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Employing the Noether charge technique and Visser’s Euclidean ap-
proach the entropy of the nonlinear black hole described by the perturba-
tive solution of the system of coupled equations of the quadratic gravity
and nonlinear electrodynamics is constructed. The solution is parametrized
by the exact location of the event horizon and charge. Special emphasis
is put on the extremal configuration. Consequences of the second choice
of the boundary conditions, in which the solution is parametrized by the
charge and the total mass as seen by a distant observer is briefly examined.

PACS numbers: 04.70.Dy, 04.50.+h

1. Introduction

Recently, a great deal of efforts have been devoted to the important issue
of regular black holes. One of the most intriguing solutions of this type have
been constructed by Ayón-Beato and García [1] and by Bronnikov [2]. In
both cases, the line element is a solution of the coupled system of equations
of nonlinear electrodynamics and gravity. (We shall refer to the solutions
of this type as ABGB geometries.) The former solution describes a regu-
lar, static and spherically symmetric configuration with the electric charge,
Qe, whereas the latter one describes a similar geometry characterized by
the mass and the magnetic charge Q. For certain values of the parameters
both solutions describe black holes. On the other hand, the no-go theorem
proved in Ref. [3] (see also [2, 4]) forbids, for the class of electromagnetic
Lagrangians with a Maxwell asymptotic in a weak field limit, existence of
the electrically charged, static and spherically-symmetric solutions with the
regular center. It should be noted, however, that the electric solution is not
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in conflict with the non existence theorem, as the formulation of the nonlin-
ear electrodynamics [5] employed by Ayón-Beato and García (P framework
in the nomenclature of Ref. [2] ) differs from the one to which one refers
in the assumptions of the no-go theorem. Indeed, the solution of Ayón-
Beato and García has been constructed in a formulation of the nonlinear
electrodynamics obtained from the original one (F framework) by means of
a Legendre transformation (see Ref. [2] for details). Moreover, the no-go
theorem does not forbid existence of the solutions with magnetic charge as
well as some hybrid configurations in which the electric field does not extend
to the central region.

The status of the nonlinear electrodynamics in the model considered
here is to provide a static matter source, perhaps the exotic one, to the field
equations. That means that the casual structure of the spacetime is still
governed by the null geodesics or “ordinary” photons rather than the pho-
tons of the nonlinear theory. Actually, the latter move along the geodesics
of the effective space [6, 7]. Outside the event horizon the solution of the
ABGB-type closely resembles the Reissner–Nordström (RN) geometry both
in its global and local structure. Important differences appear near the ex-
tremality limit. Consequently, the Penrose diagrams of the ABGB solution
are similar to those constructed for the Reissner–Nordström solution, with
the one notable distinction: instead of the singularity at r = 0 now we have
the regular interior.

An attractive feature of the ABGB solutions is possibility to express
the location of the horizons in terms of the Lambert special functions [8,9].
Similarly, the Lambert functions [10, 11] may be used in the discussion of
the extremal configurations [12].

According to our present understanding a proper description of the grav-
itational phenomena should be given by the quantum gravity, being perhaps
a part of a more fundamental theory. And although at the present stage we
have no clear idea how this theory looks like, we expect that the action func-
tional describing its low-energy approximation should consist of the higher
order terms constructed from the curvature tensor, its contractions and co-
variant derivatives to some required order. Among various generalizations
of the Einstein–Hilbert action a special role is played by the quadratic grav-
ity (see for example Refs. [13–21]). Motivations for introducing such terms
into the action functional are numerous. When invented, for example, the
equations of quadratic gravity have been treated as an exact formulation of
the theory of gravitation. On the other hand, it may be considered, quite
naturally, as truncation of series expansion of the action of the more general
theory. Such terms appear generically in the one-loop calculations of the
quantum field theory in curved background [22]. Moreover, from the point
of view of the semi-classical gravity, the quadratic terms in the field equa-
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tions might be treated as some sort of the simplified stress–energy tensor.
Such a toy model of the renormalized stress–energy tensor allows to mimic
the fairly more complex sources in a relatively simple way. This approach is
especially useful when the general pattern that lies behind the calculations
of both types is essentially the same. Thus, some general features of the full
semi-classical solutions can be analyzed and understood without referring to
otherwise intractable equations.

