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The gravitational sector of classical Lagrangian theories can generally
be expressed in the form of a power series

L =
√
−g

[
−1

2
κ−2R+

∞∑
n=2

(
anRn + ãn∂

2Rn
)]

,

where κ2 is the gravitational coupling and R is the Ricci scalar. By means
of a metric field-redefinition gij → (1 + βR)gij + γRij + δRikR

k
j + . . . , the

quadratic terms R2 can be removed completely (due to the Gauss–Bonnet
identity) and the cubic and higher-order terms Rn partially, only those
terms constructed solely from the Riemann tensor Rijkl remaining invari-
ant. It has been shown by Lawrence, however, that the implementation
of this procedure at a specific order n inevitably gives rise to ghosts at
the next and higher orders n′ ≥ n + 1, in the sense that a term Rn in L
is replaced by terms Rn−m(∂2R)m, for example. Classically, these ghosts
may lead to instabilities, and it is therefore necessary to investigate the
stability of the theory to linear perturbations, both before and after the
metric has been transformed. In the cosmological Friedmann space-time
ds2 = dt2 − a20e2α(t)dx2 which describes the Universe, where t is comoving
time and a0eα(t) is the radius function of the three-space dx2, assumed
flat, we find, by examining the characteristic equation, that the low-energy
solution invariably possesses exponentially growing (and decaying) modes,
after carrying out the field redefinition, irrespective of whether such modes
were present initially. Therefore, it is not expedient to redefine the metric in
this background, which, rather, should be considered as fixed. We discuss
the relevance of this result for the heterotic superstring theory, particularly
with regard to the vacuum solutions obtained previously from the effective
Lagrangian including terms n ≤ 4, and to the terms R2.
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1. Introduction

In the general theory of relativity, physically meaningful quantities are
invariant under arbitrary coordinate transformations

xi → x
′i(xj) , (1)

as a result of which the metric transforms according to

gij(x
k)→ g′ij(x

′k) =
∂x

′k

∂xi
∂x

′l

∂xj
gkl(x

m) . (2)

It is also possible, however, to transform the metric without changing the
coordinates at all, via a renormalization or redefinition of gij ,

gij(x
k)→ g′ij(x

k) = gij(x
k) + hij(x

k) . (3)

Under the second type of transformation, the Ricci scalar R, in particular, no
longer remains invariant, and hence there results an internal rearrangement
of the Lagrangian.

Let us consider a classical theory for which the Lagrangian function of
the gravitational sector can be written, without loss of generality, as the
power series

L =
√
−g

[
−1

2
κ−2R+

∞∑
n=2

(
anRn + ãn∂

2Rn
)]

, (4)

where κ2 ≡ 8πGN is the gravitational coupling, GN ≡M−2P being the New-
ton constant and MP the Planck mass, g = det gij , the Rn are specified
combinations of the Riemann tensor Rijkl and its contractions to the Ricci
tensor Rij ≡ R k

ikj and R ≡ R k
k , and the constants an and ãn denote the

coefficients of these terms. Under the metric redefinition (3), L transforms
into

L′ =
√
−g′
{
− 1

2
κ−2R+

∞∑
n=2

{
a′nRn + ã′n∂

2Rn

+

n∑
m=0

Rn−m
[
bmn (∂R)2m + b′mn

(
∂2R

)m
+

m∑
m′=0

b′′mm′n (∂R)2m
′ (
∂2R

)m−m′
+ ∂2

(
b̃mn (∂R)2m + b̃′mn

(
∂2R

)m
+

m∑
m′=0

b̃′′mm′n (∂R)2m
′ (
∂2R

)m−m′ )]}
+ . . .

