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We review recent solutions of the classical equations of motion corre-
sponding to the effective action of the linearized gravity. The action was
derived by Amati, Ciafaloni and Veneziano to describe scattering of grav-
itating sources at very high energies. The solutions reveal a number of
phenomena consistent with existence of a gravitational collapse in such
a scattering.

PACS numbers: 04.70.Dy, 04.25.–g

1. Introduction

Even though the classic Schwarzschild metric is known for about a cen-
tury, no analytical solution of Einstein equations, which actually describes
the gravitational collapse and formation of a black hole, is available. On
the other hand a significant progress in solving Einstein equations numeri-
cally has been achieved in the last decade and a number of precise numerical
simulations of this phenomenon is available [1–3], see [4] for a recent review.

At the same time some analytical methods have been developed to de-
scribe a scattering of gravitating sources in the framework of the linearized
gravity [5–7]. These lead to the derivation of the effective actions describing
the, graviton mediated, high energy scattering of such sources [8–12].

In this paper I will report on the recent results obtained within the latter
approach [13–15]. Interestingly a rich critical structure of the solutions is
uncovered signaling possibly a collapse also in the high energy scattering.

∗ Presented at the XLVIII Cracow School of Theoretical Physics, “Aspects of Duality”,
Zakopane, Poland, June 13–22, 2008.

(3423)



3424 J. Wosiek

1.1. Classical collapse and Choptuik scaling

To fix a notation and terminology we shall now briefly discuss numerical
findings associated with the collapse [4]. One wants to solve the Einstein
equations with a matter (described, e.g., by a scalar field φ)

Rµν + 1

2
Rgµν = 8πGT µν , ∇µ∇µφ = 0 (1)

and see which initial conditions

φ(r, 0; p) (2)

lead to a collapse. To this end a generic parameter (or a set of them) p is
introduced which distinguishes the two situations:

1. p < p∗ no collapse — a system is said to be in a dispersive phase.

2. p > p∗ a collapse occurs — a system being in a black hole phase.

In 90’s Choptuik has found that, if p is close to its critical value p∗, the
solutions are locally selfsimilar [1]

φ∗(sr, st) = φ∗(r, t) , (3)

and, moreover, the mass of a black hole emerging for p > p∗ scales as a power

M(p) = c(p − p∗)γ , γ > 0 , (4)

with the “reduced” p . The exponent γ is universal depending only on
a symmetry of a solution and on a type of a matter. These behaviours
are in strong analogy with critical phenomena in statistical systems. In
particular, two types of transitions were found. Namely, Type II transition
with mass behaving as in (4), and Type I when a black hole with M(p∗) 6= 0
is created already at the transition point.

1.2. Linearized gravity, scattering and effective action

We now turn to the effective action approach. Derivation of the linearized
gravity from the full Einstein–Hilbert action has a long history [12]. Some
simplifications occur if one keeps only terms relevant for the high energy
scattering, similarly to those which generate the multiregge asymptotics in
QCD [9,10]. Still the resulting actions are hardly manageable.

By summing eikonal diagrams augmented with a single emission from the
exchanged line (the so called H diagram) Amati, Ciafaloni and Veneziano
(ACV) have derived an effective action which is much simpler and is relevant
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for the scattering in the so called transplanckian regime, i.e. Gs ≫ 1, s ≫ t
[8, 11, 13]. The ACV action reads

A = 2πGs

∫

d2
x

[

a1(x)s2(x) + a2(x)s1(x) − 1

2
∂ia2∂ia1

+
(πR)2

2
(−(∂i∂iφ)2 + 2φ∂i∂iH)

]

,

∂i∂iH = −∂i∂ia1∂i∂ia2 + ∂i∂ja1∂i∂ja2 , i = 1, 2 , (5)

where s1,2(x) are transverse profiles of the left and right moving source,
a1,2(x) describe exchanged gravitons which couple to s2,1 respectively, and
φ(x) is the field of a graviton emitted in the s-channel by three graviton
vertex φH. R is the Schwarzschild radius of the total CM energy, and R1,2

are analogous, “running”, radii associated with the energies contained in the
sources within a radius r from their respective centers.