It should be noted that any higher curvature theory contain solutions
which are unavailable to the theory based on the classical Einstein–Hilbert
Lagrangian. This can most easily be seen by counting the degrees of free-
dom: the quadratic gravity is known to posses 8 degrees of freedom whereas
the General Relativity has only 2. Moreover, there are solutions that are
not analytic in the coupling constants, i.e., they do not reduce to solutions
of the classical Einstein field equations. (For a comprehensive discussion see
for example [23] and the references cited therein.) Unfortunately, because
of complexity of the equations of the quadratic gravity it is practically im-
possible to construct their exact solutions and one is forced to refer either
to approximations or to numerical methods. The natural method to obtain
reasonable results consists of treating the higher curvature contributions
perturbatively. This approach also guarantees that the black hole exists as
the perturbative solution of the higher-order solution provided it exists clas-
sically [24]. Finally, observe that in the perturbative approach the casual
structure is determined by the classical metric, however, the equations of
motion of test particles and various characteristics of the solution acquire
the first order correction.

Analyses of the spherically-symmetric and static solutions to the higher
derivative theory has been carried out in [14,25–30]. Specifically, in Ref. [30]
the perturbative solutions of the ABGB-type to the equations of the effective
quadratic gravity have been constructed and discussed. In this paper we
shall calculate the entropy of such black holes using Wald’s approach [31–33]
and confirm the final results employing computationally independent but
closely related Euclidean techniques propounded by Visser [34–36].

2. Basic equations

The coupled system of the nonlinear electrodynamics and the quadratic
gravity considered in this paper is described by the (Lorentzian) action

S =
1

16π

∫

(

R+ αR2 + βRabR
ab + γRabcdR

abcd − L (F )
)√−g d4x , (1)

where L (F ) is some functional of F = FabF
ab (its exact form will be given

later) and all symbols have their usual meaning. The cosmological constant



6 J. Matyjasek

is assumed to be zero. To simplify our discussion from the very beginning
we shall relegate the term involving the Kretschmann scalar, RabcdR

abcd,
from the total action employing the Gauss–Bonnet invariant. The coupling
constants α and β have the dimension of length squared and throughout the
paper we shall assume

α

L2
∼ β

L2
≪ 1 , (2)

where L is the local curvature scale. Assumption that the mass scales as-
sociated with the linearized equations are real may place additional con-
strains [20, 37, 38] on α and β. Here, however, we shall treat them as small
and of comparable order but arbitrary.

The entropy of the black hole may be calculated using various methods.
It seems, however, that Wald’s technique is especially well suited for cal-
culations in the higher curvature theories. Here we shall follow this very
approach. Other competing techniques are the method based on the field
redefinition [33, 39] and Visser’s Euclidean approach.

For the Lagrangian involving the Riemann tensor and its symmetric
derivatives up some finite order, say n, Wald’s Noether charge entropy may
be compactly written in the form [31–33]

S = −2π

∫

d2x (h)1/2
n
∑

m=0

(−1)m∇(e1...∇em)Z
e1...em;abcdǫabǫcd , (3)

where

Ze1...em;abcd =
∂L

∂∇(e1...∇em)Rabcd
, (4)

h is the determinant of the induced metric, ǫab is the binormal to the bifurca-
tion sphere, and the integration is carried out across the bifurcation surface.
Actually S can be evaluated not only on the bifurcation surface but on an
arbitrary cross-section of the Killing horizon. Since ǫabǫcd = ĝadĝbc − ĝacĝbd,
where ĝac is the metric in the subspace normal to cross section on which the
entropy is calculated, one can rewrite Eq. (3) in the form

S = 4π

∫

d2xh1/2
n
∑

m=0

(−1)m∇(e1...∇em)Z
e1...em;abcdĝacĝbd . (5)

The tensor ĝab is related to V a = Ka/||K|| (Ka is the time-like Killing
vector) and the unit normal na by the formula ĝab = VaVb + nanb.

The general expression describing entropy (5) has been applied in nu-
merous cases, mostly for the Lagrangians that are independent of covariant
derivatives of the Riemann tensor and its contractions. In Ref. [40], however,
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Eq. (5) has been employed in calculations of the entropy of the quantum-
corrected black hole when the source term is described by the stress–energy
tensor of the quantized fields in a large mass limit. Such a tensor is purely
geometrical and besides ordinary higher curvature terms it involves also
R∇a∇aR and Rab∇c∇cRab.

