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We discuss the sign problem in QCD at nonzero chemical potential
and its relation with chiral symmetry breaking and the spectrum of the
Dirac operator using the framework of chiral random matrix theory. We
show that the Banks–Casher formula is not valid for theories with a sign
problem and has to be replaced by an alternative mechanism that is worked
out in detail for QCD in one dimension at nonzero chemical potential.

PACS numbers: 11.30.Rd, 12.38.Gc

1. Introduction

Despite tremendous efforts [1–5], the phase diagram of QCD in the chem-
ical potential temperature plane is only known for µ = 0 and at asymptot-
ically large densities. In between these extreme limits, the only firm result
at low temperatures is the transition to nuclear matter when the sum of the
chemical potential and the binding energy of nuclear matter is equal to the
nucleon mass. Most results at intermediate values of the chemical potential
are based on models such as the Nambu–Jona–Lassinio model [6, 7], strong
coupling expansions [8, 9], ADS–CFT dualities [10–12] and random matrix
theory [13, 14].

The reason for the lack of first principle calculations is the phase of
the fermion determinant at nonzero chemical potential which invalidates
probabilistic methods. When the sign problem is mild, though, simulations
can be performed by absorbing the phase in the observable which is known
as re-weighting. The real merit of the work by Fodor and Katz [15] is the
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realization that the sign problem is much less severe close to Tc so that
sophisticated re-weighting methods have a chance to work. In fact, results
close to Tc and small chemical potential obtained with a variety of methods
such as imaginary chemical potential [16, 17], Taylor expansion [18, 19], re-
weighting [15], the canonical ensemble [20] and the density of state method
[21,22], are in close agreement.

In this lecture we will discuss the average phase factor of the fermion de-
terminant. It provides a direct measure for the severity of the sign problem.
We will focus on the average phase factor in the microscopic domain of QCD
where nonperturbative analytical results can be obtained by exploiting the
equivalence of QCD and chiral random matrix theory [23,24]. Perturbatively,
the average phase factor can be calculated by means of chiral perturbation
theory up to temperatures close to Tc and chemical potentials up to the
pion mass [25]. We will find that the sign problem is necessarily severe
when µ > mπ/2. The reason is that exponentially large contributions to the
partition function have to be canceled in order to obtain a chiral condensate
that has sensible physical properties such as a discontinuity when the quark
mass crosses the imaginary axis.

One disturbing observation is that the relation between the spectral
density of the Dirac operator and the discontinuity of the chiral conden-
sate seems to be violated for QCD at nonzero chemical potential. From an
analysis in the microscopic domain of QCD it was found [26] that the dis-
continuity arises due to an alternative mechanism. Lending support to its
universality, the same mechanism is at work [27] for QCD in one dimension.
This case, because of its simplicity, will be discussed in detail below.

In this lecture we will show that chiral random matrix theory has added
significantly to our understanding of chiral symmetry breaking and the sign
problem for QCD at nonzero chemical potential. This adds to a long list
of successes of random matrix theory in this field such as the understand-
ing of quenched approximation [28], the critical endpoint in QCD [13, 14],
the macroscopic spectral density [28–34], the microscopic spectral density
[35–41] and Yang–Lee zeros [28, 42, 43]. For more successes we refer to re-
views of this subject [44, 45].

After some introductory remarks on QCD at nonzero chemical potential
in Sec. 2, we will discuss the sign problem in Sec. 3. The microscopic domain
of QCD will be introduced in Sec. 4. Results for the average phase factor
will be presented in Sec. 5 and their relation with the Dirac spectrum is
examined in Sec. 6. Sec. 7 contains a detailed discussion of the alternative
to the Banks–Casher formula for the example of one-dimensional QCD at
nonzero chemical potential. Concluding remarks are made in Sec. 8.
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2. QCD at nonzero chemical potential

TheQCDpartition at temperature 1/β and chemical potential µ is given by

ZQCD =
∑

k

e−β(Ek−µ) , (1)

where the sum is over all states. This partition function can be rewritten as
a Euclidean quantum field theory

ZQCD =
〈

∏

f

det(D + mf + µγ0)
〉

YM
, (2)

where the average is over the Yang–Mills action. The Dirac operator is de-
noted by D and the product is over Nf flavors with mass mf . The Dirac
operator is nonhermitean whereas µγ0 is Hermitean so that the total Dirac
operator has no hermiticity properties. In lattice QCD, the chemical po-
tential enters on each time-like link such that forward hopping is enhanced
by exp(µ) whereas backward hopping is suppressed by exp(−µ) [46]. The
asymmetry between forward and backward propagation also implies that the
Dirac operator is nonhermitean for µ 6= 0:

det(D + m + µγ0) = |det(D + m + µγ0)|eiθ =
∏

k

(λk + m) . (3)

If the average phase factor vanishes in the thermodynamic limit, Monte Carlo
simulations are not possible. This problem is known as the sign problem.
Nevertheless, we emphasize that it is our aim to understand QCD at µ 6= 0
starting from first principles.

