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We consider brane cosmology when the 4D Ricci scalar term is added to
the 5D Einstein–Hilbert action and discuss the role that the addition of this
term has on the brane-bulk system. The induced brane dynamics is shown
to be the usual Einstein dynamics coupled to a modified energy-momentum
tensor which is well defined once the 5D Einstein equations are solved in the
bulk. The 5D Einstein equations valid everywhere in the bulk, but not in
the brane, are projected on the brane. Then making use for the embedding
of the brane in the bulk of the Israel junction conditions, modified by
a source term coming from the addition of the intrinsic curvature scalar in
the bulk action, it is possible to obtain the effective 4D Einstein equations
on the brane consistent with the bulk geometry.

PACS numbers: 04.20.Jb, 04.50.–h

1. Introduction

In the present work we investigate the cosmological evolution of the
brane-bulk system in the framework of the Randall–Sundrum (A)dS5 sce-
nario [1]. The effective 4D gravitational equations in the brane without
curvature correction terms were first obtained by Shiromizu, Maeda and
Sasaki [2]. These equations have been later recovered and generalized both
on the brane and in the bulk taking into account the effect of a general
bulk energy-momentum tensor and either the asymmetric embedding [3] or
the accelerations of normals [4]. However, even employing more generalized
gravitational actions, the derived 4D Einstein equations do not in general
form a closed system due to the presence of a Weyl term which can only be
specified in terms of the bulk metric, so other equations are to be written
down and different procedures arise in splitting the non-Einsteinian terms
between bulk and brane [5]. We assume homogeneity and isotropy in the
three ordinary spatial dimensions but these symmetries cannot be extended
to the extra dimension due to the presence of the brane, so all the physical
quantities will depend on time and on the extra dimension. The solutions of
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the 5D Einstein equations that we shall obtain will be valid strictly in the
bulk. Then we project on the brane at y = 0 those equations and making
use of the junction conditions, modified by an additional term coming from
the (4)R curvature correction, as the boundary conditions imposed for the
embedding of the brane in the bulk we obtain the effective 4D Einstein equa-
tions on the brane consistent with the bulk geometry. The method used here
of deriving the 5D solution that is then projected onto the brane to study
the brane dynamics was used extensively in the early days of braneworld
cosmology by Kanti et al. [6]. The paper is organized as follows. In the
next section, before giving a brief account of our method, we summarize
the results obtained by Kofinas [7] when the (4)R term is included in the
5D action. Such a term, that was considered by a number of authors in
the literature (see [8,9,10] and references therein), is generically introduced
by quantum corrections coming from the bulk gravity and its coupling with
matter confined to the brane, moreover its inclusion brings a convenient de-
composition of the matter terms. In Section 3 we find the related equations
in the brane, assumed infinitely thin and Z2 symmetric in the bulk. In Sec-
tion 4 we use the flexibility of the 5D solution to describe some cosmological
models in 4D. Finally, in the Appendix we show how the 5D dynamical
solution we adopt can be obtained starting from a 5D static solution.
Conventions. Throughout the paper the 5D metric signature is taken to be
(+,+,+,−, ε) where ε can be +1 or −1 depending on whether the extra
dimension is space-like or time-like, while the choice of the 4D metric signa-
ture is (+,+,+,−). The space–times coordinates are labeled xi = (r, ϑ, ϕ),
x4 = t. The extra coordinate is x5 = y. Bulk indices will be denoted by cap-
ital Latin letters and brane indices by lower Greek letters. In what follows
we choose units such that ~ = c = 1.