R = 2G
√

s , Ri(r) = 4GEi(r) , r = |x| , Ri(∞) = R , (6)
∫

d2
xs(x) = 1 , Ri(r) = R

r
∫

d2
xs(x) . (7)

Longitudinal degrees of freedom factorize giving rise to the overall factor of
Y = log Gs e.g. in the production cross sections. The same action has been
also derived in the momentum space

A =
Gs

2

∫

d2
k

k
2

[

a1(k)s2(−k) + a2(k)s1(−k)

−a1(k)a2(−k) − (πR)2

2
[−h(k)h(−k) − h(−k)H(k)]

]

. (8)

In the next section we shall discuss classical equations of motion following
from (5) and (8).

1.3. Effective equations of motion

Equations of motion in the configuration space are equivalent to a simple
Coulomb problem with a repulsive, time dependent potential.

ρ̈(r) =
1

2

R1(r)R2(r)

ρ2(r)
(9)

with r2 = x
2 playing a role of time: ˙= d/dr2. The field ρ describes gravitons

emitted in the s-channel.

ρ(r) = r2(1 − 2πφ̇(r)) , (10)
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We shall be seeking solutions of (9) with the following boundary conditions

ρ(0) = 0 , ρ(r) ∼ r2 , r → ∞ , (11)

which eliminate singularity at r = 0 and guarantee smooth connection with
the perturbative solution.

Corresponding equations in the momentum space read (assuming axial
symmetry)

ai(k
2) = si(k

2) +
R2

8

∫

dk2
1
dk2

2

k2
1
k2
2

√

λ(k2
1
, k2

2
, k2)h(k2

1)ai(k
2

2) ,

h(k2) =
1

4π2

∫

dk2

1
dk2

2

k2k2
1
k2
2

√

λ(k2
1
, k2

2
, k2)a1(k

2

1)a2(k
2

2) , (12)

λ(k2

1 , k
2

2 , k
2) = 2k2

1k
2

2 + 2k2k2

2 + 2k2

1k
2 − k4 − k4

1 − k4

2 (13)

with all integrations running over the region allowed by the triangle relation
between momenta of the exchanged and emitted gravitons.

2. Solutions and the onset of criticality

Before discussing how a collapse manifests itself in solutions of above
equations, let us see how different scenarios may show up within the kine-
matics of high energy collisions. Classical scattering is described in terms
of the CM energy

√
s (or R) and the impact parameter b. We have also al-

lowed for the two more parameters, namely sizes of the sources L1,2. When
the impact parameter is large compared to the Schwarzschild radius R, the
sources are deflected which causes some radiation hence multi graviton pro-
duction. Nothing dramatic happens: we are in the dispersive phase. On the
other hand for b < R, a lot of energy is concentrated below its Schwarzschild
radius, therefore we expect that a collapse may occur — a black hole phase
may develop.

2.1. Singularities in the momentum space solutions

These simple considerations suggest that the relevant parameter which
could drive the transition is the dimensionless ratio R/b (or R/L)1. Hence
we expect that our solution of (9) and (12) may reveal some singular be-
haviour when R is increased. And indeed this is the case! The simplest
way to see it, is to think of the iterative solution of the momentum space
equations (12). The process is analogous to the generation of a geometric

1 To simplify the discussion one could consider the head-on collisions. This eliminates
one variable leaving R/L as the only essential parameter.
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series: for small R procedure will converge, but there exists a critical value
Rc beyond which the series diverges. Another way to see that these equa-
tions admit a critical behaviour, is to discretize momenta and treat (12) as
the algebraic system of N (N → ∞) polynomial equations. Again, for small
R there exist a real solution which is just the recursive solution we displayed
above. For R > Rc this solution becomes complex indicating some singu-
larity in the system. Needless to say that the critical values determined in
both ways are consistent.