}
. (5)
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At this stage, the choice of metric would seem arbitrary, as first noted
by ’t Hooft and Veltman [1, 2], who calculated the 1-loop divergence in the
Einstein theory of gravity and showed that the resulting quadratic terms R2

could all be removed, essentially by making the field redefinition

gij → g′ij = (1 + βR)gij + γRij . (6)

Note that it is impossible to construct a contribution to g′ij involving Rijkl
which is linear in R, because it has four indices, and therefore [2] R2 can
only be made to vanish after rewriting RijklRijkl in terms of RijRij and R2

via the Euler-characteristic density

R2
E ≡ RijklRijkl − 4RijR

ij +R2 , (7)

which produces a topological invariant. (If there is a coupling to a mat-
ter field φ of the form φ2R2, this term can no longer be removed, since√
−gφ2R2

E is not a total divergence [2].) Restricting the discussion to four
dimensions, at higher orders n ≥ 3 there is no analogue of the Gauss–Bonnet
identity (7), and consequently the Rn cannot be completely removed by the
field redefinition (3). When n = 3, for example, all terms constructed from
at the most two factors of the Riemann tensor can be removed via the trans-
formation

gij→g′ij =(1+βR+γR2+δRklR
kl)gij+εRij+ζRikR

k
j +ηRikjlR

kl+θRiklmR
klm
j ,

(8)
while the terms cubic in Rijkl remain invariant.

2. The meaning of ghosts

Although necessary for the renormalization of the gravitational theory
based on the Einstein–Hilbert Lagrangian L1 = −R/2κ2, the quadratic (and
higher-order), higher-derivative terms Rn, n ≥ 2, generally contain ghosts,
first identified by Stelle [3] and subsequently discussed in detail by Barth
and Christensen [4], and one of the chief motivations for applying the field
redefinition (3) is to remove these particles, which classically tend to be
a source of instabilities. It was shown by Lawrence [5], however, that if one
goes one loop further to order (n + 1), new ghosts may appear, and with
them new instabilities, which might seem to invalidate the procedure. In
fact this is true even if the n-th order Lagrangian contains no ghosts or
instabilities at all, as we shall see below by consideration of the theory with
quadratic Lagrangian

L
(0)
2 = A0R

2 . (9)
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For then only the ghost-free spin-0 field is present, with massM2
0 =1/12A0κ

2,
while the ghost-containing spin-2 field associated with the Lagrangian

L
(2)
2 = A2

(
1

3
R2 −RijRij

)
, (10)

for which the mass is M2
2 = 1/2A2κ

2, is absent (that is, M2
2 → ∞ when

A2 → 0).
The significance of these ghosts therefore has to be clarified. If we con-

sider the quadratic theory, the ghost-free scalar sector gives rise to the prop-
agator [3, 4]

G0(k) =
1

k2
, (11)

while the spin-2 propagator is

G2(k) =
1

k2
− 1

(k2 +M−22 )
. (12)

There is no violation of unitarity due to the scalar propagator (11), provided
that A0 ≥ 0, but, as has often been discussed in the past, unitarity cannot be
completely maintained for the spin-2 sector. If M2 is real, the second term
in Eq. (12) necessarily represents a ghost, that can only be removed through
substitution of the causal particle by a tachyon with M2

2 < 0, which has
the effect of excluding the ghost below the critical momentum kc = 1/|M2|.
At higher momenta k > kc, the ghost returns and is present as a tachyon.
If |M2| is sufficiently large, however, one can argue, following Weinberg [6],
that neither ghost nor tachyon is excited at low energies k2 � |M2

2 |, and
that the violation of unitarity can consequently be ignored.

Classically, an important consideration is the stability of the theory to
perturbations, restricted in the first instance to be linear. Although unitar-
ity may be approximately conserved at low energies, when the ghosts and
tachyons can be ignored quantum-field theoretically, it is not necessarily
the case that the low-energy stability criterion still holds in the presence of
higher-derivative terms. Subsequent to the earlier analysis by Ruzmăikina
and Ruzmaikin [7,8], this question was discussed by Barrow and Ottewill [9],
as an application of singular perturbation theory. From the results of Bailin
et al. [11], it becomes clear [12] that the stability of the theory is strictly
linked to the absence of tachyons — that is, a tachyonic Lagrangian will
give rise to classical instabilities. This can be seen for the theory L1 +L