2. Braneworld Einstein field equations

In this section we recall the results obtained by Kofinas [7], which we
shall use in the following, giving a brief account of their derivation. Once we
have solved the equations in the bulk, the form of the induced equations will
allow us finding brane solutions following the methods of General Relativity
with a well defined energy-momentum tensor. The starting point in [7] is
a three-dimensional brane Σ embedded in a five-dimensional spacetime M .
For convenience the coordinate y is chosen such that the hypersurface y = 0
coincides with the brane. The total action for the system is taken to be

S =
1

2κ2
5

∫

M

√
−ε (5)g

(
(5)R − 2Λ5

)
d5x +

1

2κ2
4

∫

Σ

√
−(4)g

(
(4)R − 2Λ4

)
d4x

+

∫

M

√
−ε (5)g Lmat

5 d5x +

∫

Σ

√
−(4)g Lmat

4 d4x . (1)
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The constants κ2
5 and κ2

4 are given by

κ2
5 = 8πG5 = M−3

5 , κ2
4 = 8πG4 = M−2

4 , (2)

where M5 and M4 are the Planck masses. Varying (1) with respect to the
bulk metric gAB one obtains the equations

(5)GB
A = −Λ5δ

B
A + κ2

5

(
(5)TB

A +(loc) TB
A δ(y)

)
, (3)

where

(loc)TB
A = − 1

κ2
4

√
− (4)g

−ε (5)g

(
(4)GB

A − κ2
4

(4)TB
A + Λ4h

B
A

)
(4)

is the localized energy-momentum tensor of the brane. (5)GAB and (4)GAB

denote the Einstein tensors constructed from the bulk and the brane metrics
respectively, while the tensor hAB = gAB − εnAnB is the induced metric on
the hypersurfaces y = constant, with nA the normal unit vector on these

nA =
δA
5

Φ
, nA = (0, 0, 0, 0, ε Φ) . (5)

The scalar Φ which normalizes nA is known as the lapse function and in
a cosmological scenario which we shall consider later, it will depend on t
and y. The way the coordinate y has been chosen allows to write the five-
dimensional line element, at least in the neighborhood of the brane, as

dS2 = gAB dxAdxB = gµν dxµdxν + εΦ2dy2 . (6)

Using the methods of canonical analysis [11] the Einstein equations (3) in
the bulk are split into the following sets of equations

Kν
µ;ν − K;µ = ε κ2

5Φ
(5)T y

µ , (7a)

Kµ
ν Kν

µ − K2 + ε (4)R = 2ε(Λ5 − κ2
5

(5)T y
y ) , (7b)

∂Kµ
ν

∂y
+ΦKKµ

ν −εΦ(4)Rµ
ν +εgµλΦ;λν = − εκ2

5Φ

(
(loc)T µ

ν − 1

3

(loc)

Tδµ
ν

)
δ(y)

− εκ2
5 Φ (5)T µ

ν

+
ε

3
Φ
(
κ2

5
(5)T − 2Λ5

)
δµ
ν , (7c)

where Kµν is the extrinsic curvature of the hypersurfaces y = constant

Kµν =
1

2Φ

∂gµν

∂y
, KAy = 0 . (8)
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The Israel junction conditions [12] for the singular part in Eq. (7c) are

[Kµ
ν ] = −ε κ2

5 Φ0

(
(loc)T µ

ν − 1

3
(loc)T δµ

ν

)
, (9)

where the square brackets mean discontinuity of the quantity across y = 0
and Φ0 represents Φ at y = 0. Consequently, considering a Z2 symmetry on
reflection around the brane, (9) becomes

(4)Gµ
ν = −Λ4 δµ

ν + κ2
4

(4)T µ
ν +

2ε

rc

(
K

µ
ν − Kδµ

ν

)
, (10)

where K
µ
ν = Kµ

ν (y = 0+) = −Kµ
ν (y = 0−) and rc = κ2

5/κ
2
4 is a crossover

term which determines the region of validity of conventional four-dimensional
General Relativity. From Eq. (7a) it follows that the tensor (4)T µ

