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The method of Causal Dynamical Triangulations is a background inde-
pendent approach to Quantum Gravity. Imposing causal structure of the
universe we observe a classical 4D de Sitter spacetime as a “background”
geometry. From the study of the spatial volume fluctuations one can deter-
mine the effective action for the scale factor. In this approach one obtains
a minisuperspace model which has a maximum symmetry by integrating
out all degrees of freedom except the scale factor and not by freezing them.

PACS numbers: 98.80.Qc, 04.60.Gw, 04.60.Nc

1. Introduction

The basic tool used in the approach presented below is a path-integral
formalism applied to quantize a theory of gravity. The partition function of
quantum gravity is defined as a formal integral over all geometries,

Z =

∫ DM[g]

DiffM

eiSEH[g] , (1)

weighted by the Einstein–Hilbert action,

SEH[g] = − 1

G

∫

dt

∫

dΩ
√

− det g(R − 6λ) , (2)

where G and λ are, respectively, the gravitational and cosmological con-
stants, and R denotes the scalar curvature. In this expression we should
integrate over equivalence classes of metrics, i.e. divide out a volume of the
diffeomorphism group DiffM.
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To make sense of the formal gravitational integral (1), the model of
Causal Dynamical Triangulations uses a standard method of regularization,
and replaces the path integral by a sum over a discrete set of all causal
triangulations T . Teitelboim [4, 5] pointed out the importance of causality
in the quantum gravitational path integral, as a remnant of the Lorentzian
signature. We assume the spacetime topology to be S3×S1 and the existence
of a global proper-time foliation, as an implication of causality. The spatial
geometry at each discrete proper-time step is represented by a triangulation
of S3, made up of equilateral tetrahedra with a side length as > 0. Due to the
global proper-time foliation, Wick rotation is well defined. As a consequence
of the discretization procedure and rotation to the Euclidean signature, the
partition function (1) is written as a sum

Z =
∑

T

1

CT

e−S[T ] , (3)

where the factor 1/CT is a symmetry factor, given by the order of the auto-
morphism group of a triangulation T . The explicit form of the discretized
action S[T ] is evaluated in the next section.

It is impossible to evaluate partition functions (1) or (3) using purely
analytical methods and we use Monte Carlo techniques to calculate the ex-
pectation values of observables. In this paper, the recent results obtained
in the framework of Causal Dynamical Triangulations are presented. It is
shown that the background geometry arises dynamically and that it has
a form of a de Sitter space. Next, the effective action for quantum fluctua-
tions is derived.

2. Fundamental building blocks of CDT

The building blocks of four dimensional Causal Dynamical Triangula-
tions are four-simplices. Each simplex has five vertices, all of them con-
nected to each other. The boundary of a simplex consists of five tetrahedral
faces. A four-dimensional simplicial manifold, with a given topology, can
be obtained by properly gluing pairwise simplices along common faces. The
metric inside every simplex is flat.

The causal structure introduces a distinction between the time links of
length at and the spatial links of length as. These lengths are assumed to be
fixed for all simplices, opposite to the Regge’s model [6]. Therefore, there
are two kinds of four-simplices, first of a type {4, 1} with four vertices lying
in one spatial slice and one in the neighboring slice, and second of a type
{3, 2} with three vertices lying in one spatial slice and two in the adjacent
slice. The two types of simplices differ in volume and angles. Each spatial
slice is built from tetrahedra and has a S3 topology, which is not allowed to
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change in time. The Wick rotation is well defined and it can be performed
by the analytic continuation to imaginary lengths of the time links at → iat.

Because no coordinates are introduced, the CDT model is manifestly
diffeomorphism-invariant. Such a formulation involves only geometric in-
variants like lengths and angles. We define the geodesic distance of two
simplices as the length of the shortest path on a lattice dual to the triangu-
lation. A volume of the simplicial manifold is proportional to the number of
simplices. Similarly, the curvature of a simplicial manifold can be expressed
using the angle deficit which is localized at triangles.

