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Large deviations of the maximum eigenvalue to the left of the expected
value are investigated for the Gaussian and Wishart random matrices. Uni-
versal rate functions can be computed analytically with a Coulomb gas ap-
proach and numerical simulations are in good agreement with the theoreti-
cal predictions. In contrast with the case of independent random variables,
the exponential decay of the probability of extreme events follows a power
N2 and not N due to the peculiar level repulsion.
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1. Introduction

The theory of large deviations is a very active field of research in statistics
and probability nowadays, and its applications to real-life problems (from
queuing optimization to hazard estimates) are constantly growing in number
(see [1] for a self-contained review). The key issue is to quantify the prob-
ability of occurrence of rare events, sitting in the far tail of a probability
distribution.

Consider the following two examples:

• Coin tossing: we toss a coin n times and we ask for the probability
that the total number of heads Mn exceeds a certain value x > 1/2.
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• Insurance claims: assume that, over a time window T , an insurance
company receives a steady amount of money p per day (premia) and
settles a fixed number of claims per day of random size Xt. How big
is the probability that the insurance has to pay more (

∑T
t=1 Xt) than

it earns (pT )?

Clearly, we are dealing with unusual events characterized by a certain sum
of independent random variables being greater than some ‘reasonable’ value.
A more precise statement is given by Cramer’s theorem: let X1, . . . ,Xn a
sequence of bounded iid random variables, each with mean m, and let

Mn =
1

n

n
∑

i=1

Xn (1)

be the empirical mean. Then, given x > m, the probability that Mn > x
decays asymptotically as:

Prob[Mn > x] ≈ exp (−nI(x)) , (2)

where I(x) is a convex rate function depending on the probability distribu-
tion of the Xk, as given by the Chernoff formula [1].

What happens when the random variables are not independent? A typ-
ical instance in this sense is provided by the eigenvalues of rotationally in-
variant random matrix ensembles, whose joint probability density (jpd) can
be generically written as:

P (λ1, . . . , λN ) ∝ e−
β

2

PN
i=1

V (λi)
∏

j<k

|λj − λk|β . (3)

In (3), V (x) is a confining potential and the eigenvalues interact through the
well-known Vandermonde determinant, raised to the Dyson index β = 1, 2, 4
of the ensemble.

In the following, we will deal with the following two potentials: V (x)=x2

(Gaussian ensembles) and V (x) = x− [(1 + M −N)− 2/β] log x (Wishart–
Laguerre ensemble). The main features of those ensembles are as follows:

• Gaussian ensembles: matrices with entries independently taken
from a standard normal distribution.

• Wishart–Laguerre ensemble: matrices of the form W = XT X,
where X is a (M × N) (M > N, c = N/M) matrix with independent
Gaussian entries. The eigenvalues are strictly positive.
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The distribution and properties of the largest eigenvalue λmax in the two
cases above have been studied for a long time. It turns out that the typical
fluctuations of λmax around its average 〈λmax〉, both for the Gaussian and the
Wishart–Laguerre cases, are described by the Tracy–Widom distribution [2].
However, the Tracy–Widom law does not describe the unusually large fluc-
tuations of λmax from its mean 〈λmax〉. To compute these large fluctuations,
we need to calculate the associated large deviation or rate functions. It turns
out that the due to inherent asymmetry of the distribution of λmax around
its average, the left and right large deviation functions (along with the asso-
ciated scaling with N) are different [3]. For the Wishart and the Gaussian
cases, the right large deviation functions were computed respectively in [4]
and [5]. On the other hand, explicit expressions for the left large deviation
functions were obtained recently in [6] for the Gaussian case and in [7] for
the Wishart–Laguerre case, and in this paper we are going to review these
results. The main technical tool is a very effective functional method [6]
based on the well-known Dyson’s gas analogy [8]. This technique has been
used in several contexts afterwards [9, 10].

We first review here the main motivations for this study in both cases.

1.1. Gaussian ensemble

The Gaussian ensemble with Dyson index β = 1, 2, 4 is composed by
random matrices with real, complex or quaternion entries independently
taken from a standard Gaussian distribution. The joint probability density
for the N eigenvalues is given by:

P (λ1, . . . , λN ) = CNe−
1

2

PN
i=1

λ2

i

∏

j<k

|λj − λk|β , (4)

where the interaction term is given by the Vandermonde determinant raised
to the power β.