ν satisfies
the conservation law (4)T µ

ν ;µ = 0 provided (5)T y
µ = 0, which means no ex-

change of energy between brane and bulk. The quantities K
µ
ν are still un-

determined and should be obtained from some exact solution of the global
five-dimensional spacetime. To determine the equations on the brane one
can follow the method suggested in Ref. [2], but this will reveal a difficult
task due to the necessity of taking into account the evolution of the Weyl
term to close the system of equations. A different approach, as discussed by
Binètruy et al. [13], is to solve the 5D Einstein equations strictly in the bulk
(y 6= 0) and then to take the brane into account by using the Israel junction
conditions. In this work we shall keep in mind this latter approach but,
having added the (4)R term, we shall make a different use of the junction
conditions. More in detail, we start projecting on the brane the solution
obtained in the bulk without considering the distributional part at y = 0.
This will be done using the geometrical identity

(4)RA
BCD =(5) RM

NKL hA
M hN

B hK
C hL

D + ε(KA
C KBD − KA

D KBC) (11)

and taking suitable contractions from the above relation. So it is possible to
construct the four and five-dimensional Einstein tensors and to get finally
the parallel to the brane equations

(4)Gµ
ν = −1

2
Λ5δ

µ
ν +

2

3
κ2

5

(
(5)T

µ
ν +

(
(5)T

y
y −

1

4
(5)T

)
δµ
ν

)

+ ε
(
KK

µ
ν −K

µ
λK

λ
ν

)
+

ε

2

(
K

κ
λK

λ
κ−K

2
)

δµ
ν −gκµ(5)C

y
κyν . (12)

Here (5)Cy
κyν is the “electric” part of the bulk Weyl tensor, while T and C

are the limiting values of those quantities at y = 0+ or 0−. Once we have
solved the Einstein equations strictly in the bulk we can make explicit the
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various terms appearing in the right-hand side of (12). Now we impose to
the above solution boundary conditions to take into account the physical
presence of the brane. This can be done if we consider equations (10) as the
boundary conditions imposed for the embedding of the brane in the bulk so
we have to equate the two independent equations (10) and (12). In this way,
however, we would obtain the “bare” quantities Λ4 and (4)T µ

ν but not the
effective quantities as seen by an observer confined to the brane. For a brane
observer Eqs. (10) are instead written as the usual Einstein equations

(4)Gµ
ν = −Λ4,eff δµ

ν + κ2
4

(
(4)T µ

ν

)
eff

. (13)

So the cosmological constant Λ4,eff and the effective energy-momentum ten-

sors
(
(4)T µ

ν

)
eff

can be obtained equating the right-hand sides of Eqs. (12)
and (13).

3. Dynamics in the brane-bulk system

We consider the 5D metric in the form commonly used in cosmological
applications

dS2 = a2(t, y) dσ2
k − n2(t, y) dt2 + εΦ2(t, y) dy2 , (14)

where

dσ2
k =

dr2

1 − kr2
+ r2(dϑ2 + sin2 ϑdϕ2) (15)

and k = +1, 0,−1 is the curvature index. Having specified the form of the
metric, we now turn to the 5D Einstein equations (3) considered strictly in
the bulk, that is, without the energy-momentum tensor at y = 0. These
equations can be solved once the structure and the content of the bulk come
as a result of a physically acceptable theory in higher dimensions. Exact
time-dependent solutions which generalize the static solutions were con-
structed using diffeomorphism invariance [14,15]. Kehagias and Tamvakis
[16] transformed the static Randall–Sundrum (A)dS5 solution into a dynam-
ical one by considering boosts along the fifth dimension and found a time-
dependent 5D solution for a bulk with vacuum energy but otherwise empty
and with vanishing Weyl tensor. In the present work we want instead to
consider (see (12)) a bulk where the non-localized energy-momentum ten-
sor and the “electric” part of the Weyl tensor are different from zero, so we
should start by a well defined bulk matter content described by the tensor
(5)TB