2.1. Regge action

The action appearing in Eq. (3) is a discrete version of the Einstein–
Hilbert action (2) and is called the Regge action. It is easy to see that, for
any simplicial manifold T , the total four-volume V4 =

∫
dt

∫
dΩ

√
det g is

a linear function of a total number of four-simplices N4 and a number of
four-simplices of type {4, 1} N41. The proportionality coefficients are purely
geometric and depend on at and as (see [1] for details). Similarly, it can be
shown that the global curvature

∫
dt

∫
dΩ

√
det gR will depend on N4 and

the total number of vertices N0. The Regge action can be written in a very
simple form,

S[T ] = −K0 N0[T ] + K4 N4[T ] + ∆(N41[T ] − 6N0[T ]) , (4)

where K0, K4 and ∆ are bare coupling constants, and naively they are func-
tions of G,λ and at, as. K4 plays a similar role as a cosmological constant,
it controls the total volume and needs to be kept near its critical value dur-
ing numerical simulations. ∆ is related to the asymmetry factor between
time and spatial link lengths. It is zero when at = as and does not occur in
the Euclidean Dynamical Triangulations. ∆ will play an important role as
it will allow to observe new phases.

3. Monte Carlo simulations

The idea which stands behind Monte Carlo simulations is to approximate
the infinite sum which appears in the partition function (3) by a sum over
a finite number of Monte Carlo configurations. More precisely, given an
observable O[g], e.g. three-volume v(t) of a spatial slice at time t, we would
like to calculate its expectation value 〈O[g]〉. In the CDT framework the
geometries [g] are already restricted to a discrete set of simplicial manifolds
T and

〈O[g]〉 =
1

Z

∑

T

1

CT

O[T ]e−S[T ] , (5)

where the partition function Z is given by Eq. (3) with the action (4).
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The Monte Carlo simulations generate a finite set of configurations
{T (1), . . . ,T (K)} and allow to approximate the average (5) by a summa-
tion over it,

〈O[g]〉 ≈ 1

K

K∑

i=1

O[T (i)] . (6)

Let us notice, that no factor 1
CT

e−S[T ] is needed, since configurations are gen-

erated according to the probability distribution P [T ] = 1
Z

1
CT

e−S[T ], which
means that more probable geometries will more likely appear in the set
{T (1), . . . ,T (K)}. The larger is the number K of configurations and the
smaller are the autocorrelations of T (i), the more accurate is the approxi-
mation (6).

The Monte Carlo algorithm performs a random walk in the phase-space
of configurations, i.e. space of piecewise linear geometries. The algorithm
starts with a minimal configuration with a given topology S3×S1. Each step
is one of the seven local moves of 4D CDT, so-called Alexander moves. The
moves do not change the topology and do not spoil the global proper-time
foliation. In order to probe the phase-space in agreement with the probabil-
ity distribution P [T ], several conditions must be fulfilled: The moves should
be ergodic, which means that it is possible to reach every allowed configura-
tion. The acceptance probability W (A → B) of a move from configuration
A to B should satisfy the detailed balance condition:

P (A)W (A → B) = P (B)W (B → A) .

After a sufficiently large number of steps, configurations are independent
and can be added to the set {T (1), . . . ,T (K)}.

4. Phase diagram

A value of the bare cosmological constant K4 is always tuned to its criti-
cal value, in order to keep the total volume fluctuating around a given finite
value. The two remaining bare coupling constants K0 and ∆ can be freely
adjusted and depending on their values we observe three qualitatively differ-
ent behaviors of a typical configuration. An illustrative sketch of the phase
diagram is presented in Fig. 1. For small values of ∆ and K0 all simplices
are localized in one spatial slice and a dimension reduction is observed. This
phase corresponds to so-called crumpled phase present in Euclidean Dynam-
ical Triangulations [3]. For large values of K0 the universe disintegrates into
uncorrelated irregular sequences of maxima and minima with time extension
of few steps. This phase is related to so-called branched polymers phase also
known from the Euclidean Dynamical Triangulations.
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Fig. 1. Left: a qualitative sketch of the phase diagram of the four-dimensional

Causal Dynamical Triangulations on the bare coupling constant K0–∆ plane. We

observe three phases: a crumpled phase, a branched polymer phase and the most

interesting a genuinely four-dimensional phase. Right: Monte Carlo snapshot of

a typical configuration in the genuinely four-dimensional phase. We plot the spatial

volume distribution vt.