On the other hand, one can follow an approach propounded by Visser
[34–36]. The general formula for the entropy of the stationary black hole
with the Hawking temperature TH is given by

S =
A

4
+

1

TH

∫

Σ

(ρL − LE)KadΣa +

∫

Σ

sV adΣa , (6)

where A is the area of the event horizon, s is the entropy density associated
with the fluctuations (ignored in this paper) and finally ρL and LE are, re-
spectively, the Lorentzian energy density and the Euclideanized Lagrangian
of the matter fields surrounding the black hole. (All higher curvature terms
have been inserted into the Lagrangian describing matter fields.) For the
specific case of the Einstein–Hilbert action augmented with the higher cur-
vature terms (but not covariant derivatives of curvature) Visser’s result is
equivalent to Wald’s formula.

The coupled system of differential equations describing nonlinear electro-
dynamics in quadratic gravity can be obtained from the variational principle.

Simple calculations indicate that the tensor F ab and its dual ∗F ab, satisfy
the equations

∇a

(

dL (F )

dF
F ab
)

= 0 , (7)

∇a
∗F ab = 0 , (8)

respectively. Differentiating functionally the total action S with respect to
the metric tensor one obtains equations of the quadratic gravity in the form

Lab ≡ Gab − αIab − βJab = 8πT ab, (9)

where

Iab = 2∇b∇aR− 2RRab +
1

2
gab
(

R2 − 4∇c∇cR
)

, (10)

Jab = ∇b∇aR−∇c∇cRab − 2RcdR
cbda +

1

2
gab
(

RcdR
cd −∇c∇cR

)

(11)

and

T ba =
1

4π

(

dL (F )

dF
FcaF

cb − 1

4
δbaL (F )

)

. (12)
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In this paper we shall concentrate on the static and spherically-symmetric
configurations described by the line element of the form

ds2 = −e2ψ(r)f(r)dt2 +
dr2

f(r)
+ r2dΩ2, (13)

where

f(r) = 1 − 2M(r)

r
. (14)

The spherical symmetry places restrictions on the components of Fab tensor
and, consequently, its only nonvanishing components compatible with the
assumed symmetry are F01 and F23. Simple calculations yield

F23 = Q sin θ (15)

and

r2e−2ψ dL (F )

dF
F10 = Qe , (16)

where Q and Qe are the integration constants interpreted as the magnetic
and electric charge, respectively.

Since the no-go theorem forbids existence of the regular solutions with
Qe 6= 0 in the latter we shall assume that the electric charge vanishes. Now,
since F = 2F23F

23, one has

F =
2Q2

r4
. (17)

The stress–energy tensor (12) calculated for this configuration is

T tt = T rr = − 1

16π
L (F ) (18)

and

T θθ = T φφ =
1

4π

dL (F )

dF

Q2

r4
− 1

16π
L (F ) . (19)

Further considerations require specification of the Lagrangian L (F ) . Fol-
lowing Ayón-Beato, García and Bronnikov let us chose it in the form

L (F ) = F

[

1 − tanh2

(

s
4

√

Q2F

2

)]

, (20)

where

s =
|Q|
2b

, (21)
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and b is a free parameter. Inserting Eq. (17) into (20) and making use of
Eq. (21) one obtains

L (F ) =
2Q2

r4

(

1 − tanh2 Q
2

2br

)

. (22)

The system of coupled differential equations of the quadratic gravity
with the source term given by (18) and (19) with (22) is rather complicated
and cannot be solved exactly. Fortunately, since the coupling constants α
and β are expected to be small in a sense of Eq. (2), one can treat the
system of the differential equations perturbatively, with the classical solu-
tion of the Einstein field equation taken as the zeroth-order approximation.
Successive perturbations are therefore solutions of the chain of the differen-
tial equations of ascending complexity [41–44]. It should be noted, however,
that the higher order equations are probably intractable analytically and the
technical difficulties may limit the calculations to the first order.

In the next section, we shall employ perturbative techniques to construct
the approximate solution to the equations of the quadratic gravity with the
source term being the stress–energy tensor of the Bronnikov type. Such an
approach is expected to yield reasonable results and because of complexity of
the differential equations, it may be the only way to deal with this problem.

