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This study is purposed to elaborate the problem of energy and mo-
mentum distribution of the Bell–Szekeres space time in general theory of
relativity. In this connection, we use the energy-momentum definition of
Møller and obtain that the energy momentum distributions (due to mat-
ter plus field) are vanishing everywhere. This results are exactly the same
as viewpoint of Aygün et al. and agree with a previous work of Rosen,
Saltı et al. and Johri et al. who investigated the problem of the energy in
Friedmann–Robertson–Walker universe. The result that the total energy-
momentum of the universe in these models are zero support the viewpoint
of Tryon.

PACS numbers: 04.20.–q, 04.20.Cv

1. Introduction

The subject of energy-momentum localization in General Relativity (GR)
and Teleparallel Gravity (TG) continues to be an open one because there is
no given yet a generally accepted expression for the energy-momentum den-
sity. For the solution of the problem many researchers have computed the
energy as well as the momentum and angular momentum associated with
various space-times. After Einstein [1] obtained an expression for the energy-
momentum complexes many physicists, such as Landau and Lifshitz [2],
Papapetrou [3], Tolman [4], Weinberg [5], Qadir–Sharif [6] and Bergmann
and Thomson [7] had given different definitions for the energy-momentum
complex. These definitions were restricted to evaluate energy distribution in
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quasi-cartesian coordinates. This motivated Møller [8] and many others, like
Komar [9] and Penrose [10] to construct coordinate independent definitions.
Møller proposed an expression which could be utilized to any coordinate
systems. There have been several attempts to calculate energy-momentum
prescriptions associated with different space-times [11, 12]. Virbhadra [13]
showed that the definitions of Einstein, Tolman and Landau and Lifshitz
give the same energy distribution for the Kerr–Newman metric. Later,
Aguirregabiria et al. [14] proved that definitions of Einstein, Landau and
Lifshitz, Weinberg and Papapetrou give the same result for any metric of
Kerr–Schild class. Later, Virbhadra [15] emphasized that these complexes
in fact coincide for space-times more general than the Kerr–Schild class.
He also computed energy distribution for a general non-static spherically
symmetric space-time of Kerr–Schild class and found that all these defini-
tions give the same result as given by the Penrose quasi-local definition of
energy. Vargas [16], by using teleparallel gravity analogs of Einstein and
Landau–Lifshitz energy-momentum definitions, found that energy is zero
in Friedmann–Robertson–Walker space-times. This result agrees with the
previous works of Cooperstock–Israelit [17], Rosen [18], Banerjee–Sen [19]
who investigated the problem of the energy in Friedmann–Robertson–Walker
universe in Einstein’s theory of general relativity. After this work, Saltı
and Havare [20] considered Bergmann–Thomson’s definition in both gen-
eral relativity and teleparallel gravity for the viscous Kasner-type metric.
Tryon [21] suggested that in our universe all conserved quantities have to
vanish. Tryon’s big bang model predicted a homogeneous, isotropic and
closed universe including matter and anti-matter equally. Aygün et al. have
investigated energy momentum-distributions of Marder universe for Ein-
stein, Møller, Bergmann–Thomson, Landau–Lifshitz, Papapetrou, Qadir–
Sharif and Weinberg’s definitions in general relativity and teleparallel ver-
sion of Einstein, Bergmann–Thomson and Landau–Lifshitz definitions and
also the momentum four-vector (due to matter plus field) is found to be
zero [22, 23].

The basic purpose of this paper is to obtain the total energy for Bell–
Szekeres metric by using the energy-momentum expression of Møller in gen-
eral relativity. We will proceed according to the following scheme. In Sec-
tion 2, we give the Bell–Szekeres space-time and the features of gravita-
tional and electromagnetic waves. Section 3 gives the energy-momentum
definitions of Møller in general relativity and we calculate the total energy-
momentum density for the Bell–Szekeres space-time. Finally, we summarize
and discuss our results. Throughout this paper, the Latin indices (i, j, . . .)
represent the vector number and the Greek (µ, ν, . . .) represent the vector
components; all indices run 0 to 3. We use geometrized units where G = 1
and c = 1.
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2. Bell–Szekeres space-time