(0)
2 ,

which we shall consider in more detail below with regard to the field re-
definition (3). Here, stability is determined by the sign of A0 alone [7–9],
which distinguishes the stable, tachyon-free region A0 ≥ 0 from the unsta-
ble, tachyonic region A0 < 0. (The instability of the Kerr metric in this
theory was discussed by Hersh and Ove [10].)
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3. The theory L = −R/2κ2 +A0R
2

Application of the transformation (3) to an arbitrary Lagrangian func-
tion is rather complicated. The most immediate problem, already evident
in the field redefinition (6), is the impossibility of inverting the metric g′ij
to obtain g′ij by analytical methods when γ is non-zero. In order to have
a working example, we shall therefore set γ = 0, retaining only the quadratic
term A0R

2 in L, whereupon expression (6) reduces to the conformal trans-
formation

gij → g′ij = e2vgij , (13)

where the conformal factor is

e2v = 1 + βR . (14)

Under the transformation (13), the Ricci scalar changes according to

R→ R′ = e−2v
[
R− 6(∇v)2 − 62v

]
. (15)

We then find, starting from the primed metric and discarding divergences,
that the theory

L′ =
√
−g′

(
−1

2
κ−2R′ +A0R

′2

)
(16)

is transformed into

L =
√
−g

{
− 1

2
κ−2R+

(
A0 −

1

2
κ−2β

)
R2 + 3β

[
(A0 − 1

4κ
−2β)

(1 + βR)

+
A0

(1 + βR)2

]
(∇R)2 +

9β2A0

(1 + βR)2

[
2R− β(∇R)2

2(1 + βR)

]2}
. (17)

Thus, the field redefinition (13) can be used to remove the term in R2 by
setting

β = 2κ2A0 , (18)

in which case the Lagrangian (17) reads

L = κ−2
√
−g

{
− 1

2
R+

3

4
β2
[

3 + βR

(1 + βR)2

]
(∇R)2

+
9β3

2(1 + βR)2

[
2R− β(∇R)2

2(1 + βR)

]2}
. (19)
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At low curvatures, such that β|R| � 1, expression (19) reduces to the
power series

L = κ−2
√
−g

{
− 1

2
R+

9

4
β2(∇R)2 +

3

4
β3
[
6(2R)2 − 5R(∇R)2

]
+

3

4
β4R

[
7R2(∇R)2 − 62R(∇R)2 − 12R(2R)2

]
+

9

8
β5
[
−6R3(∇R)2+12R2R

[
R2R+(∇R)2

]
+(∇R)4

]
+. . .

}
.(20)

Specializing to the cosmological Friedmann space-time

ds2 = dt2 − a20e2α(t)dx2 , (21)

where t is comoving time and a0eα(t) is the radius function of the three-space
dx2, whose curvature is k, we have, denoting d/dt by •,

R = −6
(
α̈+ 2α̇2 + ka−2

)
,

Ṙ = −6
(...
α + 4α̇α̈− 2ka−2α̇

)
,

R̈ = −6
[....
α + 4(α̈2 + α̇

...
α)− 2ka−2(α̈− 2α̇2)

]
,

(∇R)2 ≡ Ṙ2= 36
[...
α2+8α̇α̈

...
α+16α̇2α̈2−4ka−2(α̇

...
α + 4α̇2α̈)+4k2a−4α̇2

]
and

2R ≡ 3α̇Ṙ+R̈=−6
[....
α +7α̇

...
α+12α̇2α̈+4α̈2−2ka−2(α̈+α̇2)

]
. (22)

After discarding a divergence, the Lagrangian density can be written as

L = 3κ−2a30e
3α
{
− α̇2 + ka−20 e−2α + 27β2

[
1− 2β(α̈+ 2α̇2 + ka−2

]
[1− 6β(α̈+ 2α̇2 + ka−2]2

×
[...
α2 + 8α̇α̈

...
α + 16α̇2α̈2 − 4ka−2(α̇

...
α + 4α̇2α̈) + 4k2a−4α̇2

]
+O(β3)(8th-order terms........)