A and then solve the field equations. However our aim is to overcome
the problem of the brane field equations being non-closed so, to give an illus-
trative example of our method, we shall proceed in a bit unorthodox way. In
order to have a simple and non-trivial dynamical 5D solution we start from
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a static Randall–Sundrum (A)dS5 bulk and we construct, generalizing the
transformations in [16] a dynamical 5D line element with non-vanishing 5D
Weyl tensor. Subsequently we obtain the correspondent energy-momentum
content using the Einstein equations. This manner of proceeding may be
justified by the fact that this work is mainly focused on the brane phe-
nomenology of the model. Here we anticipate the main results of the proce-
dure and defer to the Appendix for detailed calculations. Our dynamical line
element will be obtained transforming the static Randall–Sundrum (A)dS5

metric, where the three-space is not necessarily flat but has a curvature in-
dex k = +1, 0,−1, into a dynamical one by considering boosts along the
fifth dimension. Then we take into account the Einstein equations in the
bulk, away from the brane at y = 0, and require that there is no energy flow
from the brane towards the bulk and vice versa, which implies (5)Gy

t = 0.
The above constraint is easily satisfied if one chooses wave-like expression
for the metric coefficients so, assuming the Z2 symmetry y → − y, it follows
that a(t, y), n(t, y) and Φ(t, y) in the line element (14) will be function of
w = t − λ |y| with λ a dimensionless constant. Metric coefficients in the
form of plane waves propagating in the fifth dimension have previously been
used in the literature in somewhat different contexts [17,18,19,20]. Finally,
the bulk line element away from the brane was found to depend only by the
scale factor a(t, y) = a(t − λ |y|) in the form

dS2 = a2 dσ2
k − 1

2 γ2λ2

(
κ2a2 +

√
κ4a4 + 4εγ2λ2 (

∗

a)2
)

dt2

+
1

2 γ2

(
−κ2a2 +

√
κ4a4 + 4εγ2λ2(

∗
a)2
)

dy2 , (16)

where κ is the constant scale factor for the extra dimension, the superscribed

asterisk
∗

denotes derivative with respect to w and γ is a dimensionless con-

stant which comes from the constraint (5)Gy
t =0, namely

∗
a=γnΦ. It should

be noted that a(t − λ|y|) = 0 corresponds to a scale factor singularity for
the 5D model which is similar to those that occur in the 4D Friedmann–
Robertson–Walker models. From the following curvature invariants

(5)R = −20ǫκ2 +
6k

a2(t − λ|y|) ,

(5)RAB
(5)RAB = 80ǫκ4 − 48ǫkκ2

a2(t − λ |y|) +
12k2

a4(t − λ|y|) , (17)

(5)RABCD
(5)RABCD = 40ǫκ4 − 24ǫkκ2

a2(t − λ |y|) +
12k2

a4(t − λ|y|) (18)



Brane Cosmology with (4)R Term in the Bulk 1801

we see that there is no other singularity except the one which may unaivod-
ably occur if the scale factor of the fifth dimension vanishes in some (t, y)
hyperplane.

Now we calculate the 5D Einstein tensor and from the field equations
considered strictly in the bulk we obtain the cosmological constant Λ5 and
the energy-momentum tensor (5)TB

A as

Λ5 = − 6 ε κ2 , (5)TB
A = diag(pB , pB , pB ,− ρB, p⊥) , (19)

where

κ2
5 pB = − k

a2(t − λ |y|) , κ2
5 ρB = −κ2

5 p⊥ =
3 k

a2(t − λ |y|) (20)

the subscript B referring to the bulk. A comment is needed about the cosmo-
logical fluid described by the energy-momentum tensor which arises from the
curvature index k in Eq. (15). It obeys an equation of state pB = (γ − 1)ρB

with barotropic index γ = 2/3, its pressure and energy density are propor-
tional to k and scale as a−2. All these features lead to the interesting pos-
sibility that the energy-tensor (20) can describe a fluid composed of cosmic
strings, as discussed by a number of authors [21]. We can use the flexibility
of the metric (16) to choose many different 5D scale factors, but clearly each
choice must meet the necessary requirements to give models acceptable on
physical grounds.