From (4), one can derive that the mean value for the largest eigenvalue

〈λmax〉 lies at
√

2N , and that the scale of typical fluctuations around that
value is N−1/6. The full N -independent distribution of the centered and
rescaled λmax is given by the Tracy–Widom distribution [2]. The Tracy–
Widom distribution describes the probability of typical and small fluctua-
tions of λmax over a very narrow region of width ∼ O(N−1/6) around the

mean 〈λmax〉 ≈
√

2N , as depicted schematically in Fig. 1. A natural question
is how to describe the probability of atypical and large fluctuations of λmax

around its mean, say over a wider region of width ∼ O(N1/2)? For example,
what is the probability that all the eigenvalues of a random matrix are neg-
ative (or equivalently all are positive)? This is the same as the probability

that λmax ≤ 0 (or equivalently λmin ≥ 0). Since 〈λmax〉 ≈
√

2N , this requires
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(2N)1/2(2N)1/2− 0
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Fig. 1. The dashed line shows the semi-circular form of the average density of states.

The largest eigenvalue is centered around its mean
√

2N and fluctuates over a scale

of width N−1/6. The probability of fluctuations on this scale is described by the

Tracy–Widom distribution (shown schematically).

the computation of the probability of an extremely rare event characterizing
a large deviation of ∼ −O(N1/2) to the left of the mean. This question
recently came up in the context of random landscape models of antropic
principle based string theory [11, 12] as well as in quantum cosmology [13].
Here one is interested in the statistical properties of vacua associated with a
random multifield potential, e.g., how many minima are there in a random
string landscape? Similar questions also arise in disordered systems where
one is interested in counting the number of local minima of a random Gaus-
sian field [14]. In order to have a local minimum of the random landscape
one needs to ensure that the eigenvalues of the associated random Hessian
matrix are all positive. A related important question is: if one conditions
all the eigenvalues to be positive, how does the average density of states
get modified from the Wigner semi-circle form? We will review the results
obtained in [6] in Section 2.

1.2. Wishart–Laguerre ensemble

The Wishart–Laguerre ensemble [15] contains covariance matrices W =
XT X, where X is a (M × N) (M > N) matrix with random Gaussian
entries. The jpd of the positive eigenvalues for the matrices W is given by:

P (λ1, . . . , λN ) ∝
N
∏

i=1

λ
β

2
(1+M−N)−1

i e−
β

2
λi

∏

j<k

|λj − λk|β . (5)

These Wishart random matrices have been extremely useful in multivariate
statistical data analysis [16, 17] with applications in various fields ranging
from meteorological data [18] to finance [19,20]. Such matrices are also useful
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to analyze the capacity of channels with multiple antennae and receivers [21].
They also appear in nuclear physics [22], quantum chromodynamics [23] and
also in statistical physics such as in a class of (1 + 1)-dimensional directed
polymer problems [4]. Recently, Wishart matrices have also been used in
the context of knowledge networks [24] and new mathematical results for
the distribution of the matrix elements for the Anti-Wishart matrices (when
M < N) have been obtained [25, 26].

It turns out that the spectral properties, and in particular the mag-
nitude of the largest eigenvalue, of the covariance matrix have significant
importance for a widely used technique in multivariate analysis of empirical
data, the so called PCA (Principal Component Analysis), see [27]. For the
case when the empirical data are treated as pure random variables, several
recent works have been devoted to the study of the largest eigenvalue of the
covariance (Wishart) matrix [4, 17, 28–31]. From the exact analytical form
of the density of states (Marčenko–Pastur distribution [32]), it follows that
the average of the maximum eigenvalue for large N is 〈λmax〉 ≈ x+(c)N ,

where x+(c) =
(

1√
c

+ 1
)2

. However, for finite but large N , the maximum

eigenvalue fluctuates, around its mean x+(c)N , from one sample to an-
other. A natural question is: what is the full probability distribution of
the largest eigenvalue λmax? Recently, Johansson [4] and independently
Johnstone [17] showed that for large N these fluctuations typically occur
over a scale ∼ O(N1/3) around the mean, i.e. the upper edge of the
Marčenko–Pastur distribution, and the probability of typical fluctuations
χ = N−1/3[λmax−x+(c)N ], properly centered and scaled, is again described
by the Tracy–Widom distribution.

As in the Gaussian case, the Tracy–Widom distribution describes the
probability of typical and small fluctuations of λmax over a narrow region of
width ∼ O(N1/3) around the mean 〈λmax〉 ≈ x+(c)N . A question that is
particularly important in the context of PCA is how to describe the prob-
ability of atypical and large fluctuations of λmax around its mean, say over
a wider region of width ∼ O(N). For example, what is the probability that
all the eigenvalues of a Wishart random matrix are less than the average
〈λ〉 ≈ N/c for large N? This is the same as the probability that λmax ≤ N/c.
Since 〈λmax〉 ≈ x+(c)N , this requires the computation of the probability of
an extremely rare event characterizing a large deviation of ∼ O(N) to the
left of the mean.

