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We present an exact solution around global monopole resulting from
the breaking of a global SO(3) symmetry in a five dimensional space time.
We have shown that the global monopole in higher dimensional space time
exerts gravitational force which is attractive in nature. It is also shown
that the space around global monopole has a deficit solid angle. Finally,
we study monopole in higher dimensional space-time within the framework
of Lyra geometry.

PACS numbers: 98.80.Cq, 04.20.Jb

1. Introduction

The idea of higher dimensional theory was originated in Super String and
Super Gravity theories to unify gravity with the other fundamental forces
in nature. To find a theory which unifies gravity with the other forces in
nature remains an open problem in quantum field theory even today. De-
velopments in Super String theories have stimulated the study of physics
in higher dimensional space-times [1]. Moreover, solutions of Einstein field
equations in higher dimensional space-times are believed to be of physical
relevance possibly at the extremely early times before the Universe under-
went the compactification transitions. As a result higher dimensional theory
is receiving great attention both in cosmology and particle physics. In quan-
tum field theory, when a symmetry has broken during the phase transitions,
several topological defects will arise [2]. Global monopole (a kind of topolog-
ical defect which is formed when a global symmetry is broken) is important
objects both particle physicists and cosmologists predicted to exist in Grand
Unified Theory. Using a suitable scalar field it was shown that the phase
transitions in the early Universe can give rise to such objects which are
nothing but the topological knots in the vacuum expectation value of the
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scalar field and most of their energy is concentrated in a small region near
the monopole core.

In 1989, Barriola and Vilenkin (BV) [3] have shown an approximate
solution of the Einstein equations for the metric outside a global monopole,
resulting from a global S0(3) symmetry breaking. Banerjee et al. [4] has
extended the work of BV to higher dimensions. Their space-time has the
topology of R1 X S1 X S2 X S1. Their five dimensional monopole metric
was not unique whereas BV monopole metric was unique.

In this work, we would like to consider global monopole in higher dimen-
sional space-time with topology is R1 X S1 X S3. The motivation of this work
is to look forward whether the global monopole shows any significant prop-
erties due to consideration of the space-time with topology R1 X S1 X S3.

While attempting to unify gravitation and electromagnetism in a single
space-time geometry, Weyl [5] showed how one can introduce a vector field
with an intrinsic geometrical significance. But this theory was not accepted
as it was based on non-integrability of length transfer. Lyra [6] proposed
a new modifications of Riemannian geometry by introducing a gauge func-
tion which removes the non-integrability condition of a vector under parallel
transport.

In consecutive investigations Sen [7] and Sen and Dunn [8] proposed
a new scalar tensor theory of gravitation and constructed an analogue of
Einstein field equations based on Lyra’s geometry which in normal gauge
may be written as

Rab − 1

2
gabR+ 3

2

∗ϕa
∗ϕb − 3

4
gab

∗ϕc
∗ϕc = −8πGTab , (1)

where ∗ϕa is the displacement vector and other symbols have their usual
meaning as in Riemannian geometry.

According to Halford [9], the present theory predicts the same effects
within observational limits, as far as the classical solar system tests are
concerned, as well as tests based on the linearised form of field equations.
Soleng [10] has pointed out that the constant displacement field in Lyra’s
geometry will either include a creation field and be equal to Hoyle’s creation
field cosmology or contain a special vacuum field which together with the
gauge vector term may be considered as a cosmological term.

Subsequent investigations were done by several authors in scalar tensor
theory and cosmology within the framework of Lyra geometry [11]. Recently,
Rahaman et al. and other authors have studied some topological defects
within the framework of Lyra geometry [12].

In the present work, we also derive the solutions for the higher dimen-
sional space-time metric outside a global monopole within the framework of
Lyra geometry in normal gauge i.e. displacement vector ∗ϕa = (β, 0, 0, 0, 0),
where β is a constant.
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In Section 3, we have studied higher dimensional global monopole in
Lyra geometry. Motion of the test particle in the gravitational field of higher
dimensional global monopoles are discussed in Section 4. The paper ends
with a short discussion in Section 5.