Let us now deal with the brane dynamics. We consider homogeneous
and isotropic geometries in the brane so the effective tensor

(
(4)T µ

ν

)
eff

will
describe a cosmological fluid endowed with pressure peff and energy density
ρeff . Equating Eqs. (12) and (13) we obtain

−Λ4,eff + κ2
4 peff = −Λ5

2
− ǫ

Φ2
0

(
1

a

∂a

∂y

)

0

(
1

a

∂a

∂y
+

2

n

∂n

∂y

)

0

− k

a2
0

, (21)

−Λ4,eff − κ2
4 ρeff = −Λ5

2
− 3 ǫ

Φ2
0

(
1

a

∂a

∂y

)2

0

− 3k

a2
0

. (22)

The effective cosmological constant Λ4,eff may be different from Λ5/2 =
−3ǫ κ2, its value being modified by possible additive constant terms con-
tained in (21) and (22). The Einstein tensor (4)Gµ

ν which appears in the
left-hand sides of (12) and (13) is constructed from the brane metrics

ds2 = ã2(t) dσ2
k − ñ2(t)dt2 . (23)

Now, in higher-dimensional theories there is the question of which metric
frame is the correct representation of our four-dimensional spacetime. In
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many braneworld theories, the physical metric in 4D is identified with the
induced one, while in other approaches the physical metric either is as-
sumed to be conformally related to the induced one or is determined by
the condition of classical confinement in the absence of non-gravitational
forces [22]. For the sake of simplicity, here we choose to identify the met-
ric (23) with the induced one, so we have ã(t) = a(t, 0) ≡ a0(t) and
ñ(t) = n(t, 0) ≡ n0(t). It follows that Eqs. (12) and (13) are identically
satisfied by the Einstein tensor (4)Gµ

ν constructed from (23). From the
knowledge a0(t) and n0(t) one can also obtain other cosmological quantities
such as the Hubble parameter H = ȧ0/(n0a0) or the deceleration parameter
q = −(a0 ä0)/ȧ0

2 + (a0ṅ0)/(ȧ0n0). Difficulties may instead arise from the
exact evaluation of the 4D proper time τ when dealing with the integral

τ =

∫
n0 dt and a generic value of n0(t). Finally, if we define

κ2
4 pφ = κ2

4 peff +
k

a2
0

and κ2
4 ρφ = κ2

4 ρeff − 3k

a2
0

(24)

we can model the fluid in terms of a scalar field φ, minimally coupled to
Einstein gravity and self-interacting through a potential V (φ), with pressure
and energy density given by

pφ =
± φ̇0

2

(2n2
0)

− V , (25)

ρφ =
± φ̇0

2

(2n2
0)

+ V , (26)

where the upper (lower) sign corresponds to a standard (phantom) scalar
field.

4. Some possible brane scenarios

In this section we describe two of the possible brane scenarios consistent
with our bulk solution. We shall choose simple values for the scale factor
a(t, y) and then determine Λ4,eff and

(
(4)T µ

ν

)
eff

together with the parameters
q and H. In the following we shall consider a space-like fifth dimension, so
ǫ = 1 and give relevant 4D quantities as a function of the 4D proper time τ .

(A) Let us first consider the case a(t, y) = (γλ/κ) sin κ(t − λ|y|).
This choice gives n0(t) = 1 so the coordinate time t now coincides with the
4D proper time τ and therefore

a0(τ) = (γλ/κ) sin κ τ , q(τ) = tan2 κ τ , H(τ) = κ cot κτ . (27)
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The evolution of the universe begins with a big bang at τ = 0, reaches
a maximum (a0)max = (γ λ)/κ and terminates with a big rip at κ τ = π.
We do not give numerical values for γ and λ while κ depends on the scale
factor of the fifth dimension. The cosmological constant Λ4,eff and the tensor(
(4)T µ