2.2. Singularities in the configuration space solutions

Existence of the two regimes in solutions of the configuration space equa-
tions (9) can be also readily established. Equation (9) is equivalent to the
following system of two first order equations

ρ̇(r) =

√

σ(r) − R1(r)R2(r)

ρ
i .e. σ ≡ ρ̇2 +

R1(r)R2(r)

ρ
,

σ̇(r) =
1

ρ(r)

d(R1R2)

dr2
. (14)

To satisfy boundary conditions (11) we solve (14) with

ρ(0) = 0 , σ(0) = σ0 , (15)

and find a σ0 such that σ(Max(L1, L2)) = 1 2. It turns out that real solutions
satisfying this conditions exist only for R < Rc. This is illustrated in Fig. 1
where the solution σ(1) is plotted as a function of the initial value σ0. Clearly
our boundary conditions can be satisfied in this case. With increasing R the
curve on Fig. 1 moves upwards and beyond some Rc real solutions cease
to exist. Critical values determined from the configuration space solutions
agree with those from the momentum space analysis. This is summarized
in Table I where we compare Rc determined from the x- and p-analysis of
three gedanken experiments:

A. Head on collisions of the Lorentz-like sources with different shape pa-
rameters, d

s(r) =
dL4

π(dL4 + (1 − d)r4)3/2
, d < L .

2 For compact sources this is exactly equivalent to (11) because of the second equation
(14). In practice the procedure also works for non-compact sources provided the
distributions vanish quickly at large r. For example for identical Gaussian sources
replacing Max(L) with 10L is more than sufficient.
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B. Scattering of a central Gaussian source with a Gaussian ring for dif-
ferent widths of Gaussian distributions.

C. Head on collision of two central Gaussian sources with different widths.

0 0.2 0.4 0.6 0.8 1
Σ0

1

1.1

1.2

1.3

ΣH1L

Fig. 1. Looking for the maximal solution of Eqs. (14), σ(1) = 1, as a function of

the initial value σ(0) = σ0 (in the specific case d = 1, R/L = 0.46).

In general both, x- and p-approaches give consistent results. For narrow
sources (small σ or d ≪ 1, d ≫ 1) the momentum methods require yet finer
discretization [16]. The case of the scattering of a point-like particle and
a ring was solved analytically giving Rc = 21/2/33/4 ∼ 0.62 [13]. This is
confirmed by our data B-x at σ → 0 and equivalently A-x at d → ∞.

3. Critical lines in the parameter space

Repeating above procedures for various parameters we have determined
critical lines which separate dispersive and black hole (BH) phases in various
parameter spaces [14]. Figure 2 shows such a line for the “experiment” C of
Table I. The black hole phase is below the critical line corresponding to the
high concentration of the incoming energy. Interestingly, the critical line is
almost linear for a wide range of source sizes (right). This was also seen in
Table I where the critical value of R/(L1 + L2) was largely independent of
the ratio ρ = L1/L2.
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Fig. 2. A critical line (solid) in the (L1, L2) plane (case C of Table I). The lower

bound (dashed) comes from the CTS criterion. A comparison between log–log (left)

and the lin–lin (right) representations is also shown.

TABLE I

(R/L)c for a range of sizes of the power-like and Gaussian sources: a comparison
between configuration and momentum-space results. A, B and C label sources as
explained in the text. In the case C: ρ = L2/L1 and the critical value of the ratio
2R/(L1 + L2) is shown.

d 0.5 1.0 1.6 2.5 4.0

A-x 0.419 0.471 0.502 0.528 0.550
A-p 0.429 0.476 0.499 0.501 0.477

σ 0.01 0.1 0.2 0.3 3.0

B-x 0.615 0.572 0.525 0.486 0.470
B-p 0.058 0.436 0.501 0.489 0.476

ρ 0.25 0.333 0.5 1.0 2.0 3.0 4.0

C-x 0.810 0.816 0.821 0.823 0.821 0.816 0.810
C-p 0.823 0.833 0.850 0.841 0.838 0.840 0.832