3. Solutions

To keep control of the order of terms in complicated series expansions
we shall introduce a dimensionless parameter ε substituting α → εα and
β → εβ. We shall put ε = 1 at the final stage of calculations. Of functions
M (r) and ψ (r) we assume that they can be expanded in powers of the
auxiliary parameter as

M (r) = M0 (r) + εM1 (r) + O
(

ε2
)

(23)

and

ψ (r) = εψ1 (r) + O
(

ε2
)

. (24)

First, consider the left hand side of Eq. (9) calculated for the line ele-
ment (13) with the functions M(r) and ψ(r) given by (23) and (24), respec-
tively. Making use of the above expansions and subsequently collecting the
terms with the like powers of ε, after some rearrangements, one obtains [30]

Ltt = − 2

r2
(

M ′
0 + εM ′

1 − εStt
)

, (25)
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where

Stt = β

(

2M ′
0

r2
− 8M0M

′
0

r3
+

2M ′
0
2

r2
− 2M ′′

0

r
+

5M0M
′′
0

r2
− M ′

0M
′′
0

r

+
M ′′

0
2

2
+M

(3)
0 − M0M

(3)
0

r
−M ′

0M
(3)
0 + rM

(4)
0 − 2M0M

(4)
0

)

−α
(

24M0M
′
0

r3
− 8M ′

0

r2
− 4M ′

0
2

r2
+

8M ′′
0

r
− 18M0M

′′
0

r2
−M ′′

0
2

+
2M ′

0M
′′
0

r
− 4M

(3)
0 +

6M0M
(3)
0

r
+ 2M ′

0M
(3)
0 − 2rM

(4)
0 + 4M0M

(4)
0

)

(26)

and M ′
0, M

′′
0 and M

(i)
0 for i ≥ 3 denote first, second and i-th derivatives with

respect to the radial coordinate. On the other hand, a simple combination
of the components of Lba tensor

Lrr − Ltt = 0 (27)

can be easily integrated to yield [30]

ψ1(r) = (2α+ β)M
(3)
0 − 4

r2
(3α + β)M ′

0 + C1 , (28)

where C1 is the integration constant. It should be noted that contrary to
the case of coupled system of the Maxwell equations and quadratic gravity
considered in Refs. [25–27, 29], now we have explicit dependence on the
parameter α. A comment is in order here regarding the independence of
the final result calculated for the Maxwell source on the parameter α. First,
observe that the stress–energy tensor of the electromagnetic field for the
spherically-symmetric an static configuration with a total charge e assumes
simple form

T ba = − e2

8πr4
diag[1, 1,−1,−1] . (29)

Therefore, the zeroth-order solution to the (0,0)-component of the equa-
tion (9) can be written in the form

M0(r) = − e
2

2r
+ C , (30)

where C is the integration constant. Now, substituting (30) into (26) and (28)
it can easily be demonstrated that the expression in the second bracket in its
right hand side of Eq. (26) as well as the term M3

0 − 6M ′
0/r

2 in (28) vanish.
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One expects that all characteristics of the black hole, such as the location
of the horizons and temperature could also be calculated perturbatively. In
the latter, for simplicity, we shall refer to the perturbative solutions of the
quadratic gravity using the names of their classical counterparts (the zeroth-
order solutions) whenever it will not lead to confusion.

To develop the model further one has to determine the integration con-
stants and the free parameter b. There are, in general, two interesting and
physically motivated choices. One can relate the integration constant with
the exact location of the event horizon, r+, and this can easily be done with
the aid of the equation

M (r+) =
r+
2
. (31)

On the other hand it is possible to express solutions of the system of differ-
ential equations consisting of (0, 0) component of Eqs. (9) and Eq. (27) in
terms of the total mass M as seen by a distant observer

lim
r→∞

M (r) = M . (32)

For the function ψ (r) we shall always adopt the natural condition

lim
r→∞

ψ (r) = 0 . (33)

Inspection of Eqs. (25) and (27) reveals their different status. Indeed,
Eq. (27) can easily be integrated for a general function M0(r) and the final
solutions is to be obtained by differentiation of the zeroth-order solution and
making use of the boundary conditions. On the other hand, the first integral
of the differential equation for M1 (r) cannot be constructed and one has to
know the zeroth-order solution to determine M1.