}
. (23)

In the form (23), L is intractable, and therefore we simplify this ex-
pression by setting k = 0 and assuming the low-energy régime β|R| � 1,
whereupon, ignoring the terms O(β3), we have

L ≈ A
[
−α̇2 + b(

...
α2 + 4α̇2α̈2 − 4α̈3)

]
e3α , (24)

after defining the constants

A = 3κ−2a30 , b = 27β2 . (25)
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The Hamiltonian density for the approximate theory (24), which vanishes
due to reparametrization invariance, also being the

(
0
0

)
component of the

vacuum Einstein equations, is given, see Whittaker [13], upon application of
the method of Ostrogradsky [14], by

H=
...
α
∂L
∂
...
α

+α̈

[
∂L
∂α̈
−
(
∂L
∂
...
α

)•]
+α̇

[
∂L
∂α̇
−
(
∂L
∂α̈

)•
+

(
∂L
∂
...
α

)••]
−L=0 , (26)

where

α̇
∂L
∂α̇

= 2A
(
−α̇2 + 4bα̇2α̈2

)
e3α ,

α̈
∂L
∂α̈

= 4Ab
(
2α̇2α̈2 − 3α̈3

)
e3α , (27)

−α̇
(
∂L
∂α̈

)•
= 4Ab

(
6α̇α̈

...
α + 5α̇2α̈2 − 2α̇3...α − 6α̇4α̈

)
e3α , (28)

...
α
∂L
∂
...
α

= 2Ab
...
α2e3α ,

−α̈
(
∂L
∂
...
α

)•
= −2Abα̈ (

....
α + 3α̇

...
α) e3α (29)

and

α̇

(
∂L
∂
...
α

)••
= 2Ab

(
α̇
.....
α + 6α̇2....α + 9α̇3...α + 3α̇α̈

...
α
)

e3α . (30)

Substituting expressions (27)–(30) into the Hamiltonian (26), we thus obtain

H = A

{
− α̇2 + b

[
2(α̇

.....
α − α̈....α ) + 4α̇2(3

....
α + 8α̈2)

+24α̈(α̇
...
α − α̇4) + 10α̇3...α − 8α̈3 +

...
α2
]}

e3α = 0 . (31)

4. The linearized stability analysis

In order to examine the stability of the metric to linear perturbations,
we write

α(t) = α0(t) + δ(t) , (32)

where α0(t) is a solution to the unperturbed field equations and |
(n)

δ (t)| �

|
(n)
α 0(t)|, n = 1, 2, 3, 4 or 5 counting the number of time derivatives, so that[

(n)
α (t)

]m
≈
[
(n)
α 0(t)

]m
+m

[
(n)
α 0(t)

]m−1 (n)

δ (t) . (33)
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Upon substitution of the perturbed metric (32) into the vacuum Hamilto-
nian (31), assuming the matter energy-density ρ ≡ T 0

0 ≡ κ−2Hm to be
unperturbed if non-vanishing, we obtain the differential equation obeyed by
δ(t),

Aδ̇ + Bδ̈ + C
...
δ +D

....
δ + E

.....
δ = 0 , (34)

in which the coefficients are given by

A = −2α̇0 + 2b
[.....
α 0 + 12 (α̇0

....
α 0 + α̈0

...
α0) + 15α̇2

0
...
α0 + 32α̇0α̈

2
0 − 48α̇3

0α̈0

]
,

B = 2b
[
−....α 0 + 12

(
α̇0

...
α0 − α̇4

0 − α̈2
0

)
+ 32α̇2

0α̈0

]
,

C = 2b
(...
α0 + 12α̇0α̈0 + 5α̇3

0

)
,

D = 2b
(
6α̇2

0 − α̈0

)
and
E = 2bα̇0 . (35)

Now, let us assume that the perturbations can be parametrized as

δ(t) = δ0e
λt , (36)

where 1/|λ| is the growth or decay time, according as λ is positive or nega-
tive, Eq. (34) then reducing to the quintic