ν

)
eff

are given by

Λ4,eff = − 3κ2 , peff = −(γ2 λ2 + k)

κ2
4 a2

0(τ)
, ρeff =

3 (γ2 λ2 + k)

κ2
4 a2

0(τ)
. (28)

As to the standard scalar field, we have:

φ=

√
2

κ4
ln tan

κτ

2
, V =

2κ2

κ2
4 sin2 κτ

, V (φ)=
2κ2

κ2
4

cosh2 κ4φ√
2

. (29)

The same results, starting from different points of view, were obtained in [23].
(B) Now let us consider the case a(t, y) = (γλ/κ) (1 − κ(t − λ|y|)− 1.

This choice gives n0(t) =
√

2/(
√

5 − 1) (1 − κ t)−1 so the relation between

the coordinate time t and the 4D proper time τ is

(1 − κ t) = exp

[
−
√

(
√

5 − 1)/2 κ τ

]
.

Therefore

a0(τ)=
γ λ

κ
exp



√√

5 − 1

2
κτ


 , q=− 1 , H =

√√
5 − 1

2
κ . (30)

The cosmological constant Λ4,eff and the tensor
(
(4)T µ

ν

)
eff

are given by

Λ4,eff =
3 (

√
5 − 1)

2
κ2 , peff = − k

κ2
4 a2

0(τ)
, ρeff =

3 k

κ2
4 a2

0(τ)
. (31)

The values of a(t, y) chosen in the previous illustrative examples reproduce
results already known in the literature. Less simple choices for the 5D scale
factor may describe new brane scenarios but also may require a more involved
treatment. In conclusion, this paper investigates the influence of the (4)R
term included in the bulk action on the spherically symmetric braneworld
solutions. The brane dynamics is made closed by using the modified junction
conditions as the boundary conditions for the embedding of the brane in the
bulk, so it is possible to obtain brane cosmological solutions consistent with
the bulk geometry. We started from a particularly simple time-dependent
solution in the bulk away from the brane, but other physically acceptable
solutions in the bulk can be considered provided that the related brane
dynamics is in accordance to the observations on the brane.
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Appendix A

Transforming static bulk solutions into dynamical ones

The Randall–Sundrum (A)dS5 model is the simple braneworld with curved
extra dimension that allows for a meaningfull approach to cosmology, there-
fore we start from this model but, at this point, we do not yet require Z2

symmetry on reflection around the value Y = 0 so we write

dS2 = e−2κY
(
A2dσ2

k − dT 2
)

+ εdY 2 . (A.1)

Here κ and A are, respectively, the constant scale factors for the extra di-
mension Y and for the ordinary three-space and dσ2

k is the line element of
maximally symmetric three-spaces with curvature index k = +1, 0,−1:

dσ2
k =

dr2

1 − kr2
+ r2(dϑ2 + sin2 ϑdϕ2) . (A.2)

Since our purpose is to describe the time evolution on the braneworld, we
need to transform the static bulk solution (A.1) into a dynamical one. This
goal was already achieved in literature where dynamical solutions are derived
from the static Randall–Sundrum (A)dS5 metric by considering boosts along
the fifth dimension [16]. Applied to the actual case, we generalize those
transformations as





T =

1 − F (t, y)

χ
− ε

χ

κ2
G(t, y)

√
1 − χ2

κ2

,

eκ Y =
F (t, y) + G(t, y) − 1√

1 − χ2

κ2

,

(A.3)

where F (t, y) and G(t, y) are dimensionless functions and χ is a constant,
with the dimensions of κ, related to the boost along the fifth dimension.
The coordinate y is chosen so that the hypersurface y = 0 coincides with
the brane.