Let us now discuss the phase diagram in the chemical potential temper-
ature plane. A schematic phase diagram is shown in Fig. 1. Even though
the µ = 0 axis is rather well-understood, there is still an ongoing contro-
versy about the value of the crossover temperature. Whether it is value of
190 MeV [47] or 170MeV [48] or somewhere in between, will definitely be
resolved by future lattice simulations. At asymptotically large values of the
chemical potential, perturbative calculations, show that QCD is supercon-
ducting [49]. We will not further discuss this region.

At low temperature and µ < (mN −Ebinding)/3 with Ebinding the binding
energy per nucleon of nuclear matter, only the vacuum state contributes
to the QCD partition function, and its free energy is µ-independent. At
µ = (mN − Ebinding)/3 a transition to nuclear matter takes place. These
are the only solid results at intermediate densities. All other results at
intermediate density are model dependent. We agree with McLerran and
Pisarski [50] that confining forces play an essential role, and that one better
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Fig. 1. A schematic phase diagram of QCD in the temperature chemical potential

plane.

relies on models where confinement is manifest. One such model is the
Skyrme model which is believed to be an accurate description of QCD at
large Nc. With increasing density this model undergoes a transition [51] to
a qualitatively different phase. It was shown in [52,53] that the dense phase
that minimizes the energy is a chiral crystal of B = 1/2 objects [54] which
has restored chiral symmetry. This state is strongly bound with a binding
energy of at least 100MeV per nucleon over nuclear matter. We expect that
it takes similar temperatures to melt this phase. Most recently such scenario
was advocated in [50] for the large Nc phase diagram of QCD. If indeed the
phase transition to the chiral symmetric phase is of first order, the critical
line should end in a critical endpoint to allow for a crossover transition at
small chemical potential.

3. Triage of the sign problem

A quantitative measure for the severity of the sign problem is given by the
ratio of the QCD partition function and the phase quenched QCD partition
function

〈det2(D + m + µγ0)〉
〈|det(D + m + µγ0)|2〉

∼ e
−V (FNf =2−Fpq)

. (4)

Because both the numerator and denominator are physical partition func-
tions they can be expressed in terms of an extensive free energy. At nonzero
temperature, the difference FNf =2 − Fpq is always nonzero so that, in the
thermodynamic limit, the sign problem becomes prohibitively severe. There
is no reason, though, to doubt that, despite these cancellations, the large
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volume limit is still smooth. What happens is that, with increasing volume,
it becomes more and more difficult to generate the QCD partition function
from the phase quenched ensemble. By factoring the determinant of the
Dirac operator into its absolute and phase factor, exp(iθ), the ratio (4) can
be interpreted as the phase quenched expectation value of exp(2iθ),

〈det2(D + m + µγ0)〉
〈|det(D + m + µγ0)|2〉

= 〈e2iθ〉pq . (5)

The phase quenched QCD partition function can be rewritten as the
expectation value

〈|det(D + m + µγ0)|2〉 = 〈det(D + m + µγ0) det(D + m − µγ0)〉 . (6)

This means that the two flavors have opposite charge with respect to the
chemical potential. In other words, µ can be interpreted as an isospin chem-
ical potential. Therefore, in the low-temperature limit, the free energy of
phase quenched QCD remains constant for µ < mπ/2. At µ = mπ/2 a phase
transition to a Bose-condensed phase of pions takes place so that the free
energy becomes µ-dependent for µ > mπ/2 [55–57]. In the low temperature
limit, the free energy of QCD is µ-independent for µ < (mN − Ebinding)/3.
This implies that the free energy of QCD and phase quenched QCD are dif-
ferent for mπ/2 < µ < (mN −Ebinding)/3 resulting in a severe sign problem.