3.1. Closed trapped surfaces

The dashed line in Fig. 2 (left) shows an estimate of the critical line given
by the closed trapped surface (CTS) criterion. A CTS is a two-dimensional
surface which is trapped below the horizon, that is both light rays emitted
from different sides of the surface bend “downwards” ending on the singu-
larity. It was shown by Kolparh and Veneziano that CTS exist if the source
distribution satisfy a simple, symmetric self-consistency relation [17]

R1(Rc)R2(Rc) = R2

c . (16)
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Existence of a CTS is a sufficient condition for a formation of a horizon and
indeed the dashed line in Fig. 2 is located inside a BH phase. Interestingly,
the CTS criterion reproduces reasonably well a shape of the transition line.

Figure 3 shows a similar phase diagram for the case A of Table I (head-on
scattering of two Lorenzian sources). This time a BH phase lies above the
the critical line and the upper bound, given by the CTS criterion, is again
not far from the true transition.

-2 -1 0 1
Log d

-2

-1.5

-1

-0.5

0

Log Rc

Fig. 3. The critical line (solid) in the (R, d) plane having set L = 1. We also show

(dashed line) the upper bound on Rc from the CTS criterion (16). The BH phase

is above the solid line.

4. On shell action and average multiplicity of gravitons

Criticality of the system shows up also in the action of our classical
solutions. The action itself is infrared divergent, however its derivative with
respect to some parameters is IR finite. In particular, the derivative over
R2 is IR finite. Incidentally it gives the average multiplicity of gravitons
emitted in unit rapidity

∂(A/Gs)

∂R2
=

π2

R3
√

s
〈N〉 . (17)

Consequently 〈N〉 does not have any IR divergence. At first sight this seems
surprising since usually multiplicities of radiated quanta are not IR safe. It
turns out however that in the axially symmetric case, considered here, only
so called “TT” polarization is being produced and it is IR finite [13]. To see
a typical bremsstrahlung like spectrum, one needs to access an “LT” mode
of the gravitational field.
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In Figure 4 we show the R dependence of Eq. (17) obtained from our
numerical solution of (14). In the vicinity of the transition point the multi-
plicity is singular,

0.44 0.445 0.45 0.455 0.46 0.465 0.47
R

0.08

0.1

0.12

0.14

Π
2 R

������������!!!s
< N >

Fig. 4. The total multiplicity of emitted gravitons (points) and the best fit:

0.138 − 0.46(Rc − R)0.523. A fit with the fixed power 1/2 is marginally worse.

with the singularity being consistent with a simple square root behaviour

〈N〉 = c0 + c1(Rc − R)1/2 . (18)

This in turn means that the action of our classical solutions behaves as

A(R) = A0 + A1(Rc − R) + A2(Rc − R)3/2 , (19)

in agreement with findings of ACV [13].
It may be worth pointing out that, in statistical physics, half-integer val-

ues of critical exponents result usually from a mean field, or semi-classical,
approximation. And indeed also in our case they follow from classical solu-
tions of effective equations of motion.

As a second comment, notice that a range of R’s, or energies, covered
in Fig. 4 is rather small. Consequently the rise of the multiplicity is quite
spectacular when we approach the critical energy, even from the dispersive
phase.

5. Spectra of gravitons

Having discussed total multiplicity we turn now to the differential dis-
tributions of emitted radiation [15]. In particular we would like to see if any
singularity develops there while approaching the transition point, or if there
are any properties of radiation carrying some information about the “other
side” of the transition.
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Figure 5 shows transverse momentum spectra of emitted gravitons for
a range of R’s approaching a transition point. Two curves shown for each
value of R give an idea of a dependence on the discretization parameter n3.
Close to the criticality a sensitivity to the discretization is higher, the growth
of the distribution itself also appears to be stronger. However there is no
sign of any singularity, in k, developing at the critical point.