The assumed expansions of the functions M (r) and ψ (r) as given by
Eqs. (23) and (24), respectively, suggest that one can rewrite the boundary
conditions of the first type in the following form:

M0 (r+) =
r+
2
, M1 (r+) = 0 , ψ1 (∞) = 0 , (34)

whereas for the boundary conditions of the second type one has

M0 (∞) = M , M1 (∞) = 0 , ψ1 (∞) = 0 . (35)

Now, let us concentrate on the zeroth-order equations supplemented with
the conditions of the first type. Putting ε = 0 in Eq. (25), form (22) and
(18) one obtains

dM0

dr
=
Q2

2r2

(

1 − tanh2 Q
2

2br

)

, (36)
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which can be easily integrated to yield

M0(r) = −b tanh
Q2

2br
+ C2 . (37)

Finally, making use of the conditions (34) one arrives at the desired result

M0 (r) =
r+
2

+ b tanh
Q2

2br+
− b tanh

Q2

2br
. (38)

The thus obtained solution reduces to the Schwarzschild solution for Q = 0
and it can be easily demonstrated that, by (26) and the boundary conditions
(34) it remains so in the higher-order calculations.

To specify the solution further we shall make use of the well-known re-
lation [45]

M =
κAH

4π
−
∫

Σ

(

2T ba − Tδba

)

KadΣb , (39)

where Σ is a constant time hypersurface and Ka is a time-like Killing vector
and apply it to the zeroth-order solution. Making use of the explicit form of
the stress–energy tensor of the nonlinear electrodynamics one obtains

MH =
r+
2

+ b tanh
Q2

2br+
, (40)

where MH is the mass connected with the zeroth-order solution. We shall
refer to MH as to the horizon defined mass of the black hole.

To develop the model further one has to determine the free parameter b.
Our choice, which guarantees regularity of the zeroth-order line element at
the center, is b = MH, and hence Eq. (38) becomes

M0 (r) = MH

(

1 − tanh
Q2

2MHr

)

. (41)

Unfortunately, the regularity of the zeroth-order solution does not guarantee
regularity of the higher-order perturbative solutions [30].

It should be noted that the MH = MH (Q, r+) and for fixed Q and r+
one has to determine MH numerically. On the other hand it is possible to
employ the equation M (r+) = r+/2 in the zeroth-order calculations and
express all the results in (Q,MH) parametrization instead of (Q, r+). One
can, therefore, construct solutions of this equation in terms of the Lambert
function. Simple manipulations yield

r+ = − 4MHQ
2

4W+ (−ρeρ)M2
H −Q2

, (42)
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where W+ is a principal branch of the Lambert function and ρ = Q2/4M2
H.

Analogous solution for the inner horizon can be written in the form

r− = − 4MHQ
2

4W− (−ρeρ)M2
H −Q2

, (43)

where W− is the second real branch of the Lambert function. (In fact, W+

andW− are the only real branches.) Making use of the elementary properties
of the Lambert functions one can demonstrate that the principal branch has
the expansion

W+(x) = x− x2 +
3

2
x3 − 8

3
x4 + O

(

x5
)

. (44)

On the other hand, W−(x) → −∞ as x→ 0, and, consequently, the location
of the event horizon tends to the Schwarzschild value whereas r− → 0.

A typical run of MH as a function of ξ for a few exemplary values of Q is
shown in Fig. 1. For a given Q a line of MH = const. intersects Q = const.
curve at one or two points or it has no intersection points at all. The smaller
one gives location of the inner horizon whereas the greater is to be identified
with the event horizon. The minimum of MH = MH (Q = const., ξ) function
represents extremal configurations when the two horizons merge.

0.5 1 1.5 2 2.5 3
Ξ

0.5

1

1.5

2

2.5

3

MH

Fig. 1. This graph shows solutions of the equation MH = ξ
2

+MH tanh Q2

2MHξ
for a

few exemplary values of the charge Q. From bottom to top the curves correspond

to Q = 0.1i, for i = 1, . . . , 12. For MH = const., the greater solution represents

location of the event horizon, r+ whereas the smaller one represents the inner

horizon, r
−

. The minimum of each curve corresponds to the extremal configuration

with r+ = r
−
.
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It should be noted that the mass MH is not the mass that would be
measured for the perturbed black hole by an observer at infinity. Indeed,
even for the zeroth-order solutions the meaning of MH and M is different
and the substantial differences are transparent in the first order calculations.
This can be easily seen by studying the limit

M = lim
r→∞

M (r) = MH + εM1 (∞) (45)

and Eq. (32). Identical result can be obtained from Eq. (39). Indeed, in
order to apply (39) for the perturbed black hole one has to move the higher
curvature terms of Eq. (9) into its right hand side and treat them as a contri-
bution to the total stress–energy tensor. It can be demonstrated explicitly,
that making use of Eq. (39) in the first-order calculations one obtains pre-
cisely (45).