Below we will analyze the average phase factor in the microscopic domain
of QCD and for one-dimensional QCD.

4. Microscopic domain of QCD and random matrix theory

The QCD Dirac spectrum can be probed by including additional bosonic
and fermionic determinants in the partition function with quark masses equal
to complex parameters that can be varied independent of the QCD quark
masses. For definiteness lets us assume that we have Nf original quarks and
s additional quarks with masses given by

m1, . . . mNf
and z1, . . . zs , (7)

respectively. For fixed QCD quark masses, it is always possible to choose
these additional quark masses such that the associated Goldstone bosons
are much lighter than the Goldstone bosons of the original quarks (the case
of massless quarks has to be treated separately; we assume that all quark
masses are nonzero). Using the same arguments as given by Gasser and
Leutwyler for the ε-domain of QCD [58], to leading order in the chiral ex-
pansion of the zk-quarks, the partition function factorizes as [59]

Z(m1, . . . ,mNf
, z1, . . . , zs) = ZQCD(m1, . . . ,mNf

)Z(z1, . . . , zs) (8)



4128 J.J.M. Verbaarschot, K. Splittorff

if the Compton wave lengths of the additional bosons containing the quark
masses zk are much larger than the size of the box. Using the Gell–Mann–
Oakes–Renner relation, the microscopic domain of QCD is given by [59]

|zk| ≪
F 2

Σ
√

V
, (9)

where Σ is the chiral condensate, F the pion decay constant and V the
volume of the box. In solid state physics, this scale for z is known as the
Thouless energy and was discussed in the context of QCD in [60–62]. Of
course, we can consider QCD with quark masses mk in the microscopic
domain (9) which is also known as the ε-domain of QCD. This domain will
also be called the microscopic domain of QCD.

In the domain (9), the zk dependent part of the partition function is
given by a unitary matrix integral. At µ 6= 0 invariance arguments lead to
the following partition function of a form [34,55]

Z(z1, . . . , zs) =

∫

dU SdetνUeV Σ[Str(MU†+M†U)]− 1
4
F 2V Str[B,U ][B,U†] , (10)

with quark mass matrix given by M = diag(z1, . . . , zs) and charge matrix
equal to B = diag(q1, . . . , qs). The superdeterminant and the supertrace are
denoted by Sdet and Str, respectively. If we have f fermionic quarks and s−f
bosonic quarks, the integral is over a supergroup with bosonic sector equal
to the product of U(f) and the positive definite matrices Gl(s−f)/U(s−f).
For convergence reasons, the quark mass matrix involving the bosonic quarks
has to be properly adjusted [35] and additional conjugate quarks may have
to be introduced [63].

Another representation of the partition function (10) is the large-N limit
of a random matrix model with the symmetries of Z(z1, . . . , zs). This ran-
dom matrix model is obtained by replacing the matrix elements of the Dirac
operator by Gaussian random numbers [64, 65],

D =

(

m iW + µ
iW † + µ m

)

, P (W ) ∼ e−NTrW †W , (11)

where W is in general an N × (N + ν) matrix with ν the topological charge.
As was shown in [66], the properties of this theory in the microscopic domain
are not sensitive to the details of the probability distribution. The reason is
that for N → ∞ with mN fixed, the random matrix model has a mass gap,
so that it becomes a theory of Goldstone bosons dictated by the pattern of
spontaneous symmetry breaking with partition function given by (10).

Philosophically, this is important because of the realization that chaotic
motion dominates the dynamics of quarks at low energy. Practically, this
is useful because it enables us to use powerful random matrix techniques to
calculate physical observables.
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5. The phase of the fermion determinant

Let us now calculate the average phase factor in the microscopic domain
of QCD. For simplicity we consider the quenched case so that

〈e2iθ〉 =

〈

det(D + m + µγ0)

det(D† + m + µγ0)

〉

. (12)

Since the average phase factor is the ratio of two partition functions, its
value is necessarily real and nonnegative. We evaluate the ratio (12) in
the microscopic domain of QCD where only the contribution of the zero
momentum Goldstone modes has to be taken into account. The partition
function (12) has four different Goldstone modes. If we denote the fermionic
quark by f and the bosonic quark by b, they are given by

f̄f, b̄b , b̄f , f̄b . (13)

The first two are neutral, but because the charge of conjugate quarks is
opposite to that of regular quarks, the last two have charge ±2. The masses
of the corresponding Goldstone bosons are thus given by

mf̄f = mπ , mb̄b = mπ , mb̄f = mπ + 2µ , mf̄ b = mπ − 2µ . (14)