2. Global monopole in general relativity

In this section we closely follow the formalism of BV and take the La-
grangian as

L = 1

2
∂µΦ

i∂µΦi − 1

4
λ(Φi

Φ
i − η2)2 , (2)

where Φ
i is a multiplet of scalar fields, i = 1, 2, 3, 4 (where η is the energy

scale of symmetry breaking and λ is a constant).
The field configuration describing a monopole is taken as

Φ
i = ηf(r)

(

xi

r

)

, (3)

where xixi = r2.
[Actually (xi/r) ≡ ni is a unit vector (nini = 1) in four-dimensional

Euclidean space with components n4 = cosψ, n3 = sinψ cosϕ, n2 =
sinψ sinϕ cos θ,
n2 = sinψ sinϕ sin θ.]

The metric ansatz describing a monopole can be taken as

ds2 = −A(r)dt2 +B(r)dr2 + r2
(

dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdψ2
)

. (4)

Using the Lagrangian (2) and metric (4) the components of energy momen-
tum tensors can be written via [4]

Tab = 2

(

∂L

∂gab

)

− Lgab (5)

as follows:

T tt = η2
(f ′)2

2B
+

3

2
η2
f2

r2
+

1

4
λ(η2f2 − η2)2 (6)

T rr = −η2
(f ′)2

2B
+

3

2
η2
f2

r2
+

1

4
λ(η2f2 − η2)2 (7)

T θθ = Tϕϕ = Tψψ = η2
(f ′)2

2B
+

1

4
λ(η2f2 − η2)2 +

1

2
η2
f2

r2
(8)

(prime denotes the differentiation w.r.t. ‘r’).
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It can be shown that in flat space the monopole core has a size δ ∼
√
λη−1

and mass, Mcore ∼ λ−1/2η. Thus if η ≪ mp, where mp is the plank mass, it
is evident that we can still apply the flat space approximation of δ and Mcore.

This follows from the fact that in this case the gravity would not much
influence the monopole structure.

Banerjee et al. assumed that f = 1 outside the monopole core [4]. With
this result the energy stress tensors assume the following form

T t
t = T r

r = 3
η2

2r2
; T θθ = Tϕϕ = Tψψ =

1

2

η2

r2
, (9)

3
B′

2rB2
− 3

Br2
+

3

r2
= 12πG

η2

r2
, (10)

− 3

Br2
+

3

r2
− 3

A′

2rAB
= 12πG

η2

r2
, (11)

A′B′

4AB
− A′′

2AB
+

(A′)2

4BA2
+

B′

rB2
− A′

ABr
− 1

Br2
+

1

r2
=

1

2

η2

r2
. (12)

From equation (10) we get

Z ′ + 2
Z

r
= −2

1 − 4πGη2

r
, (13)

where Z = −(1/B).
Solving this equation, we get

B =

(

1 − 4πGη2 − C

r2

)

−1

, (14)

where C is an integration constant.
Now subtracting Eq. (11) from Eq. (12), we get

3
B′

2rB2
+ 3

A′

2rAB
= 0 . (15)

This implies
AB = 1 (16)

(without any loss of generality we can take the integration constant to be
unity).

Thus the solution is

A = B−1 =

[

1 − 4πGη2 − C

r2

]

. (17)
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Fig. 1. Diagram of the metric coefficient gtt for 8πGη2 = 10−6 and different values

of C. C = 0.002 for dotted line (blue), C = 0.006 for solid line (red), C = 0.009

for dash-dotted line (green).
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Fig. 2. Diagram of the metric coefficient grr for 8πGη2 = 10−6 and different values

of C. C = 0.002 for dotted line (blue), C = 0.006 for solid line (red), C = 0.009

for dash-dotted line (green).)

It is of some interest to calculate bending of light in the above field in
the plane θ = 1

2
π.

The equation for the light track in the ψ = const hyper surfaces is

k2 − h2

(

dU

dϕ

)2

− h2U2(1 − 4πGη2 −CU2) = 0 . (18)

The constants k, h are defined by

A
dt

dp
= k and r2

dϕ

dp
= h ,
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p being the affine parameter along the light path, and

r =
1

U
. (19)

From Eq. (18), one get (writing ξ = (1 − 4πGη2)1/2ϕ)

d2U

dξ2
+ U

[

1 − 2CU2
(

1 − 4πGη2
)

−1/2
]

= 0 . (20)

If the light ray does not penetrate into the monopole core, the last term is
small and one may write the above equation in the form

d2U

dξ2
+ U = 2CU3 . (21)

