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We review a new technique for calculating spectral properties of infinite
non-Hermitian random matrix models, and we present an algorithm for
calculating bulk spectral properties of ensembles of the type H1 + iH2,
where H1 and H2 are arbitrary free (in the sense of Voiculescu) ensembles,
including cases of the Lévy (heavy-tailed) spectra. As a particular example,
we solve analytically the ensemble C1 + iC2, where C1 and C2 are free
centered random matrix ensembles of the Cauchy class.
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1. Introduction

Most of the ensembles considered in Random Matrix Theory (RMT)
and its applications concern the case where real spectra have finite sup-
ports. There exists, however, a non-trivial class where the support of the
real spectrum is infinite. A notable subclass is comprised of the so-called
Lévy matrices, as they are stable under convolution. They are a subject
of vigorous research — first, they are interesting from the point of view of
numerous applications, since heavy-tailed processes appear in a majority of
complex systems; second, they are considerably more difficult on the tech-
nical level, since the absence of finite moments invalidates several standard
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tools of RMT. The studied problems include the Wigner-type Lévy matri-
ces proposed by Bouchaud and Cizeau [1], free Lévy measures constructed
by Voiculescu and Bercovici [2], and some Free Random Variables matrix
realizations [3], interrelations between the above two approaches [4, 5], and
some applications in financial engineering [6].

As far as we know, non-Hermitian Lévy ensembles have not so far been
studied in the literature. Non-Hermiticity itself is a problem of considerable
difficulty, because in this case the spectrum forms two-dimensional islands
on the complex plane, and the tools of RMT based on holomorphic functions
(e.g. the Green’s function, the R-transform, etc.) are no longer applicable.
Nevertheless, several sophisticated tools have been proposed to study this
problem, triggered by important applications in quantum chaotic scatter-
ing [7], dissipative systems [8], Euclidean QCD in the presence of chemical
potential [9], growth problems [10] and mesoscopic systems [11–14]. All of
the developed methods rely, however, heavily on the existence of finite mo-
ments, prohibiting therefore an extension to heavy-tailed complex spectra.

In this note we circumvent this problem by using the novel formulation
for non-Hermitian random ensembles based on the quaternion extension de-
veloped recently by two of the present authors [15]. First, in Sec. 2, we recall
very briefly the connection between infinite-size random ensembles and Free
Random Variables (FRV). Next, in Sec. 3, we show how the concepts of FRV
can be generalized to the non-Hermitian case. To avoid the unnecessary rep-
etitions, we show only some major formulae, referring for details and proofs
to the original work [15]. Afterwards, using a simple operational algorithm
(Subsec. 4.1), we solve two important cases. The first one (Subsec. 4.2) is
intended to advocate the power of the quaternion method — by adding the
Hermitian and anti-Hermitian GUE ensembles (i.e. H1+iH2, where H1 and
H2 are free GUE ensembles), we recover the Ginibre–Girko circle [16,17], or
rather its slight generalization to the elliptic case [18]. As the second exam-
ple (Subsec. 4.3), we present a new result considering the model C1 + iC2,
where C1 and C2 are free Cauchy ensembles. In this case, we obtain the sup-
port of the complex spectrum bounded by two pairs of hyperbolas, and also
the analytic form of the spectral density. We also check how well this non-
Hermitian “Cauchy cross” is reproduced by a numerical simulation. Finally,
in Sec. 5, we provide a list of several known and unknown results obtained
by us using this quaternion technique.
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2. Free random variables

2.1. Freeness

Two Hermitian random matrices H1 and H2 are called free [19] if

〈p1(H1)r1(H2)p2(H1)r2(H2) . . . 〉 = 0 , if 〈pi(H1)〉 = 〈rj(H2)〉 = 0 , (1)

where pi and rj are polynomials. The basic feature of this definition is that
consecutive polynomials should depend on different variables. Note that the
expectation value of Hermitian random matrices used here is defined as

〈H〉 ≡
〈

1

N
Tr H

〉

cl

, (2)

with 〈. . .〉cl just some classical (commutative) expectation value, which we
take to have a generic form

〈f(H)〉cl ≡
∫

dHe−N Tr V (H)f(H) , (3)

where V (H) is some (usually polynomial) potential.
This definition (1) gives the rule of how to calculate the mixed mo-

ments out of the separate moments (if the matrices are not centered, i.e. if

〈Hi〉 6= 0, we use the trick of renaming them as H̃i ≡ Hi − 〈Hi〉); since by

definition 〈H̃1H̃2〉 = 0, the first mixed moments are

〈H1H2〉 = 〈H1〉〈H2〉 ,

〈H1H2H1H2〉 = 〈H2
1 〉〈H2〉2 + 〈H1〉2〈H2

2 〉 − 〈H1〉2〈H2〉2 ,

〈H1H1H2H2〉 = 〈H2
1 〉〈H2

2 〉 .