Aλ+ Bλ2 + Cλ3 +Dλ4 + Eλ5 = 0 . (37)

The root λ = 0 is trivial, since δ(t) = δ0 simply describes a constant gauge
transformation of α0(t), and therefore the characteristic equation is essen-
tially the quartic

A+ Bλ+ Cλ2 +Dλ3 + Eλ4 = 0 . (38)

As previously [15], we are chiefly concerned with the low-energy cosmo-
logical Friedmann space-time, assuming a perfect-fluid source with energy-
density ρ and pressure p = (γ − 1)ρ, where γ is the adiabatic index. Far
from the Planck era, at t � tP, where tP ≡ M−1P = 5.38 × 10−44 s is the
Planck time, the solution takes the form

α̇0 = 2/3γt , α̈0 = −2/3γt2 ,
...
α0 = 4/3γt3 ,

....
α 0 = −4/γt4 and

.....
α 0= 16/γt5 , (39)

substitution of which into expressions (35) for the coefficients yields

A = −4/3γt+O(bt−5) , B ∼ bt−4 , C ∼ bt−3 ,

D ∼ bt−2 and E = 4b/3γt . (40)
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To lowest order in t−1, Eq. (38) therefore reads λ4 ≈ 1/b, but this is
actually not quite the correct answer.

To explain why, let us examine the last term in the Lagrangian (19),
which, from expressions (22), when k = 0, is

L3+L4+L5=
3Aβ3

2

[
2R− 1

2
β (∇R)2

]2
= 54Aβ3

[....
α +7α̇

...
α+12α̇2α̈+4α̈2

−3β
(...
α2+8α̇α̈

...
α+16α̇2α̈2

) ]2
e3α=54Aβ3

[....
α 2+14α̇

...
α
....
α +. . .

]
e3α . (41)

At t � tP, we find that L1 � L2 � L3 � L4 � L5 classically, where the
suffix counts the power of βR, while it turns out that not only L2 but also L3
become important at the perturbative level. For expression (41) differs from
the Lagrangian (23) [which also contains some terms of order (βR)3 with
up to three derivative ...

α ] by the presence of an additional fourth-derivative
term in ....

α , due to 2R, necessitating enhancement of the Hamiltonian (26)
to

H =
....
α
∂L
∂
....
α

+
...
α

[
∂L
∂
...
α
−
(
∂L
∂
....
α

)•]
+ α̈

[
∂L
∂α̈
−
(
∂L
∂
...
α

)•
+

(
∂L
∂
....
α

)••]
+α̇

[
∂L
∂α̇
−
(
∂L
∂α̈

)•
+

(
∂L
∂
...
α

)••
−
(
∂L
∂
....
α

)•••]
− L = 0 . (42)

Substituting L3 into expression (42), we find that the resulting contribution
H3 to the total Hamiltonian density contains sixth- and seventh-derivative
terms ......α and .......

α ,

H3 = 4Abβ
[ (
α̈− 9α̇2

) ......
α − α̇.......α + ignorable 8th-order terms

with 5 or less derivatives • on a single α
]
e3α . (43)

The point is that the second term in H3 contains
.......
α multiplied by a sin-

gle factor of α̇, which gives rise perturbatively to an additional contribution
α̇0

.......
δ in Eq. (34). Going through the analysis again with α(t) given by

Eq. (32), we obtain the characteristic equation, valid at low energies,

A+ Eλ4 + Gλ6 = 0 , (44)

where the additional coefficient is, from Eqs. (25) and (39),

G = −4βbα̇0(t) = −8b3/2/9
√

3γt . (45)

By change of variable, Eq. (44) can be written as

2y3 − 3y2 + 1 = 0 , (46)
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where
y =

√
b/3λ2 , (47)

the three roots of which are all real,

y = −1

2
, 1, 1 , (48)

implying that
λ = (3/b)1/4(± i/

√
2,±1,±1) . (49)

Eq. (44) is invariant under the transformation λ → −λ, and thus possesses
modes that grow exponentially on the time scale

τ = (b/3)1/4 = (48π|A0|)1/2tP (50)

independently of the sign of A0, since b = 108κ4A2
0.