The approximate solution of this equation is

U = U0 cos(αξ) + U1 cos(3αξ) (22)

with U1 = −C(U2
0
/16) ≪ U0 and α2 = 1 − 3(CU2

0
/2). For U = 0, one gets,

αξ = ±1/2π or

ϕ = ±1

2
π

(

1 − 4πGη2
)

−1/2
[

1 − 3C
U2

0

2

]−1/2

, (23)

and bending comes out as

π

[

2πGη2 +
3

4
CU2

0

]

. (24)

3. Global monopole in Lyra geometry

In this section, we shall consider higher dimensional global monopole
in Lyra geometry. We have taken the same energy momentum tensors as
before.

The field equation (1) for the metric (4), reduces to

3
B′

2rB2
− 3

Br2
+

3

r2
− 3

4

β2

A
= 12πG

η2

r2
, (25)

− 3

Br2
+

3

r2
− 3

A′

2rAB
+

3

4

β2

A
= 12πG

η2

r2
(26)

A′B′

4AB
− 1

2

A′′

AB
+

A′2

4BA2
+

B′

rB2
− A′

ABr
− 1

Br2
+

1

r2
+

3

4

β2

A
= 4πG

η2

r2
. (27)
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Now subtracting Eq. (26) from Eq. (25), we get

(AB)′ = β2rB2 . (28)

Since β 6= 0, we never get the general-relativity-like solution. According
to BV, a global monopole solution should have f = 1 as r → ∞. The
dependence of η2 of the asymptotic expansion of f is very weak. It appears
that the asymptotic behaviour of the monopole solution is quite independent
of the scale of symmetry breakdown up to values as large as the Planck scale
[η2 = (4πG)−1]. However, in order to confirm the existence of monopole
solutions up to η2 = (4πG)−1, we have to obtain the values of A and B from
the field equations.

Adding Eq. (25) with Eq. (26), we get,

B′

rB2
− 1

B

(

A′

rA
+

4

r2

)

= 4
1 − 4πGη2

r2
. (29)

Using η2 = (4πG)−1, we get from Eq. (29)

B′

B
=
A′

A
+

4

r
. (30)

This implies
B = B0Ar

4 (31)

(here, B0 is an integration constant).
Using Eq. (30), from Eq. (28), we get

2
A′

A
+

4

r
= β2B0r

5 . (32)

Solving Eq. (32), we get

A =
A0

r2
exp

(

1

12
β2B0r

6

)

(33)

(here, A0 is an integration constant).
Thus the higher dimensional monopole in Lyra geometry takes the fol-

lowing form

ds2 = −A0

r2
exp

(

1

12
β2B0r

6

)

dt2 +B0A0r
2 exp

(

1

12
β2B0r

6

)

dr2 + r2dΩ2

3 .

(34)
From the metric itself, it is quite apparent that there is no singularity at a
finite distance from the monopole core.
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Fig. 3. Diagram of the metric coefficient gtt for global monopole in Lyra geometry

for different values of the displacement vector, taking A0 = 0.2, B0 = 1 and

β2 = 9.6 for dotted line (blue), β2 = 1.2 for solid line (red), β2 = 4.8 for dash-

dotted line(green).
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Fig. 4. Diagram of the metric coefficient grr for global monopole in Lyra geometry

for different values of the displacement vector, taking A0 = 0.2, B0 = 1 and

β2 = 9.6 for dotted line (blue), β2 = 1.2 for solid line (red), β2 = 4.8 for dash-

dotted line(green).

4. Motion of test particles

Let us consider a relativistic particle of mass m moving in the gravita-
tional field of the monopole described by Eq. (4).

The Hamilton–Jacobi (H–J) equation is [13]

− 1

A

(

∂S

∂t

)2

+
1

B

(

∂S

∂r

)2

+
1

r2

[

(

∂S

∂x1

)2

+

(

∂S

∂x2

)2

+

(

∂S

∂x3

)2
]

+m2 = 0

(35)
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with x1, x2, x3 are the coordinates on the surface of the 3-sphere.
Take the ansatz

S(t, r, x1, x2, x3) = −Et+ S1(r) + p1 x1 + p2 x2 + p3 x3 (36)

as the solution to the H–J Eq. (35).
Here the constant E is identified as the energy of the particle and

p1, p2, p3 are momentum of the particle along different axes on 3-sphere with
p = (p2

1
+ p2

2
+ p2

3
)1/2, as the resulting momentum of the particle.