The functionM1(r) can be expressed in terms of the polylogarithms. Un-
fortunately, it is rather complicated and, to avoid unnecessary proliferation
of long formulas, it will not be displayed here. The first-order solution can
be constructed employing the algorithm presented in Appendix of Ref. [30].
It should be noted that the function M1(r) presented in [30] is calculated
for the boundary conditions of the second type.

4. The entropy

Now, let us return to our main theme and calculate the entropy of the
ABGB black hole. In doing so we shall put special emphasis on comparison
of the results constructed for the nonlinear black hole with the analogous
results obtained for the Reissner–Nordström solution. Such a comparison
is especially interesting as the geometries of their classical counterparts are
practically indistinguishable in two important regimes. To demonstrate this
it suffices to expand the metric potentials in powers of |Q|/r+ and r+/r,
respectively. Since the expansion takes the form

f(r) = 1 − 2MH

r
+
Q2

r2
− Q6

12M2
Hr

4
+ . . . , (46)

the differences in the metric structure between ABGB and RN geometries
in the exterior region for |Q|/r+ ≪ 1 are small indeed. One has a similar
behavior for any (allowable) value of the charge for r ≫ r+.

The higher curvature terms in the action functional lead to the appear-
ance of additional terms in the final expression describing entropy, which
spoil area/entropy relation. Simple calculations carried out within the
Noether charge framework indicate that the contribution of the quadratic
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part of the action to the entropy is given by

δS = 2πr2+

[

αR+
1

2
β
(

Rtt +Rrr
)

]

|r+

. (47)

Now, substituting the line element (13) with (14) and ( 23), into the general
expression (47), expanding the right hand side of Eqs. (9) with respect to ε,
and, finally, retaining the linear terms only, one gets

S = πr2+ + 2πεr2+

[

4α

r2+
M ′

0 (r+) +
2α+ β

r+
M ′′

0 (r+)

]

+ O
(

ε2
)

. (48)

For the non extreme black hole with the boundary conditions of the first
type (34) one has

S =πr2+ +
2πQ2

MHr3+
ε cosh−2

(

Q2

2MHr+

){

αQ2 tanh

(

Q2

2MHr+

)

−β
[

MHr+ − Q2

2
tanh

(

Q2

2MHr+

)]}

, (49)

where MH = MH (Q, r+). In this approach the zeroth-order solution (41)
determines the first order correction to the entropy of the non extreme black
hole completely. Having established MH for given Q and r+ one can rewrite
Eq. (49) putting S̃ = S/M2

H, q = |Q| /MH, x+ = r+/MH, α̃ = α/M2
H and

β̃ = β/M2
H. Simple manipulations yield

S̃ = πx2
+ + ε

2πq2

x3
+

cosh−2 q2

2x+

[

α̃Q2 tanh
q2

2x+
− β̃

(

x+ − q2

2
tanh

q2

2x+

)]

.

(50)
This results can be contrasted with the analogous result constructed for the
Reissner–Nordström black hole

S = πr2+ − 2β
πQ2

r2+
(51)

or

S̃ = π(1 +
√

1 − q2)2 − 2β̃
πq2

(1 +
√

1 − q2)2
. (52)

To investigate the entropy S as given by Eq. (49) let us observe that for
|Q| /r+ ≪ 1 one has r+ ≈ 2MH. Now, expanding hyperbolic functions in
powers of |Q| /r+ one obtains

S = πr2+ − 2πβ
Q2

r2+
+ O

(

(

Q

r+

)4
)