Note that freeness is a much more restrictive property than well-known inde-
pendence in classical probability theory; mixed moments are combinations of
products of the individual moments, and not just products. It turns out that
it is precisely freeness that extends all the important features of indepen-
dence to the non-commutative case; non-commutative probability together
with the notion of freeness is known under the name of the Free Random

Variables calculus (FRV).

2.2. The addition law

Wewill now introduce the concept of additivity and the R-transformation.
The fundamental result in the FRV calculus [19] is that one can define (via
the so-called non-crossing partitions [20]) an analogue of the cumulants, the
so-called free cumulants κH,n, which obey the additivity property,

κH1+H2,n = κH1,n + κH2,n , (4)
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where H1 and H2 are two free Hermitian random matrices, just as the usual
cumulants obey the additivity property in classical probability. The point
is that we cannot simply relate the moments of H1 + H2 to the moments
of the separate H1 and H2, as is done in the commutative case via the
Fourier transformation, since now mixed moments of centered variables do
not factorize; nevertheless, it is possible to construct other objects, the free
cumulants, that possess this property and thus lead to the addition law, but
their relation to the moments is far more involved than classically.

The essence of the construction is as follows: First, we introduce the
generating function of the moments,

GH(z) ≡
∑

n≥0

〈Hn〉
zn+1

=
1

N

〈

Tr
1

z1N − H

〉

cl

, (5)

which is called the Green’s function. (Here “1N ” is the N ×N unit matrix.)
Second, we define an a priori unknown function, called the Voiculescu’s
R-transform, which is the generating function of the free cumulants,

RH(z) ≡
∑

n≥0

κH,n+1z
n . (6)

Now the additivity property (4) is simply translated in the language of the
R-transform to the so-called FRV addition law,

RH1+H2
(z) = RH1

(z) + RH2
(z) . (7)

Now because the moments and the free cumulants are related in a compli-
cated way to each other, so do the complex functions GH(z) and RH(z)
seem to be related in an involved manner. However, a very non-trivial result
of FRV is that their relation is actually very simple — indeed, it turns out
that a slight redefinition of the R-transform,

BH(z) ≡ RH(z) +
1

z
, (8)

allows to write the relation between both functions in a compact form,

BH(GH(z)) = GH(BH(z)) = z , (9)

i.e. the function BH(z) = RH(z) + 1/z is the functional inverse of the
Green’s function. We like to call BH(z) the Blue’s function, after Tony Zee,
who has proposed this name and popularized FRV among physicists [21].

The construction looks thus as follows: Once we know the Green’s func-
tions GH1

(z), GH2
(z) of two given free Hermitian random matrix models H1

and H2, i.e. once we know all their moments, it is straightforward (namely,
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by functional inversion) to get their Blue’s functions BH1
(z), BH2

(z), i.e.
also all their free cumulants, which are additive. Now the addition law (7)
can be rewritten in the language of the Blue’s function

BH1+H2
(z) = BH1

(z) + BH2
(z) − 1

z
(10)

and it gives the Blue’s function of the sum H1+H2. Now one more functional
inversion leads to the Green’s function GH1+H2

(z).
So the algorithm of adding two free Hermitian random matrices may be

summarized as follows:

1. Assuming we can construct the Green’s functions GH1
(z) and GH2

(z),
we obtain the Blue’s functions BH1

(z) and BH2
(z) by functional in-

version (9).

2. It amounts to apply the addition law (10) to get BH1+H2
(z).

3. Finally, we again invert it functionally to find GH1+H2
(z).

Let us recall how to use the Green’s function to obtain the spectral
properties of H. The fundamental problem in RMT is to find the averaged
distribution of the eigenvalues λi of H,

ρH(λ) ≡ 1

N

〈

N
∑

i=1

δ(λ − λi)

〉

cl

. (11)

TheGreen’s function can be easily used to reconstruct this density according to

ρH(λ) = − 1

π
lim

ε→0+
Im GH(λ + iε) , (12)

which stems from the well-known formula 1/(λ+iε) = pv(1/λ)−iπδ(λ). This
means that the density of the eigenvalues can be read from the discontinuities
of the Green’s function.

