ∞ and

∫

w(λ)dλ

t + λ
=

2√
4t + t2 + t

.
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Hence the solution of the equation for t0 is t0 = r4/(1−r2). On substituting
this into (17) one gets γ(r) = r2, 0 < r < 1. This is nothing else the Ginibre
circular law [41].
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