In the model of Causal Dynamical Triangulations we have a distinc-
tion between time links and spatial links, allowing us to to assign them
different lengths. Such an asymmetry, not possible in the Euclidean ver-
sion of Dynamical Triangulations, introduces the asymmetry parameter ∆
(∆ = 0 in the symmetric case). For large values of ∆ we observe the third,
most interesting, phase. In this range of bare coupling constants, a typical
configuration has a “bloblike” shape and behaves as a well defined four-
dimensional manifold (see Fig. 1 right-hand side). The measurements of the
Hausdorff dimensions confirm that at large scales the universe is genuinely
four-dimensional [1]. All results presented in this paper were obtained for a
total volume V4 = 160 000 simplices, and for K0 = 2.2,∆ = 0.6,Kcrit

4 = 0.9.
This point corresponds to the third phase.

5. Background geometry

The causality condition imposes on configurations a global foliation in
the proper time. Due to this property each spatial slice has a well defined
integer time coordinate t and a spatial three-volume vt. The index t ranges
from 1 to T , and because of time-periodic boundary conditions time slice
t = T + 1 is cyclically identified with time slice t = 1. The measurements of
expectation values of observables are calculated performing averaging over
Monte Carlo generated path integral samples, as described in (6). The
Einstein–Hilbert action (2), as well as the Regge action (4), are invariant
under the time translation t → t+ δ. In order to perform a meaningful aver-
age of the spatial volume vt, an appropriate time shift is needed, otherwise
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the uniform distribution of volume would be obtained. The shift can be
done by fixing a position of the “mass center” of the volume distribution vt

for each configuration included in the Monte Carlo average (6). The results
obtained in simulations show that the average geometry (plotted in Fig. 2)
is a de Sitter space,

v̄t ≡ 〈vt〉 ∝ cos3(t/B) , (7)

where B is the time extension of the “blob”. This corresponds to the maxi-
mally symmetric solution of the classical Einstein equations with a positive
cosmological constant,
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Fig. 2. Left: background geometry. Average spatial volume v̄t for K0 = 2.2, ∆ = 0.6

and V4 = 160 000. The best fit A cos3(t/B) is indistinguishable from the numerical

curve. The bars indicate the amplitude of quantum fluctuations. Right: the poten-

tial U(v) corresponding to the effective model with a small volume modification.

6. The minisuperspace model

The behavior of the spatial volume v̄(t) ∝ cos3(t/B) emerges as a clas-
sical solution of a minisuperspace model. This model assumes spatial ho-
mogeneity and isotropy, which means that all degrees of freedom except the
volume are “frozen”. In the CDT model we have the opposite situation, no
degrees of freedom are excluded, instead we integrate out all of them but the
scale factor. Nevertheless, in both cases results demonstrate high similarity.

Let us introduce a spatially homogeneous and isotropic metric on a space-
time with S3 × S1 topology,

ds2 = dt2 + v2/3(t)dΩ2
3 ,

where v(t) is the volume of the spatial slice with a topology S3. In this
particular case, the Einstein–Hilbert action takes the form

S =
1

G

∫

dt

∫

dΩ
√

g(R − 6λ) =
1

G

∫
v̇2

v
+ v

1

3 − λv dt . (8)

and is called the minisuperspace action.
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Restricting our considerations to the spatial volume v(t) we reduce the
problem to one-dimensional quantum mechanics. The minisuperspace ac-

tion (8) describes a motion of a particle in the well potential U(v) = −v
1

3 +λv
plotted in Fig. 2. For small volumes finite size corrections are needed to reg-
ularize the potential near zero, so that it has a quadratic behavior. In this
case, the universe remains for a long time at a zero volume, then suddenly
makes an instant “bounce” and collapses back, giving the blob shape of v̄(t).
The transition amplitudes of a quantum system can be calculated just as in
the instanton problem.