2.3. Examples

For the sake of the further part of this note, let us now discuss two
examples of Hermitian ensembles. As the first one, consider the Gaussian

Unitary Ensemble (GUE). Since centered Gaussianity is characterized just
by a single non-vanishing second cumulant (i.e. dispersion, κGUE,2 ≡ d), the
R-transform of GUE is simply

RGUE(z) = dz , (13)
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or equivalently

BGUE(z) = dz +
1

z
. (14)

We functionally invert this Blue’s function by the substitution z → GGUE(z),
obtaining the quadratic equation

dG2
GUE(z) − zGGUE(z) + 1 = 0 ,

which is readily solved by

GGUE(z) =
1

2d

(

z ±
√

z2 − 4d
)

. (15)

Only the lower sign reproduces the correct asymptotic behavior, GGUE(z) ∼
1/z for large z. The imaginary part of this Green’s function, according to
(12), yields the famous Wigner’s semicircle law,

ρGUE(λ) =
1

2πd

√

4d − λ2 . (16)

As the second example, let us take the Cauchy ensemble. Remarkably,
the FRV calculus can be extended to unbounded spectra. In particular, one
can introduce the notion of free stability in analogy to classical Lévy stability
in probability theory [22], and even more surprisingly, classify all the stability
classes (i.e. the functional forms of the R-transform) in full analogy to
the Lévy classification of characteristics functions of power-like probability
distributions. This is the so-called Bercovici–Pata bijection [23]. From the
broad class of the free Lévy processes, we quote here the simplest one, i.e.

the centered free Cauchy model. Its R-transform reads

RCauchy(z) = −iγ , (17)

and thus the Blue’s function is

BCauchy(z) = −iγ +
1

z
, (18)

where γ is a positive real number. The Green’s function is then

GCauchy(z) =
1

z + iγ
, (19)

and the spectral density stems quickly from it

ρCauchy(λ) =
1

π

γ

λ2 + γ2
. (20)
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The fact that the spectral density of the free Cauchy model is functionally
identical to the Cauchy density in classical probability is actually acciden-
tal; in a few other solvable cases there is only a one-to-one correspondence
between the asymptotic forms, i.e. heavy tails. Note also that the potential
V (H) reproducing the spectral density of the Cauchy ensemble (20) is highly
non-trivial and non-polynomial [3].

3. Addition of non-Hermitian ensembles

The crucial difference which arises in the non-Hermitian case (we denote
an arbitrary non-Hermitian random matrix by X) is that the eigenvalues of
X are complex in general; in the large-N limit they form two-dimensional do-
mains (“islands”) on the complex plane, in contrary to one-dimensional cuts
in the Hermitian case. The Green’s function loses its analyticity, i.e. it is
analytic (holomorphic) only outside the eigenvalues’ domains, whereas in the
Hermitian case it is holomorphic everywhere except some one-dimensional
cuts; hence the power series expansion no longer captures the full information
about the Green’s function, and it is exactly its non-holomorphic behavior
that determines the eigenvalues’ distribution on the two-dimensional sup-
ports. In the Hermitian case, working with the complex Green’s function
allowed us to infer real spectral distributions from the discontinuities on the
complex plane. It is tempting to find a similar method in the non-Hermitian
case of complex spectra. A natural generalization is the algebra of quater-

nions. Even though such speculations have appeared in the literature [28],
an explicit realization appeared only very recently [15]. We are exploiting
the following correspondence as a guiding tool,

Hermitian −→ non-Hermitian
↓ ↓

real spectrum −→ complex spectrum
↓ ↓

complex Green’s function −→ quaternion Green’s function

(21)

Here we present only the final results, referring for details to the original
work [15] or to more pedagogical lectures [24].