In the context of PCA, this large deviation issue arises quite naturally
because one is there interested in getting rid of redundant data by the ‘di-
mension reduction’ technique and keeping only the principal part of the data
in the direction of the eigenvector representing the maximum eigenvalue,
as mentioned before. The ‘dimension reduction’ technique works efficiently
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only if the largest eigenvalue is much larger than the other eigenvalues. How-
ever, if the largest eigenvalue is comparable to the average eigenvalue 〈λ〉,
the PCA technique is not very useful. Thus, the knowledge of large nega-
tive fluctuations of λmax from its mean 〈λmax〉 ≈ x+(c)N provides useful
information about the efficiency of the PCA technique.

In the next section, we introduce the main theoretical tools we used to
compute the universal rate functions in the two cases.

2. Theoretical approach

The starting point of the analysis is the jpd (3):

P (λ1, . . . , λN ) ∝ e−
β

2

PN
i=1

V (λi)
∏

j<k

|λj − λk|β ,

with V (x) = x2 (Gaussian ensembles) and V (x) = x − [(1 + M − N) −
2/β] log x (Wishart–Laguerre ensemble), as already mentioned in the Intro-
duction.

The jpd (3) allows one to interpret the eigenvalues as the positions of
charged particles, repelling each other via a 2-d Coulomb potential (loga-
rithmic); they are confined on a 1-d line and each is subject to an external
confining potential. The parameter β that characterizes the type of ensemble
can be interpreted as the inverse temperature. The average density of states
ρsc(λ,N) =

∑N
i=1〈δ(λ − λi)〉/N can be calculated [33] from the jpd (3) and

has the Wigner semi-circular form in the Gaussian case and the Marčenko–
Pastur form in the Wishart–Laguerre case. In the Coulomb gas language,
this is the average equilibrium charge density.

The probability QN (ζ) that all the eigenvalues are smaller than a barrier
at ζ can be computed for large N as follows. Let us first define the restricted
partition function:

ZN (ζ) =

∫

I(ζ)

N
∏

i=1

dλi exp



−β

2





N
∑

i=1

V (λi) −
∑

i6=j

ln (|λi − λj |)







 , (6)

where the interval I(ζ) represents the allowed range for the eigenvalues
((−∞, ζ] for the Gaussian case and [0, ζ] for the Wishart–Laguerre case).
It then follows that:

QN (ζ) =
ZN (ζ)

ZN (+∞)
. (7)

Let ρN (λ) =
∑N

i=1 δ(λ − λi)/N denote the spatial density of charges.
Using standard techniques of functional integration we may express ZN (ζ)
as:
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ZN (ζ) ∝
∫

D[ρN ] exp
[

− βN

2

∫

I(ζ)

dλ ρN (λ)V (λ)

+
βN2

2

∫

I(ζ)

dλ dλ′ ρN (λ)ρN (λ′) ln
(

|λ − λ′|
)

−N

∫

I(ζ)

dλ ρN (λ) ln (ρN (λ))
]

. (8)

The first two terms in (8) represent the energy of the charges as in Eq. (6).
The third term represents the entropy which has a mean field form due to
the fact that all charges interact with each other via the long-range logarith-
mic potential. The charge density ρN (λ) evidently satisfies the constraints:
ρN (λ) = 0 for λ �∈ I(ζ) and

∫

I(ζ) dλρN (λ) = 1.

Since we are interested in fluctuations of ∼ O(Nα) (α = 1/2 for Gaussian
and α = 1 for Wishart–Laguerre), it is convenient to work with the rescaled
variables, λ = µNα and ζ = zNα. It is reasonable to assume that the charge
density scales as ρN (λ) = N−αf (λN−α). The scaling function evidently
satisfies the constraints:

∫

I(z)

dµf(µ) = 1; f(µ) = 0 for µ �∈ I(z) . (9)

Expressing the action in Eq. (8) in terms of rescaled charged density f(µ),
one finds that the energy term scales as ∼ O(N2) whereas the entropy term
∼ O(N) is subdominant for large N . For large N , the functional integration
can be carried out using the method of steepest descent. This gives, as a
function of rescaled variable z = ζ/Nα:

ZN (z) ∝ exp
[

βN2S(z) + O(N)
]

, (10)

where S(z) = maxf {Σ(f)} and

Σ(f) = − 1

2

∫

I(z)

dµ f(µ)V (µ)

+
1

2

∫

I(z)

∫

I(z)

dµdµ′f(µ)f(µ′) ln
(

|µ − µ′|
)

. (11)
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The stationarity condition δΣ(f)/δf = 0 gives

V (µ)

2
+ C =

∫

I(z)

dµ′ f(µ′) ln
(

|µ − µ′|
)

, (12)

where C is a Lagrange multiplier enforcing the normalization of f in Eq. (9).
Differentiating Eq. (12) with respect to µ gives

V ′(µ)