When µ < mπ/2 only the vacuum state contributes to the partition function
so that the free energy is a µ-independent constant and the average phase
factor is given by the product of the square root of the curvatures of the
Goldstone modes,

〈e2iθ〉 =
(mπ − 2µ)(mπ + 2µ)

m2
π

. (15)

For µ > mπ/2 the massless pion Bose condenses, and the free energy be-
comes µ-dependent so that the average phase factor becomes zero in the
thermodynamic limit. We thus find

〈e2iθ〉 = θ(mπ − 2|µ|)
(

1 − 4µ2

m2
π

)

. (16)

In [23] the average phase factor was calculated by means of the complex
orthogonal polynomial method of [36, 68]. The result is given by

〈e2iθ〉Nf =0 = 1 − 4µ̂2I0(m̂)K0(m̂) − 1

4µ̂2
e
−2µ̂2− m̂2

8µ̂2

×
∞

∫

m̂

dxxe
− x2

4µ̂2 K0

(

xm̂

4µ̂2

)

(I0(x)m̂I1(m̂)−xI1(x)I0(m̂)) . (17)
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The average phase factor can also be calculated using an imaginary chemical
potential [67]. However, this gives only the first two terms and misses the
non-analytic term in the above expression. The non-analytic term is essential
when µ approaches mπ/2 and cancels the analytic term for µ > mπ/2.

In Fig. 2 we show the analytical result for the average phase factor
weighted with the determinant for two flavors (left figure). The solid curve
is the mean field result. In the right figure we compare the quenched average
“phase factor” for imaginary chemical potential with lattice simulations on
an 84 lattice (see [67]). The solid curve is given by the analytical continua-
tion (µ2 → −µ2) of the first two terms in (17).
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Fig. 2. The microscopic result of the average phase factor (left) and the average

phase factor for imaginary chemical potential (right). The points with error bars

in the right figure are lattice results obtained in [67].

6. Average phase factor and Dirac spectrum

The sign problem becomes inevitable when the quark mass is inside the
domain of eigenvalues. This should be obvious because for eigenvalues close
to the mass, small variations of the gauge field result in large phase fluctua-
tions. In Fig. 3 we illustrate the distribution of the Dirac eigenvalues. The
width of the spectrum can be obtained from chiral perturbation theory [34]
or chiral random matrix theory [28]. In the quenched case or the phase
quenched case the chiral condensate at m can be interpreted as the planar
electric field at m of charges located at the position of the eigenvalues. El-
ementary electrostatics dictates that the chiral condensate behaves as the
green curve in the right panel of Fig. 3. In particular, there is no discon-
tinuity at m = 0. Because the low temperature limit of the free energy of
full QCD does not depend on the chemical potential, the chiral condensate
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we show the mass dependence the chiral condensate for full QCD (red curve) and
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of full QCD should have a discontinuity at m = 0 for µ < mN/3. What has
to happen is that the phase of the fermion determinant has to cancel the
decrease in free energy that takes place in the quenched or phase quenched
theory for µ > mπ/2. Therefore, we necessarily have a severe sign problem
in this domain.

The puzzle that the chiral condensate remains the same as the result of
strong cancellations is known as the “Silver Blaze Problem” [69]. This name
has been inspired by the title of a Sherlock Holmes novel by Conrad Doyle.
The analogy is that the dog did not bark although the racing horse “Silver
Blaze” disappeared.

In the literature it has been stated that average spectral density of full
QCD will show an accumulation of spectral density on the imaginary axis
consistent with the Banks–Casher formula. We now understand that this is
not the case. The average spectral density for full QCD was evaluated in the
microscopic domain of full QCD using the method of complex orthogonal
polynomials [36]. It was found that it has oscillations in a macroscopic region
of the complex plane with an amplitude that increases exponentially with the
volume and a period that is inversely proportional to the volume [38]. The
cancellations of the exponential large contributions result in a condensate
that has a discontinuity in the thermodynamic limit [26].