First, we define the quaternion Green’s function as

GX(Q) ≡ 1

N

〈

bTr
1

Q ⊗ 1N − XD

〉

cl

, (22)

where Q is an arbitrary quaternion,

Q =

(

a ib̄
ib ā

)

2×2

= x012 + i~x · ~σ (23)
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(here σ1,2,3 are the usual Pauli matrices, and a ≡ x0 + ix3, b ≡ x1 + ix2).
The block-trace bTr and the operation XD are defined as

bTr

(

A B
C D

)

2N×2N

≡
(

Tr A Tr B
Tr C Tr D

)

2×2

(24)

and

XD ≡
(

X

X†

)

2N×2N

, (25)

respectively. This defines GX as a quaternion function of a quaternion vari-
able. The gain is the analogy to the Hermitian case — in particular, the
crucial linearity in XD of the denominator of this quaternion Green’s func-
tion. We mention here that this approach can be viewed as a generalization
of the matrix Green’s function introduced by two of the present authors
some time ago [25, 26], provided one identifies a with the complex variable
z and b with the infinitesimal regulator |ε|. The advantage of working with
quaternions is that GX has several non-trivial properties as a function of Q
which cannot be seen when we are infinitesimally close to the complex plane,
as considered in [25, 26]. For the exact relations and correspondence to the
so-called “Hermitization method” [27–29], we refer to the original works.

Similarly to the Hermitian case (see (9)), one introduces the functional
inverse of the quaternion Green’s function, for which we naturally coin the
name “quaternion Blue’s function”,

GX(BX(Q)) = BX(GX(Q)) = Q , (26)

for any quaternion Q. Again (compare (10)), the analogous addition law

holds [15],

BX1+X2
(Q) = BX1

(Q) + BX2
(Q) − Q−1 , (27)

for any Q, and any two free non-Hermitian random matrices X1 and X2.
In particular, the advocated method provides a way to solve any non-

Hermitian problem of the type X = H1 + iH2, for H1 and H2 free [15]. The
resulting quaternion Blue’s function reads [15]

BX(Q) = βH1
(q, q̄)12 + βH2

qI, qI) iσ3

−
(

β′
H1

(q, q̄) + β′
H2

(qI, qI) +
1

det Q

)

Q† , (28)

where q =x0 + i|~x| and q̄ =x0− vi|~x| are the two eigenvalues of the quater-

nionQ (23), while qI and qI are the eigenvalues of the quaternion QI ≡ Qiσ3,
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and the scalar functions βH and β′
H are defined as

βH(q, q̄) ≡ qBH(q) − q̄BH(q̄)

q − q̄
, (29)

β′
H(q, q̄) ≡ BH(q) − BH(q̄)

q − q̄
. (30)

To recover the spectral density and the support of the eigenvalues, one
has first to invert functionally the above equation for any quaternion Q,
obtaining thus the quaternion Green’s function. Second, one substitutes an
arbitrary quaternion Q by the diagonal 2 × 2 matrix diag(z, z̄), i.e. one
makes the projection from the quaternion space onto the complex plane.
This completes the solution of the problem. The resulting Green’s function
is the 2 × 2 matrix

GX(z, z̄) =

(

G11
X (z, z̄) G11̄

X (z, z̄)

G1̄1
X (z, z̄) G1̄1̄

X (z, z̄)

)

2×2

. (31)

The upper left entry,

G11
X (z, z̄) ≡ GX(z, z̄) , (32)

is the desired non-holomorphic resolvent, and the two-dimensional spectral
density follows from it as

ρX(z, z̄) =
1

π
∂z̄ GX(z, z̄) . (33)

The product of the off-diagonal elements carries also an interesting spec-
tral information [30], namely it is the correlator between the left and right

eigenvectors of X, introduced in [31]. Explicitly,

CX(z, z̄)≡G11̄
X (z, z̄)G1̄1

X (z, z̄)=− π

N

〈

N
∑

i=1

(Li|Li)(Ri|Ri)δ
(2)(z−λi)

〉

cl

.(34)

In particular, this correlator allows to find the shape of the bordering “coast-
line” of the eigenvalues’ “islands” — indeed, on the borderline the correlator
must vanish, which gives us the equation of the borderline of the eigenvalues’
domains to be

CX(z, z̄) = 0 . (35)
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4. Explicit calculations

4.1. The algorithm

The construction presented in the previous chapter solves any problem
of the type X = H1 + iH2, where H1 and H2 are Hermitian and free. In
practice, explicit calculations might, however, be quite tedious. To avoid
the procedure of functional inverting of quaternion functions, we present an
operational algorithm [15] which allows to solve the problem without any
explicit reference to quaternions (of course, it is obtained from the quater-
nion construction by some tedious algebra). The advantage is that the only
necessary input comes from Hermitian random matrix theory, i.e. only the
knowledge of Hermitian Green’s functions GH1

(z) and GH2
(z), or rather

their functional inverses, the Blue’s functions BH1
(z) and BH2

(z), is re-
quired.