We are now in a position to make a comparison with the earlier stability
analysis applied directly to the theory (16). It was first shown in Refs. [7,8]
that this theory is stable only if the coefficient A0 is positive semi-definite.
This result was extended in Ref. [9] to the more general theory in which A0R

2

is replaced by an arbitrary function f(R) of the scalar curvature, it being
found that the stability to linear perturbations is determined entirely, at low
energies, by the term quadratic in R. The stable case A0 ≥ 0 corresponds to
a positive semi-definite scalar mass-squared M2

0 ≥ 0, the theory then being
ghost-free (due to the absence of the term RijR

ij in L) and tachyon-free
(due to the positivity ofM2

0 ). The freedom from ghosts persists through the
transformation defined by Eqs. (13), (14) and (18), which produces a kinetic-
energy term (∇R)2 with positive semi-definite coefficient ≈ 9β2/4κ2 at low
energies, plus a term

[
2R− β(∇R)2/2(1 + βR)

]2 with positive semi-definite
coefficient 9β3/2κ2((1 + βR)2.

The situation here, however, is slightly different from that of Refs. [7–9].
In place of the quadratic characteristic equation with imaginary roots —
given by Eq. (81) of Ref. [15] in the case of the superstring theory considered
there — we have the sextic Eq. (44), which necessarily includes two real,
positive roots, implying instability of the metric. Whereas the question of
stability for higher-derivative Lagrangians of the type L = f(R) — or more
generally any function L = f(R,Rij , Rijkl) — is decided at low energies by
the quadratic term R2, because no derivative of α higher than third degree...
α ever occurs, the transformation (13), (14) leads to the occurrence of the
fourth-degree derivative ....

α .
To conclude, the instability of the theory (19), manifest in the solu-

tions (49) referred to the approximation (20), argues against the viability
of making the field redefinition (13), from the classical point of view, in the
Friedmann space-time (21).
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5. Superstrings

The field-theory limit of the heterotic superstring theory of Gross et al.
[16–18] is a ten-dimensional supergravity theory [19, 20] (subject to stringy
modifications beyond lowest order in the Regge slope parameter α′), in which
the space-time metric can be written in the diagonal form

ĝAB(XC) = diag
[
A−1r (xk)gij(x

l), Br(x
k)ḡµν(yξ)

]
, (51)

where Ar is the inverse tree-level gauge coupling g−2s and Br is the radius-
squared of the internal space ḡµν . In the preceding sections, we have dealt
with the field redefinition (3) as applied to the four-metric gij(xk), and in
principle the question arises, whether the field-redefinition procedure is also
applicable to the internal metric, which is independent of time t ≡ x0, thus
not being susceptible to temporal growth.

Symmetry considerations play an important rôle, and requiring the low-
energy, four-dimensional theory to be free of anomalies means that the cos-
mological constant Λ has to vanish, which follows if the internal space is
Ricci-flat,

R̄µν = 0 , (52)

since R̂ → ArR + B−1r R̄ under dimensional reduction. This immediately
reduces the field redefinition analogous to Eq. (6) to an identity,

ḡ′µν(yξ) = ḡµν(yξ) , (53)

and therefore such redefinitions are not usually given consideration.
In addition to the Einstein–Hilbert term Y1 ≡

∫
d6y
√
ḡR̄, the integral

over the internal space contains higher-derivative terms, for example

Y2 ≡
∫
d6y
√
ḡR̄µνξoR̄

µνξo , Y4 ≡
∫
d6y
√
ḡR̄4

µνξo (54)

at quadratic and quartic order, originating from the corresponding ten-
dimensional terms R̂2

E and R̂4, respectively. In six dimensions, the Euler-
characteristic density

√
ḡR̄2

E is not a divergence and therefore the term Y2
remains after imposing Eq. (52), having to be cancelled by an equal and
opposite contribution F2 ≡