As a result the metric (A.1) becomes:

dS2 =
1

(F + G − 1)2

{(
κ2 − χ2

κ2

)
A2dσ2

k

+

(
κ2 − εχ2

κ4 χ2

)[
−κ2 (dF )2 + εχ2(dG)2

]
}

. (A.4)
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Note that the static line element (A.1) can be recovered from the above
equations on condition that as χ → 0 it results F ≈ 1 − χt − ε (χ2/κ2)eκ y

and G ≈ χ t + eκy.
The line element (A.4) is in the form commonly used in cosmological

applications

dS2 = a2(t, y) dσ2
k − n2(t, y) dt2 + εΦ2(t, y) dy2 . (A.5)

Now we can choose suitable functions F and G to obtain explicit expressions
for the metric coefficients a, n and Φ. Comparing Eqs. (A.4) and (A.5) we
get

A2 (κ2 − χ2)

κ2 (F + G − 1)2
= a2 , (A.6a)

a2 (κ2 − εχ2)

A2 κ2 χ2(κ2 − χ2)

[
κ2

(
∂F

∂t

)2

− εχ2

(
∂G

∂t

)2
]

= n2 , (A.6b)

− a2 (κ2 − εχ2)

A2 κ2χ2(κ2 − χ2)

[
κ2

(
∂F

∂y

)2

− εχ2

(
∂G

∂y

)2
]

= εΦ2 , (A.6c)

κ2

(
∂F

∂t

) (
∂F

∂y

)
− εχ2

(
∂G

∂t

) (
∂G

∂y

)
= 0 . (A.6d)

Once the new metric coefficients are known it is possible from the Einstein
equations (3) in the bulk, that is, away from the brane at y = 0, to obtain
the energy-momentum tensor (5)TB

A . This can be achieved by recalling that
in the coordinate system (A.5) the non-vanishing components of the Einstein
tensor GB

A are

Gr
r = Gϑ

ϑ = Gϕ
ϕ = − 1

n2

[
Φ̈

Φ
+

2ä

a
+

Φ̇

Φ

(
2ȧ

a
− ṅ

n

)
+

ȧ

a

(
ȧ

a
− 2ṅ

n

)]

+
ε

Φ2

[
2a′′

a
+

n′′

n
+

a′

a

(
a′

a
+

2n′

n

)
− Φ′

Φ

(
2a′

a
+

n′

n

)]
− k

a2
, (A.7a)

Gt
t = − 3

n2

(
ȧ2

a2
+

ȧΦ̇

aΦ

)
+

3 ε

Φ2

(
a′′

a
+

a′2

a2
− a′Φ′

aΦ

)
− 3k

a2
, (A.7b)

Gy
y = − 3

n2

(
ä

a
+

ȧ2

a2
− ȧṅ

an

)
+

3 ε

Φ2

(
a′2

a2
+

a′n′

an

)
− 3k

a2
, (A.7c)

Gy
t = −3 ε

Φ2

(
ȧ′

a
− ȧn′

an
− a′Φ̇

aΦ

)
. (A.7d)
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Here a dot and a prime denote partial derivatives with respect to t and y,
respectively. In this work we require that there is no energy flow from the
brane towards the bulk and vice versa so it must be (5)T y

t = 0, therefore the

choice of the functions F and G must give accordingly (5)Gy
t = 0. However,

as Eq. (A.7d) shows, there is no energy flow only for suitable values of the
metric coefficients. A particularly simple choice which makes (5)Gy

t = 0 is
to assume that the metric coefficients in the bulk have the form of plane
waves propagating in the fifth dimension, so they become functions either
of the argument u = t − λ y or of the argument v = t + λ y. Of course,
the particular metric which we finally obtain is dependent on this choice. In
detail, from (5)Gy

t = 0 we can derive

1

n(u)Φ(u)

da(u)

du
=

1

n(v)Φ(v)

da(v)

dv
= γ , (A.8)

where γ is a dimensionless constant. Now we shall assume the Z2 symmetry
y → − y and construct a solution of Eqs. (A.6) by matching a solution
depending only on u (for y > 0) to a solution depending only on v (for
y < 0).