2
= P

∫

I(z)

dµ′ f(µ′)
1

µ − µ′ , (13)

where P indicates the Cauchy principle part.
The integral Eq. (13) is of the Tricomi type [34] and can be solved in

both cases [6,7]. The resulting equilibrium charge density f(x) can be tested
numerically and the results are in good agreement with the theoretical pre-
dictions (see next section). Once Eq. (13) has been solved and the constant
C has been determined from (12), the extremal action S(z) can be analyti-
cally computed in the two cases and from (7) it follows that the probability
that λmax is less than the barrier ζ = zNα decays for large N as:

QN (ζ = zNα) ≈ exp
[

−βN2Ψ(z)
]

, (14)

where the rate function Ψ(z) is given by:

Ψ(z) =

{

S(z) − S(
√

2) Gaussian ,

S(z) − S(x+(c)) Wishart .
(15)

The explicit expressions for Ψ(z) are quite intricate [6, 7] and will not be
reported here. Note that in (15) we used the fact that, due to the presence

of a soft edge for N ≫ 1 at x̄ =
√

2N and x̄ = Nx+(c) (Gaussian and
Wishart respectively), the barrier ζ is ineffective beyond that point and one
can identify x̄ = +∞ in (7).

The equilibrium charge density f(x) (solution of (13)) is given by:

f(x) =







1
2π

√
x

√

L(z) − x [L(z) + 2x + 2z] Gaussian ,

1
2π

√
x−L1(c,z)√

z−x

[

A(c,z)−x
x

]

Wishart .
(16)

and develops an inverse square root singularity at the barrier z. Note
that (16) represents the average density of states (in the large N limit)
for matrix models whose largest eigenvalue is constrained to lie on the left
of the barrier at z. The theoretical results (16) and (15) are compared with
numerical simulations on actual samples of random matrices in the following
section.
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3. Numerical simulations

We report the results of numerical simulations performed on the Gaus-
sian and Wishart cases. Figs. 2, 3 and 4 refer to the Gaussian case, while
Figs. 5 and 6 to the Wishart–Laguerre case. In Fig. 2 we plot the average
density of states f(x) for different values of the barrier z. In Fig. 3 the
logarithm of the probability QN (0) in (14) is computed by a Monte Carlo
sampling of the Vandermonde coupling

∏

j<k |λj − λk| where the {λi} are
independent Gaussian variables such that λi > 0. In Fig. 4, the theoretical
result (16) is compared with a numerically generated histogram of the eigen-
values for 6×6 ensemble of constrained Gaussian matrices. For the Wishart
case, in Fig. 5 constrained 10 × 10 matrices (corresponding to N = 10,
M = 100, c = 0.1) are diagonalized and the histogram of eigenvalues is
compared with the theoretical distribution (16), showing a good agreement.
Also the probability QN (z) is investigated by actual diagonalization in Fig. 6
for the barrier at z = 14. In the parabolic fit, the best value for the coeffi-
cient of the leading term is estimated as −0.0357, to be compared with the
theoretical prediction ≈ −0.03666. Despite the relatively small sizes and the
O(N) corrections, the agreement is already good.

0 1 2
0

1

2

3

x

f(x
)

Fig. 2. (Gaussian) The average density of states f(x) plotted as a function of the

shifted variable x for z = −1 (dotted line), z = 0 (solid line), and z = 0.5 (dashed

line).
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N(0
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Fig. 3. (Gaussian) Monte Carlo computation of ln(QN (0)) (14); points with error

bars along with a quadratic fit (solid line).

0 1 2
0

1

2

�

f(�
)

Fig. 4. (Gaussian) The analytic large N formula for f with z = 0 (solid line) in

Eq. (16) is compared to the numerically generated averaged histogram of (6 × 6)

Gaussian matrices with positive eigenvalues. Despite the small size N = 6, the

agreement is already fairly good, except near the large µ tail.
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Fig. 5. (Wishart) Constrained spectral density for N = 10, M = 100 (c = 0.1).

The barrier is at z = 14. In dash-dotted green the histogram of rescaled eigenvalues

over an initial sample of 5 × 105 matrices (β = 2). In triangled red the theoretical

distribution.
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Fig. 6. (Wishart) Natural logarithm of the probability that all the rescaled eigen-

values are less than z = 14 vs. N for the case c = 0.1 (x+ ≈ 17.32). The data

points are fitted with a parabola (solid line).
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4. Conclusions

Using functional integration techniques based on the well-known Dyson’s
gas analogy, the decay rate for the probability that the largest eigenvalue of
Gaussian and Wishart–Laguerre ensembles takes anomalously small values
can be computed analytically. This result is universal, in the sense that it
does not depend on the symmetry class of the ensemble considered but only
on the location of the fictitious hard edge z and on the parameter c in the
Wishart–Laguerre case. Numerical simulations on actual samples of random
matrices reveal an excellent agreement for both ensembles.
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