The algorithm goes as follows:

1. Write down the two equations

BH1
(g) = x +

m

g
,

BH2
(gI) = y +

1 − m

gI
, (36)

where z ≡ x + iy, with three unknown quantities, complex g, gI, and

real m. Find g + ḡ, gI + gI, gḡ, gIgI as functions of m.

2. Compute m from the third equation,

gḡ = gIgI. (37)

3. Derive g + ḡ, gI + gI and |g|2 from the above two steps.

4. The non-holomorphic Green’s function and the correlator between the
left and right eigenvectors of X = H1 + iH2 are given by

GX(x, y) =
g + ḡ

2
− i

gI + gI

2
= Re g − iRe gI , (38)

CX(x, y) =

(

g+ḡ

2

)2

+

(

gI+gI

2

)2

−|g|2 =(Re g)2−(Im gI)2 . (39)

5. The spectral density and the borderline of the support of the eigenval-
ues are now easily computed via, respectively

ρX(x, y) =
1

π
∂z̄GX(z, z̄) , (40)

CX(z, z̄) = 0 . (41)
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4.2. The elliptic Gaussian case

As the first example, let us consider the non-Hermitian model X =
H1 + iH2, where both H1, H2 are the free centered GUE random matrices
with dispersions d1 and d2, respectively. Both Blue’s functions read therefore
(see (14)), BHi

(z) = diz + 1/z, for i = 1, 2, hence Step 1 of the algorithm
(36) gives two quadratic equations,

d1g
2 − xg + 1 − m = 0 ,

d2(g
I)2 − ygI + m = 0 . (42)

Even without solving them, but just from the Vieta’s rules, we get

g + ḡ =
x

d1
, |g|2 =

1 − m

d1
,

gI + gI =
y

d2
, |gI|2 =

m

d2
. (43)

Step 2 (37) leads, therefore, to a linear equation for m,

1 − m

d1
=

m

d2
⇒ m =

d2

d1 + d2
, (44)

In Step 3 we write thus easily,

g + ḡ =
x

d1
, gI + gI =

y

d2
, |g|2 = |gI|2 =

1

d1 + d2
. (45)

Step 4 completes the problem,

GH1+iH2
(x, y) =

1

2

(

x

d1
− i

y

d2

)

,

CH1+iH2
(x, y) =

1

4

(

x2

d2
1

+
y2

d2
2

)

− 1

d1 + d2
. (46)

Finally, Step 5 gives the uniform spectral density

ρH1+iH2
(x, y) =

1

4π

(

1

d1
+

1

d2

)

(47)

and the borderline of the support,

x2

d2
1

+
y2

d2
2

=
4

d1 + d2
, (48)

which is the ellipse with semi-axes 2d1/
√

d1 + d2 and 2d2/
√

d1 + d2. In
such a simple way we have reproduced the classical results for the circular
(d1 = d2) and elliptic Gaussian models [16–18,31].
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4.3. The hyperbolic Cauchy case

After this presentation of how our quaternion algorithm provides a fast
way of reproducing the Ginibre–Girko ellipse, let us move to another exam-
ple, this time of a highly non-trivial non-Hermitian random matrix model
with heavy tails, namely X = C1 + iC2, where both C1, C2 are free centered
Cauchy ensembles with ranges γ1 and γ2, respectively. Both Blue’s functions
are thus (see (18)), BCi

(z) = −iγi + 1/z, for i = 1, 2. In Step 1 (36) we get
two linear equations which give

g =
1 − m

x + iγ1
, gI =

m

y + iγ2
, (49)

and, therefore,

g + ḡ =
2x(1 − m)

X2
, |g|2 =

(1 − m)2

X2
,

gI + gI =
2ym

Y 2
, |gI|2 =

m2

Y 2
. (50)

where for short, X ≡
√

x2 + γ2
1 and Y ≡

√

y2 + γ2
2 . Step 2 yields a quad-

ratic equation for m, with solutions

m =
Y

Y ± X
(51)

(only the upper sign turns out to reproduce the positive spectral density),
and Step 3 follows trivially. Step 4 thus completes the solution of the problem

GC1+iC2
(x, y) =

1

X + Y

( x

X
− i

y

Y

)

,

CC1+iC2
(x, y) =

1

(X + Y )2

(

− γ2
1

X2
+

y2

Y 2

)

. (52)