The same phenomenon occurs for QCD in one dimension. Although the
eigenvalues of the Dirac operator are located on an ellipse instead of being
scattered in the complex plane, the mechanism for generating a discontinuity
in the chiral condensate is the same as for QCD. To simplify the argument
we will restrict ourselves to giving a detailed discussion for the case of QCD
in one dimension only.
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7. One-dimensional QCD

All gauge fields in one-dimensional QCD can be gauged away with the
exception of the gauge field at the boundary of the manifold. Therefore,
one-dimensional lattice QCD is given by the random matrix theory

Z1d =

∫

dUdetNf D (18)

with Dirac operator for n lattice points given by

D =













mI eµ . . . e−µU †

−e−µ mI · · · 0
...

...
0 · · · mI eµ

−eµU/2 · · · −e−µ mI













. (19)

The chemical potential can also be gauged to the boundary. The full theory
does not have charged excitations resulting in a chiral condensate that is
µ-independent. The phase quenched theory, on the other hand, undergoes
a phase transition at µ = mπ/2 resulting in a different free energy. This can
be easily shown in the limit of large n by using the explicit result for the
determinant of the Dirac operator (19)

det D = 2−nNc det[enµc + e−nµc + enµc + enµcU + e−nµcU †] . (20)

Here, we introduced the critical chemical potential µc given by the relation
sinhµc = m. For gauge group U(N) the integrals are particularly simple,
and we obtain in the limit of large n

FNf =2 = −nNf |µc| ,
FNf =2,pq = −nNf |µc| − nNf (|µ| − |µc|)θ(|µ| − |µc|) , (21)

resulting in a chiral condensate with a mass dependence as shown in Fig. 4.
Although nothing happens to the Nf = 2 free energy, this comes only as
a result of exponentially large cancellations in the partition function. This
is the “Silver Blaze Problem” [69] mentioned before. We will now illustrate
how this problem manifests itself in spectrum of the Dirac operator and the
chiral condensate.

For simplicity we will only consider the case Nf = 1 with U(1) as gauge
group. Because the phase angles of the eigenvalues are uniformly distributed
along an ellipse with semi-minor axis equal to sinhµ and semi-major axis
equal to cosh µ (see Fig. 4; notice that the figure is for large Nc, for U(1) the
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phase angles of the eigenvalues are equally spaced), the eigenvalue density
of the Nf = 1 theory is given by

ρNf =1(z)d2z=
1

2π

enµc +e−nµc−en(iα+µ)−e−n(iα+µ)

enµc +e−nµc
δ(r−µ)dr dα (22)

with the original variables z parameterized as

z =
1

2

(

er+iα − e−r−iα
)

, r > 0 , α ∈ [0, 2π] . (23)

The chiral condensate for Nf = 1 given by

Σ(m) =

〈

∑

k

1
λk+m

∏

k

(λk + m)

〉

〈

∏

k

(λk + m)

〉 (24)

can then be expressed as

ΣNf=1 =

∫

d2z
ρNf =1(z)

z + m

=

∫

dα

2π

enµc + e−nµc − en(iα+µ) − e−n(iα+µ)

(enµc + e−nµc)(m + (eµ+iα − e−µ−iα)/2)

=
tanh(nµc)

cosh µc
. (25)
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When |µ| < |µc|, all four terms in the numerator contribute to the integrand.
When |µ| > |µc|, i.e. the domain where the quark mass is inside the ellipse
of eigenvalues, the quenched chiral condensate, given by the first two terms
of the numerator, is zero resulting in a chiral condensate that behaves as
the phase quenched theory (see middle panel of Fig. 4). Therefore, the
condensate for |µ| > |µc| is due to the oscillating terms in the numerator.
A finite result is obtained because the oscillations cancel the exponential
growth with n of the amplitude. In the thermodynamic limit the tanh(nµc)
results in a discontinuity at m = 0 (see Fig. 4).

8. Conclusions

Random matrix theory has been invaluable for understanding QCD at
nonzero chemical potential. In this lecture we have discussed applications
involving the phase of the fermion determinant at nonzero chemical poten-
tial. We have shown that QCD has a severe sign problem if the quark mass
is inside the domain of eigenvalues. In this domain strong cancellations lead
to a free energy that does not depend on the chemical potential and a chiral
condensate that has a discontinuity when the quark mass crosses the imagi-
nary axis. The latter happens without an accumulation of eigenvalues on the
imaginary axis, but due to oscillations in the spectral density with an ampli-
tude that increases exponentially with the volume. This mechanism occurs
both in the random matrix limit of QCD and in one dimensional QCD which
strongly suggests that it is the generic replacement of the Banks–Casher for-
mula for theories with a sign problem.
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