It is known that exact gravitational plane waves are very simple time
dependent plane symmetric solutions of Einstein’s equations [24]. Neverthe-
less, they show two main nontrivial global features, namely: (i) the absence
of a global Cauchy surface, which is a consequence of the focusing effect
that the waves exert on null rays [25], (ii) the presence of a Killing–Cauchy
horizon which may be physically understood as the caustic produced by the
focusing of null rays [26]. The inverse of the focusing time is a measure
of the strength of the wave. For an Einstein–Maxwell plane wave such in-
verse time equals the electromagnetic energy per unit surface of the wave.
This makes exact plane waves very different from their linearized counter-
parts, which have no focusing points and admit a globally hyperbolic space-
time structure. One expects that exact plane waves may be produced in
the collision of black holes [27] or to represent traveling waves on strongly
gravitating cosmic strings [28]. In recent years these waves have been used
in classical general relativity to test some conjectures on the stability of
Cauchy horizons [29], and in string theory to test classical and quantum
string behaviour in strong gravitational fields [30]. Interest in them also
stems from the fact that plane waves are a subclass of exact classical solu-
tions to string theory [31]. In Einstein–Maxwell theory the particular class
of plane symmetric waves are seen to contain only a non-null component
of Ricci tensor and only a non-null component of the Weyl tensor. De-
pending on whether the Ricci component or the Weyl component is zero we
will distinguish pure gravitational plane waves or pure electromagnetic plane
waves, respectively. When we consider a plane wave collision, we should
analyze separately the collision between pure gravitational waves, between
pure electromagnetic waves or between mixed waves. Namely: (i) when
two pure gravitational plane waves interact, the focusing effect of each wave
distorts the causal structure of the space-time near the null horizons that
these waves contain and either a spacelike curvature singularity or a new
regular Killing–Cauchy horizon is created, (ii) when two pure electromag-
netic plane waves interact, the situation is more subtle. In fact, in the full
Einstein–Maxwell theory, Maxwell’s equations remain linear indicating non
direct electromagnetic interaction between the waves. However, there is a
non-linear interaction of the waves through the gravitational field gener-
ated by their electromagnetic energy, which is similar to the magnitude of
the interaction between pure gravitational waves. In that sense, the colli-
sion of two electromagnetic waves is seen to produce gravitational waves.
(iii) in the case of mixed collisions, the pure electromagnetic wave is par-
tially reflected by the incident pure gravitational wave. The gravitational
wave, however, is not necessarily reflected.
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The Bell–Szekeres solution [32] represents the collision of two electro-
magnetic plane shock waves followed by trailing radiation. The interaction
region is isometric to the Bertotti–Robinson universe [33], which is the static
conformally flat solution of Einstein–Maxwell equations with a uniform elec-
tric field. Such a geometry is similar to the throat of Reissner–Nordstrom
solution for the special case M = Q [34].

The Bell–Szekeres (BS) metric is given by

ds2 = 2dudv + e−U
(

eV dx2 + e−V dy2
)

, (1)

where the metric functions U and V depend on the null coordinates u and v.
The complete solution of the Einstein–Maxwell equations is

U = − log(f(u) + g(v)), V = log(rw − pq) − log(rw + pq), (2)

where
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(

1

2
+ f

)1/2

, p =

(

1

2
− f

)1/2

,
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(

1

2
+ g

)

1/2

, q =

(

1

2
− g

)

1/2

, (3)

with

f =
1

2
− sin2 P, g =

1

2
− sin2 Q . (4)

Here P = auΘ(u), Q = bvΘ(v), where Θ is the Heaviside unit step function,
a and b are arbitrary constants.

3. Møller energy-momentum in General Relativity

The energy-momentum complex of Møller [35] is given by

Mν
µ =

1

8π
χνα

µ,α (5)

satisfying the local conservation laws:

∂Mν
µ

∂xν
= 0 , (6)

where the antisymmetric super-potential χνα
µ is

χνα
µ =

√

−g[gµβ,γ − gµγ,β ]gνγgαβ . (7)
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The locally conserved energy-momentum complex M ν
µ contains contribu-

tions from matter and non-gravitational fields. M 0

0
is the energy density and

M0
α are the momentum density components. The momentum four-vector of

Møller is given by

Pµ =

∫ ∫ ∫

M0

µdxdydz . (8)

Using Gauss’s theorem, this definition transforms into

Pµ =
1

8π

∫ ∫

χνα
µ µαdS , (9)

where µα is the outward unit normal vector over the infinitesimal surface ele-
ment dS. Pi give momentum components P1, P2, P3 and P0 gives the energy.
The required components of χνα

µ are

χ02

2
= −2(cos(auΘ(u)) sin(auΘ(u))

+ sin(bvΘ(v)) cos(bvΘ(v)))(Θ(u) + uΘu)a , (10)

χ03

3 = −2(cos(auΘ(u)) sin(auΘ(u))

− sin(bvΘ(v)) cos(bvΘ(v)))(Θ(u) + uΘu)a , (11)

where u indices describe the derivative with respect to u. From Eqs. (10),
(11) and (5) we get

M0

0
= M0

µ = 0 . (12)

Substituting Eq. (12) into Eq. (9) we easily see that Møller energy and
momentum in the Bell–Szekeres space-time is

Pµ = 0 . (13)

4. Summary and discussion

A large number of researchers are interested in studying the energy and
momentum contents of universe in various space- time models. Rosen, using
Einstein’s energy momentum complex, studied the total energy a homoge-
neous isotropic universe described by FRW metric and obtained zero. With
the Landau–Lifshitz definition of energy, Johri et al. demonstrated that the
total energy of FRW spatially closed universe is zero at all times irrespective
of equations of state of the cosmic fluid and the total energy enclosed within
any finite volume of spatially flat FRW universe is zero at all times.

In this paper, for the Bell–Szekeres space-time, using the energy-momen-
tum complex of Møller we found that the total energy momentum distribu-
tion is vanishing. In addition, the results that total energy and momentum
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distribution are vanishing in Bell–Szekeres space-time agree with the previ-
ous work of Aygün et al., Saltı et al., Rosen and Johri et al. and support the
viewpoint of Tryon.

We are thankful to the Turkish Scientific Research Council (Tübitak),
Feza Gürsey Institute, Istanbul for the hospitality during the summer terms
of 2002-2005.
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