Finally, Step 5 gives the non-uniform spectral density

2πρC1+iC2
(x, y)=− 1

(X + Y )2

(

x2

X2
+

y2

Y 2

)

+
1

X+Y

(

γ2
1

X3
+

γ2
2

Y 3

)

(53)

and the borderline of the support,

xy = ±γ1γ2 , (54)

which consists of two pairs of hyperbolas. The spectrum is therefore localized
on the infinite “hyperbolic cross”. Fig. 1 shows three dimensional plot of the
density (53) in case of equal ranges γ1 = γ2.
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Fig. 1. Three-dimensional plot of the spectral density for non-Hermitian Cauchy

ensemble C1 + iC2. Both ranges γi are equal, hence resulting “Cauchy cross” is

symmetric.

We are not aware of the appearance of these formulae in the litera-
ture, which is also one of the reasons why we have performed numerical
checks to verify these analytical results. Certainly, the above expressions
are valid for infinite matrices, and since the ways of assessing non-Hermitian
1/N -corrections in this case are so far unknown, numerical simulation can
be viewed as a verification of the bulk properties of the ensemble only. An-
other complication comes from the fact that very simple spectrum of the
free Cauchy model corresponds to a highly non-trivial non-polynomial mea-
sure [3] of the type V (λ) = ln(λ2 + γ2) (compare e.g. to the well-known
Gaussian case of V (λ) = λ2). We avoid the problem of such a measure by
using the recently established link [5] between the so-called Wigner Lévy

matrices and Free Lévy matrices. The Wigner Lévy matrices, introduced by
Bouchaud and Cizeau [1], are obtained by filling the elements of the matrix
with random numbers generated from a classical pdf of the Lévy type. By
construction, such matrices are stable, but they are not rotationally invari-
ant. One may, however, enforce the rotational invariance in the following
way: We take a set of the Wigner Lévy matrices {Ak : k = 1, . . . ,M}, then
rotate each one of them with an independent random orthogonal transfor-
mation Ok, and finally add them to each other,

B ≡ 1

M1/α

M
∑

k=1

Ok Ak OT
k , (55)
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where α is the stability index, which for the Cauchy case equals to one. The
resulting matrix B is rotationally invariant and represents a Free Random
Variable. We have performed [5] extensive numerical checks verifying this
observation. Since numerical algorithms for Lévy pdfs and random orthogo-
nalization are well-developed, the above method of enforcing the rotational
invariance is the fastest and most reliable way of generating symmetric free
Lévy ensembles. We use it here to verify the “Cauchy cross”. First, we
generate free Hermitian ensembles C1 and C2, checking that each of them
reproduces the correct spectral density (20). Next, we generate the non-
Hermitian ensemble C1 + iC2, and plot the resulting complex spectrum.
Fig. 2 shows the comparison of the numerical simulation versus analytical
result for the symmetric (γ1 = γ2) cross. Although we have used only 500
N × N matrices, with N = 50, the agreement is fair. We are also planning
a higher-statistics simulation to confirm the analytical shape of the spectral
distribution.

-5

 0

 5

-5  0  5

N=50C1 + i C2

Fig. 2. A numerical simulation versus the analytical prediction for the hyperbolic

Cauchy cross.

5. Conclusions and prospects

We have presented and solved a sample of a non-Hermitian random ma-
trix ensemble with a heavy tail; we have chosen to consider the Cauchy
model because of two reasons — first, the model has surprising calculational
simplicity within the quaternion scheme; second, it represents the “extreme”
heavy-tailed case, since even the first moment is divergent. Because the
quaternion technique does not rely on the existence of the moments, it is
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easy to extend several classical Gaussian non-Hermitian ensembles to the
Lévy domain, including the generic cases of “quantum chaotic scattering” [7]
(H1 Gaussian, H2 Wishart), the complex Pastur ensemble (H1 deterministic,
H2 Gaussian), “bridging via dissipation” [8] (H1 deterministic, H2 Wishart),
to mention only a few. Some of these extensions have already been pre-
sented at this conference [32]. The method is also applicable to circular
unitary ensembles (CUE) [33], enlarging the class of solvable non-Hermitian
models. Finally, the presented method offers, probably for the first time,
a way to study genuine non-Hermitian Lévy ensembles, i.e. of the type
L1 + iL2, where L1 and L2 are arbitrary free Lévy random matrices — in
hope to shed more light on the difficult subject of non-Hermiticity on infinite
supports.
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