7. Quantum fluctuations

The classical trajectory, i.e. the average spatial volume v̄(t) ∝ cos3(t),
is perfectly recovered in the minisuperspace model. This encourages us to
state a question if quantum fluctuations around the background geometry
are also correctly described by the action (8).

Let us denote the deviation of the spatial volume v(t) from the average
v̄(t) as x(t) = v(t) − v̄(t). In the semiclassical approximation, the spa-
tial volume fluctuations x(t) are described by a Hermitian Sturm–Liouville
operator P (t), obtained in the quadratic expansion of the action

S[v = v̄ + x] ≈ S[v̄] +
1

2

∫

x(t)P (t)x(t)dt . (9)

For the minisuperpsace action (8) expansion around the classical solution
(7) gives

P (t) = −∂t
1

v̄(t)
∂t −

∂2U

∂v2

∣
∣
∣
v=v̄

,

where U(v) = −v
1

3 +λv. Results obtained in the CDT framework are realized
for a discrete time coordinate. In this case, a discretized, dimensionless
version of the action (8) is

S[v] =
T∑

t=1

(
c1

vt
(vt+1 − vt)

2 + c2

(

v
1/3
t + λvt

))

(10)

and the expansion (9) is

S[v̄ + x] ≈ S[v̄] +
1

2

∑

t,t′

xtPtt′xt′ .

The Sturm–Liouville operator P (t) is a matrix Ptt′ with elements given by

∑

tt′

xtPtt′xt′ =
∑

t

c1

v̄t
︸︷︷︸

kt

(xt+1 − xt)
2 − ∂2U

∂v2

∣
∣
∣
v=v̄t

︸ ︷︷ ︸

ut

x2
t . (11)
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The coefficients kt correspond to the kinetic term, and ut to the potential
part.

Using Monte Carlo techniques we are able to measure not only the aver-
age volume v̄t at a time step t, but also the correlation matrix C of volume
fluctuations

Ctt′ ≡ 〈xtxt′〉 ,

also called the propagator. The brackets 〈. . .〉 mean averaging over the whole
ensemble of geometries, and can be approximated be a sum over statistically
independent Monte Carlo configurations as in (6). There exists a direct
relation between the propagator C and the matrix P

Ctt′ =
1

Z

∫

xtxt′e
−

1

2

P

t,t′
xtPtt′xt′

∏

s

dxs = P−1
tt′ .

The propagator C can be measured using Monte Carlo techniques, in the
same way as v̄t was measured. For the numerical convenience, we have fixed
the total four-volume V4 ≡ ∑T

t=1 vt for every measurement. This constraint
imposes on the covariance matrix C existence of a zero mode, namely the
constant vector e0,

∑

j

Cije
0
j = 0 , e0

j =
1√
T

.

The matrix P is, therefore, given as the inverse of C on the subspace or-
thogonal to the zero mode e0,

P = (C + A)−1 − A , Aij = e0
i e

0
j =

1

T
.

Having calculated the covariance matrix C, we get the empirical Sturm–
Liouville operator P which can be compared with the predictions of the
minisuperspace model. Indeed the empirical P matrix has to a very good
approximation a tri-diagonal structure being a sum of the potential and
kinetic terms, as we expect from (11)

P = P kin + P pot .

The kinetic part P kin is a tridiagonal symmetric matrix, such that the sum
of the elements in a row or a column is always zero, and can be decomposed
into parts linearly dependent on kt

P kin =
T∑

t=1

ktX
(t) ,
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where X(t) is a matrix corresponding to the discretization of the second time
derivative ∂2

t at a time t,

X
(t)
jk = δtjδtk + δ(t+1)jδ(t+1)k − δ(t+1)jδtk − δtjδ(t+1)k .

Because we have to cut out the zero mode, the potential part P pot is a pro-
jection of a diagonal matrix Diag({ut}) on the subspace orthogonal to e0,

P pot = (1− A)Diag({ut})(1 − A) =

T∑

i=t

utY
(t) , (12)

where

Y
(t)
jk = δtjδtk − 1

T
(δtj + δtk) +

1

T 2
,

and 1 denotes the T × T unit matrix. The kinetic part remains unaffected
by the projection, since AP kin = 0.