Now substituting (36) in (35), we get

S1(r) = ε

∫
[

B

(

E2

A
− p2

r2
+m2

)]1/2

dr (where ε = ±1) . (37)

In H–J formalism, the path of the particle is characterised by [13]

∂S

∂E
= const,

∂S

∂pi
= const (i = 1, 2, 3) . (38)

Thus we get (taking the constants to be zero without any loss of generality),

t = ε

∫
(√

B
E

A

)({

E2

A
− p2

r2
+m2

})−1/2

dr , (39)

xi = ε

∫

(√
B
pi
r2

)

({

E2

A
− p2

r2
+m2

})−1/2

dr . (40)

From (39), we get the radial velocity as

dr

dt
=

A

E
√
B

({

E2

A
− p2

r2
+m2

})1/2

. (41)

Now the turning points of the trajectory are given by (dr/dt) = 0 and as a
consequence the potential curves are

E

m
≡ V =

[

A

(

p2

m2r2
+ 1

)]1/2

. (42)

We shall study the trajectory of the test particle for different situations:
Case–I: Global monopole in general relativity:
In this case the extremals of the potential curve are the solutions of the

equation

r2
[

2p2

m2

(

1 − 4πGη2
)

− 2m2C

]

= 2Cp2
(

1 +m−2
)

. (43)
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We note that if p2 < Cm4(1 − 4πGη2)−1, then the above radical has no
real extremals. Hence there is no window in the parameter space to produce
bound states and particles cannot be trapped by the monopole.

But this equation has at least one positive real root provided p2 >
Cm4(1−4πGη2)−1. So it is possible to have bound orbit for the test particle.
Thus the gravitational field of the global monopole is shown to be attractive
in nature but here we have to impose some restrictions relating symmetry
breaking scale η and mass and momentum of the test particle.

r
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Fig. 5. The diagram of the potential curve with respect to radial coordinate (taking

(p2/m2) = 5, 8πGη2 = 10−6 and C = 0.006).

Case–II: Global monopole in Lyra geometry:
Here the extremals of the potential curve are the solutions of the equation

β2B0r
8 +

(

p2m−2
)

β2B0r
6 − 4r2 − 8p2m−2 = 0 . (44)

This is an algebraic equation of even degree (degree eight) with negative last
term. This equation has at least one real positive root. Thus bound orbits
are possible in this situation. Hence the higher dimensional global monopole
in Lyra geometry always exert gravitational force which is attractive in na-
ture.

5. Discussions

At first, we state in brief, the nature of the BV’s four dimensional
monopole [3]. Solving the gravitational field equations and adopting some
suitable scale changes, BV arrived at the metric

ds2 = −dt2 + dr2 + (1 − 8πGη2)r2dΩ2

2 . (45)
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From this they concluded:

(a) g′tt = 0 i.e. the acceleration vector (Ar) corresponding to the unit
vector along time coordinate lines vanish, so the monopole exerts no
gravitational force.

(b) The coefficient (1 − 8πGη2) of r2dΩ2

2
indicates a deficit solid angle.

For our higher dimensional monopole it is obvious that A
r ≈ r−3. This

shows that the gravitational force falls of as the inverse cube of the distances.
We also see that the space-time around our higher dimensional monopole
has a deficit solid angle.

Banerjee et al. higher dimensional monopole metric is not unique but
our higher dimensional monopole metric is unique.

For large enough values of r, the solution (17) passes over to that given
by BV. A global monopole, however, is quite consistent in Lyra geometry
and we obtain the exact solutions for the space-time metric in some special
case. The solutions represented by Eq. (34) exhibit no singularity at a finite
distance from the monopole core . This example is important as in general
relativity all the solutions for a global monopole have a singularity for finite
values of r.

Our higher dimensional monopole in general relativity exerts gravita-
tional force which is attractive in nature provided some restriction to be
imposed relating symmetry breaking scale η and mass and momentum of
the test particle. This is quite similar to Banerjee et al. monopole [4]. But
higher dimensional global monopole in Lyra geometry always exerts gravi-
tational force, which is attractive in nature. Thus we see some important
differences between higher dimensional global monopole in Lyra geometry
with the classical result.
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