. (53)
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A comparison of Eqs. (53) and (51) shows that for |Q| /r+ ≪ 1 the entropies
of the ABGB and RN black holes are almost indistinguishable, as expected.
It should be noted that contrary to the Reissner–Norström geometry, the
entropy of the ABGB black hole depends on α and for |Q| /r+ ≪ 1 the

leading behavior of this terms is ∼ (Q/r+)4 .
The analysis of the extremal configuration is more involved. First, let us

return to the zeroth-order solution. It should be emphasized that although
we do not ascribe any particular meaning to the zeroth-order solution, some
of its features do possess clear and unambiguous meaning. For the boundary
conditions (34) such a solution is described by the exact r+ and Q. The
extremality condition places additional relation between the elements of the
pair (Q, r+) or (Q,M). Here we shall confine ourselves to the first pair.
Simple considerations yield

|Q| = 2w1/2MH (54)

and

r+ =
4w

1 + w
MH , (55)

where w = W+(1/e), and consequently

|Q|
r+

=
1 +w

2w1/2
. (56)

Returning to the first-order solution we recall the relation valid for the ex-
tremal configuration in the Reissner–Nordström geometry

r+ = |Q| . (57)

In Ref. [12] we have ascribed this simple relation to tracelessness of the
stress–energy tensor of the matter fields. As the stress–energy tensor of
the nonlinear electrodynamics considered in this paper has a nonzero trace,
one expects that the analogous relation between Q and r+ in the ABGB
geometry is more complicated. Indeed, after some algebra, one has

r+ =
2w1/2 |Q|
(1 + w)

[

1 + ε
β + 2α

16Q2w
(w + 3)

(

w2 − 1
)

]

. (58)

Now, making use of (58) in (49) gives

Sextr =
4πwQ2

(1 + w)2
− πε

2 (1 + w)

[

(2α+ β)w2 + 2 (2α− β)w + 5α + 2β
]

, (59)
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and the first term of the right hand side coincides with the Bekenstein–
Hawking entropy [46]. Numerically, one has

Sextr = πQ2 × 0.6815 − 2πε× (0.0324α + 0.1754β) , (60)

where a common factor 2π has been singled out for convenience. Analogous
relation for the extremal Reissner–Nordström black hole reads

Sextr = πQ2 − 2πεβ . (61)

Now, let us calculate the entropy of the ABGB black hole employing the
Euclidean techniques propounded by Visser. First, observe that if the La-
grangian is arbitrary function of the Riemann tensor (and its contractions)
but is independent of its covariant derivatives, both methods, i.e. Wald’s ap-
proach and Visser’s method are equivalent. One may wonder, therefore, why
we intend to carry out such a calculation. The answer is simple: although
both methods should yield identical results, the calculational steps necessary
to obtain the final result are quite different and consequently one can con-
sider the calculations carried out within the framework of one method as the
useful check of the other. It is especially important in situations when the
computational complexity of the considered problem may lead to numerous
errors.

The calculations proceed in a few steps. First, incorporate the Euclidean
action functional of the quadratic gravity into the matter part of the action.
Similarly, the (Lorentzian) energy density is given by

ρ = −T tt =
1

16π
L (F ) − ε

(

α

8π
Itt +

β

8π
J tt

)

. (62)

It could easily be demonstrated that ρL − LE ∼ O (ε) and consequently it
suffices to know the Hawking temperature to the zeroth-order. Moreover,
due to subtle cancellations in the integrand of Eq. (6) the final result of the
quadratures does not contain polylogarithm functions. Now, substituting

TH =
1

4πr+

(

1 − Q2

Mr+
+

Q2

4M2
H

)

(63)

and (62) into (6), after some algebra, one has

δS =
ε

r4+ (η + 1)5
[αsα + βsβ] , (64)
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where η = exp
(

Q2/2MHr+
)

,

sα =

(

4Q6

r+ M 2

H

− 20Q4

MH

)

η4 −
(

20Q4

MH
− 72Q4

r+
+

12Q6

r+ M 2

H

+
8Q6

r2
+MH

)

η3

+

(

20Q4

MH
− 12Q6

r+ M 2

H

+
56Q6

r2
+MH

)

η2

+

(

4Q6

r+ M 2

H

− 72Q4

r+
+

20Q4

MH
− 16Q6

r2
+MH

)

η (65)

and

sβ =

(

8Q2
r+ +

2Q6

r+ M 2

H

− 12Q4

MH

)

η4

−
(

24MHQ
2 +

4Q6

r2
+MH

+
12Q4

MH
− 24Q2

r++
6Q6

r+ M 2

H

− 36Q4

r+

)

η3

+

(

12Q4

MH
− 6Q6

r+ M 2

H

− 8Q4

r+
+Q2

r+ +
28Q6

r2
+MH

− 48MHQ
2

)

η2

−
(

24MHQ
2 − 8Q2

r+ − 12Q4

MH
− 2Q6

r+ M 2

H

+
44Q4

r+
+

8Q6

r2
+MH

)

η . (66)

At first glance this result does not resemble Eq. (49). However, making use
of the identity

η =
4MH

r+
− 1 , (67)

one can easily demonstrate that Eqs. (64)–(66) reduce precisely to Eq. (49).