∫
d6y
√
ḡF̄µνF̄

µν from the gauge field F̄µν . This
is most directly achieved by identifying the spin connection with the gauge
connection, as first advocated by Pauli [21] in early discussions of dimen-
sional reduction — see O’Raifeartaigh [22] — and described in detail by
Candelas et al. [23], who showed in the superstring context how a Ricci-flat
Kähler manifold ḡµν is necessary for the preservation of N = 1 supersym-
metry in four dimensions.
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With regard to the known gravitational terms up to quartic order R̄4, the
cubic term R̄3 is absent, there being no initial cubic ten-dimensional term
R̂3 [24], while reduction of R̂4 yields only the term RR̄3 cubic in R̄, which
simply renormalizes the gravitational constant [25,26]. The internal Calabi–
Yau space must be highly curved, however, in order that the six-dimensional
Euler characteristic χ̄ be non-vanishing, with χ̄ = −6 for a three-generation
theory [27, 28] and consequently we would expect a priori that the quartic
contribution Y4 to Λ is by no means ignorable, even when Eq. (52) is satisfied.
Nor is it at all obvious that Y4 can be cancelled against a quartic gauge
contribution

∫
d6y
√
ḡF4, when the gauge field has already been adjusted to

cancel the quadratic term.
The field-redefinition theorem is of no avail in solving this problem, be-

cause metric transformations of the type (8) can only remove higher-order
terms possessing a factor of at least one Ricci tensor or Ricci scalar, of the
form (R̄µν)(n−1)R̄µν or R̄(n−1)R̄, both of which vanish anyway by Eq. (52),
terms of the type R̄4

µνξo, involving only the Riemann tensor, remaining in-
variant.

It therefore seems that we have to impose supersymmetry in order to
ensure the vanishing of the net Λ, by suitable adjustment of all the fields in
the theory, bosonic as well as fermionic. The field equations for ḡµν admit
both Minkowski space and de Sitter space as maximally symmetric vacuum
solutions [29], but if the theory is to contain chiral fermions at the four-
dimensional level, a much less symmetric solution is obligatory.

The foregoing considerations determine both the space-time metric gij
and the internal-space metric ḡµν , and hence all the geometrical quantities
derived from them. One of the purposes of this analysis was to investigate
the status of the four-dimensional, gravitational vacuum solutions derived
from the terms −R/2κ2 +R2 + α

′2R4 in the Lagrangian L, obtaining from
R̂ and R̂4 in L̂. For the curved de Sitter space with cosmological con-
stant [15,29]

Λ =

[
18

337ζ(3) + 1/2

]1/3
A−1r κ−2 , (55)

where ζ(3) ≡ 1.202 is the Riemann zeta function, would be susceptible to
change under a transformation of the type (8). If gij(xk) is kept fixed,
however, the solution (55) becomes immutable, as seemingly required by
general covariance, subject only to modifications due to the unknown higher-
derivative terms Rn, n ≥ 5, the effect of which has yet to be calculated.

By the same line of reasoning, the quadratic four-dimensional terms arise
entirely from the ten-dimensional quartic term, due to the reduction R̂4 →
R2R̄2, where [30]

R2 = B(R2 −RijRij) (56)
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and the constant B ≈ 1. As we have argued previously [26, 31], the com-
bination (56) — which would also change under the transformation (8) —
is an expression of supersymmetry, in the non-linear formulation of Volkov
and Akulov [32–34]. The corresponding fermionic Lagrangian contains the
quadratic interaction terms

T 2 = T 2 − TijT ij , (57)

where Tij is the fermionic contribution to the energy-momentum tensor and
T ≡ T i

i , the two expressions (56) and (57) only agreeing in four dimen-
sions [31], after application of the Einstein equations.

Further, the presence in L of the quadratic term R2 with coefficient B of
order unity is important in cosmology, since it leads, via the indeterminacy
principle [35], to metric and density fluctuations in the Universe of approx-
imately the required magnitude and spectrum to explain the existence of
galaxies [36,37].

This paper was written at the University of Cambridge, Cambridge,
England.
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