The result in (A.8) suggests to multiply (A.6b) by (A.6c) so, taking into
account (A.6d), we have

[
a2 (κ2 − εχ2)

A2 (κ2 − χ2)

]2 [(
∂F

∂t

) (
∂G

∂y

)
−
(

∂F

∂y

)(
∂G

∂t

)]2

= n2 Φ2 . (A.9)

Eliminating G by (A.6a) and taking the square root one finally obtains

κ2 − εχ2

Aκ2 χ
√

κ2 − χ2

∣∣∣∣−
(

∂F

∂t

)(
∂a

∂y

)
+

(
∂F

∂y

)(
∂a

∂t

)∣∣∣∣ = nΦ . (A.10)

Let us first begin working on the y > 0 side. We put a(t, y) = a(t − λy)
into (A.10) and recalling (A.8) we obtain the following partial differential
equation for F

λ
∂F

∂t
+

∂F

∂y
=

Aκ2χ
√

κ2 − χ2

γ(κ2 − εχ2)
. (A.11)

The general solution is

F (t, y) =
Aκ2χ

√
κ2 − χ2

2γλ(κ2 − εχ2)
(t + λy) + f(−)(t − λy) . (A.12)
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The function f(−)(u) can be determined by (A.6d) after eliminating G by
(A.6a). The result is

df(−)

du
=

Aχ
√

κ2 − χ2

a2(κ2 − εχ2)



ε

χ

κ

(
da

du

)
+

1

γ λ

√

κ4a4 + 4ε γ2λ2

(
da

du

)2




(A.13)
which can be integrated, once the scale factor a has been fixed, reminding
that in the limit χ → 0 it must be F (t, y) → 1 and so also f(−)(u) → 1.
Of course, if one is only interested in determining n and Φ from (A.6b)
and (A.6c) it is sufficient the simple knowledge of the derivative of f(−)(u).
Obviously, n and Φ will be a function of the scale factor a. Proceeding in
an analogous manner when working on the y < 0 side, we obtain

F (t, y) =
Aκ2χ

√
κ2 − χ2

2γλ (κ2 − εχ2)
(t − λy) + f(+)(t + λ y) , (A.14)

where f(+)(v) and f(−)(u) are the same function f of the two different argu-
ments v and u. As a consequence we can write the function F (t, y) on both
sides of the brane at y = 0 simply as

F (t, y) =
Aκ2χ

√
κ2 − χ2

2γλ(κ2 − εχ2)
(t + λ|y|) + f(t − λ|y|) . (A.15)

The function G(t, y) can then be easily derived from Eq. (A.6a). Finally, we
can obtain from Eqs. (A.6b) and (A.6c) the metric coefficients n(t − λ|y|)
and Φ(t − λ|y|) which are given as a function of a(t − λ|y|) by

n2 =
1

2γ2λ2

(
κ2a2 +

√
κ4a4 + 4εγ2λ2(

∗
a)2
)

, (A.16)

Φ2 =
ε

2γ2

(
−κ2a2 +

√
κ4a4 + 4εγ2λ2(

∗
a)2
)

, (A.17)

where the superscribed asterisk
∗

denote derivative with respect to w =
(t − λ |y|). The bulk line element away from the brane is therefore

dS2 = a2dσ2
k − 1

2γ2λ2

(
κ2a2 +

√
κ4a4 + 4εγ2λ2(

∗

a)2
)

dt2

+
1

2 γ2

(
−κ2a2 +

√
κ4a4 + 4εγ2λ2(

∗
a)2
)

dy2 (A.18)
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as given previously in Eq. (16). From Eqs. (A.7) we get

Gr
r = Gϑ

ϑ = Gϕ
ϕ = 6 ε κ2 − k

a2(t − λ |y|) , (A.19a)

Gt
t = Gy

y = 6 ε κ2 − 3k

a2(t − λ |y|) , (A.19b)

in accordance with the 5D cosmological constant and the 5D energy-momen-
tum tensor given previously in Eqs. (19) and (20).
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