5. Final remarks

In this paper we have constructed the entropy of the nonlinear ABGB-
type black holes using the boundary conditions (34). The zeroth-order solu-
tion coincides, as expected, with the ABGB line element whereas the first-
order correction can be elegantly expressed in terms of the polylogarithm
functions. Now, let us briefly discuss the consequences of the second choice,
in which the results are expressed in terms of the total mass of the system
as measured by a distant observer. To calculate the location of the event
horizon to the required order in (Q,M) parametrization one has to solve
the first-order equations for M1 (r) and ψ1 (r) , and, subsequently, pertur-
batively solve the equation gtt(r+) = 0 assuming that the event horizon can
be expanded as

r+ = r0 + εr1 +O(ε2) . (68)
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Unfortunately, the function M1 (r) is rather complicated (it can be expressed
in terms of the polylogarithms) and, once again, to avoid unnecessary pro-
liferation of long formulas it will not be presented here. Interested reader is
referred to [30].

Generally, for the nonexterme black hole one has

S = πr20 + 2πr1ε+ 32πεr20

[

4α

r20
M ′

0 (r0) +
2α+ β

r0
M ′′

0 (r0)

]

+ O
(

ε2
)

. (69)

On the other hand, making use of (68), the equation (69) can be rewritten
in the equivalent form

S = πr20 + ε
4πM1 (r0)

1 − 2M ′
0 (r0)

+32πεr20

[

4α

r20
M ′

0 (r0) +
2α+ β

r0
M ′′

0 (r0)

]

+O
(

ε2
)

.

(70)
The extremal case should be analyzed separately. The extremal config-

uration of the ABGB black hole being the solution of the Einstein gravity
is described by

|Qc| = 2w1/2M (71)

and

rc =
4w

1 + w
M . (72)

One expects, that the higher-order curvature terms modify these relations,
shifting (in a space of the parameters) extremal solution into a slightly dif-
ferent position. Indeed, treating M0 as a function of Q2 and r, after some
algebra, one concludes that the extremal configuration is still possible and
is described by the relations

Q2 = Q2
c + ε∆ , r+ = rc + εδ , (73)

where

∆ = −
(

∂

∂Q2
M0

)−1

M1 . (74)

and

δ = −
(

∂2

∂r2
M0

)−1(
∂

∂r
M1

)

+

(

∂

∂Q2
M0

∂2

∂r2
M0

)−1(

M1
∂2

∂r∂Q2
M0

)

.

(75)
Both δ and ∆ are to be calculated for the parameters describing extremal
zeroth-order solution. Numerically, one has

∆ =
1.05314

M α+
0.43288

M β (76)
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and

δ = −0.05121

M α− 0.57553

M β . (77)

Since the calculations of the entropy follow the general scheme sketched in
previous section they will not be presented here.

The purpose of the present paper (besides importance of the quadratic
gravity in its own and the natural curiosity) is twofold. First, one can treat
the calculations presented in this paper as the first step in understanding of
the influence of the higher curvature terms on the entropy of black holes in a
more complex setting than Maxwell electrodynamics. The next step would
involve, for example, inclusion of the all curvature invariants of the order 4
and 6 and degree 2 and 3 [47–49]. Moreover, it would be interesting to extend
this analysis to general D-dimensional manifolds. The natural candidate
for a higher-curvature theory is the Lovelock gravity [50]. Moreover, one
may consider the more general curvature terms, with arbitrary coefficients
rather than those inspired by particular theory. (See, for example [47, 51]
and references cited therein.) On the other hand, and this is even more
interesting, one can regard this sort of calculations as the preliminary results
allowing to analyze and understand the typical subtleties one is likely to
encounter when studying the semi-classical equations with the source term
given by the renormalized stress–energy tensor of the quantized massive
fields. Of course, the semi-classical equations are extremely complex [8,52],
but the general pattern that lies behind the calculations should remain the
same. This group of problems are currently actively investigated and the
results will be published elsewhere.
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