The decomposition of P into a “kinetic” and “potential” term, is done
using the least square method. We find such values of {kt} and {ut}, that
the matrix P kin + P pot is as close as possible to the empirical matrix P , i.e.

we minimize the error function

Tr
[

P − (P kin + P pot)
]2

.

7.1. Kinetic term

If the predictions of the minisuperspace model are correct and the quan-
tum fluctuations arise from the action (8), we expect, according to (11),
a following behavior of the kinetic term,

kt =
c1

v̄t
. (13)

We can use the fitted coefficients kt and compare c1/kt with the directly mea-
sured average spatial volume v̄t. The comparison of c1/kt and v̄t is illustrated
in Fig. 3 for a variety of four-volumes V4. It is seen that the relation (13)
is very accurate and, most important, the coupling constant c1, which was
determined independly for each four-volume V4, really is independent of V4.

The gravitational coupling constants G used in the continuum action (8)
and the effective coupling constants c1 used in the discrete action (10) are
related as derived in [7, 8],

G = c
a2

c1
,
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where c is a geometrical constant. Knowing G = ℓ2
Pl and c1 we can express

the cut-off size a in terms of Planck length ℓPl. From the simulations for
K0 = 2.2 and ∆ = 0.6 we obtained a ≈ 2ℓPl and the linear size of the
universe build from 160 000 simplices is about 20ℓPl.
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Fig. 3. Left: kinetic term: the directly measured expectation values v̄t (thin line),

compared to c1/kt (thick line) extracted from the measured covariance matrix C

for K0 = 2.2, ∆ = 0.6 and various total volumes V4 ranging from 20 000 to 160 000

simplices. Right: potential term: the extracted second derivative of the potential

ut = c2U
′′(vt) as a function of average spatial volume v̄t. The fit c2v̄

−5/3

t presents

the behavior expected for the minisuperspace model.

7.2. Potential term

Similarly, from (11) we expect the potential term ut to behave like

ut = c2U
′′(v̄t) = c2v̄

−5/3
t , U(v) = −v1/3 + λv . (14)

The extraction of ut from P pot is not an easy task, because it has large
statistical errors. The main reason is that, due to the projection onto the
space orthogonal to the zero mode, the interesting region of large volumes,
and therefore small ut, is affected by the huge contribution from the stalk,
where the discretization effects are important. Secondly, the potential term
is always sub-dominant to the kinetic term for individual spacetime histories
in the path integral.

Fig. 3 shows the measured coefficients ut extracted from the matrix P pot

as a function of average three-volume v̄t together with a fit c2v̄
−5/3
t , cor-

responding to a potential c2v
1/3. In order to avoid the influence of the

discretization effects, Fig. 3 includes data for volumes respectively larger
than the kinematically allowed minimum, i.e. five tetrahedrons. It is seen
that the relation (14) agrees very well with numerical data. Moreover, the
coefficient c2 in front of Eq. (14) seems to be independent on V4.

In summary, we conclude that the data allow us to reconstruct the ac-
tion (8) with a good precision.
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8. Conclusions

The Causal Dynamical Triangulations model of quantum gravity is very
simple. It introduces a lattice regularization and Wick rotation, to calcu-
late the path integral over the class of causal geometries with a global time
foliation. We use Monte Carlo simulations to perform nonperturbative com-
putation of the path integral.

We observe that a typical geometry, appearing in the path integral, rep-
resents a four-dimensional universe with well defined time and space exten-
sion. As a background geometry we obtained a de Sitter space, which exactly
corresponds to the maximally symmetric solution of the classical Einstein
equations in the presence of a positive cosmological constant. Quantum
fluctuations of the spatial volume around the average geometry are also
perfectly described by the minisuperspace model. Fluctuations of the three-
volume are considerable, as can be seen in Fig. (2), and allow us to study
quantum effects. Nevertheless they completely agree with the semiclassical
description.

The gravitational constant G is responsible for a fluctuation amplitude
and can be related to the measured effective coupling constant c1. This
allowed us to determine the cut-off size a and to estimate that the universe
built of 160 000 simplices, a typical configuration size used in Monte Carlo
simulations, has a radius of about 20 Planck lengths.
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