1 2 3 4 5
k

0.05

0.1

0.15

0.2

0.25

2
����������������

R3 
�!!!s

dN
�������

dk

Fig. 5. Spectrum of gravitons (A). R = 0.44, 0.45, 0.46, 0.47; Rc = 0.47067,

n = 60–70.
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����������!!!s
d N
��������

d r

Fig. 6. Profile in the x-space, R = 0.45, 0.46, 0.47, 0.4706, 0.47064, 0.47065;

Rc = 0.470673 .

3 These results were obtained solving recursively the discretized set of equations (12).
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The same conclusion follows from Fig. 6 where the transverse profile
of the graviton field, in the configuration space, is shown. In both cases
there exists a regular, limiting distribution of emitted gravitons when the
transition point is approached from the dispersive phase. At the same time
both, analytic (18) and numeric results, Figs. 4–6, show that it is approached
with an infinite derivative.

It is perhaps interesting that the radiation is emitted preferentially from
the distance r ∼ 0.5 ∗ L from the source axes cf. Fig. 6 4. Comparing with
the critical value Rc/L ∼= 0.47 we see that the maximum is close to the
actual Schwarzschild radius of the horizon “just about to be formed” on the
other side of the transition point.

Another such a “coincidence” can be extracted from Fig. 7 where the
transverse spectra are shown on the logarithmic scale. Deep in the disper-
sive phase the distribution seems to have two components separated by a
“knee”. Close to the transition, however, the knee vanishes leaving a single
exponential at the transition point. Is this a tell-tale of the Hawking radi-
ation present on the other side? If this is indeed so, than the slope of the
exponential would be proportional to the mass of a black hole “to be formed”.
Fig. 7 suggests that this slope does not vanish at criticality indicating that
the transition considered here is of the first type.
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Fig. 7. Looking for the “Hawking temperature” of emitted gravitons. R = 0.2, 0.3,

0.4, 0.6, 0.8, 0.82, 0.83; Rc = .841.

4 We are talking here about the central collision of two sources of size L.
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6. Complex trajectories

Obviously it is of great interest to examine our equations also in a BH
phase. The simplest, approach is to solve the large system of algebraic equa-
tions resulting from the discretization of equations (12) in the momentum
space (c.f. Fig. 8). Below we discuss one exploratory example of such a
procedure [15].

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 8. The integration domain, in the compact v space, of the integral equations

(12) and its discretization.

To reduce number of unknowns we eliminate h(k) from the first equa-
tion and consider symmetric scattering with s1(k) = s2(k). Upon dividing
a compact range of a new variable v = 1/(1 + kL) into n small intervals we
are left with a system of n algebraic equations of third order. We than find
all 3n solutions with Mathematica and identify ones which are relevant in
our case.

In Fig. 9 an example of two such solutions is shown. The figure displays
a parametric plot of a value of h(k) at one of the points, k = k3, of a mesh.
Points on a figure are labeled by R. Varying R one obtains a whole trajectory
of h(k3) in a complex plane. In fact two, complex conjugate, trajectories are
plotted. Let us trace them beginning deep in the dispersive phase.

For small R < Rc trajectories are real. The left one coincides exactly
with the recursive solution, which was independently generated. In fact we
have checked, that this is the only (out of 36 = 726) solution which is stable
under the recursion. The second solution (beginning on the right of the pinch
point) cannot be reached by the recursion. It is also real in the dispersive
phase and it meets the recursive one at the critical point Rc. Points on both
trajectories are initially separated by ∆R = 0.01. When we approach Rc,
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Fig. 9. Two complex trajectories of h(k3) parametrized by R moving across Rc.

h(k3) varies faster with R as expected and as is evident from the plot. Closer
to Rc, ∆R was reduced to 0.001 to see this behaviour in more detail. After
passing Rc both trajectories acquire imaginary, complex conjugated, parts
with a typical threshold behaviour. We have found a rich structure deeper in
the BH phase, for example there are other trajectories which seem to cross
the two shown here. Since however the interpretation of complex solution is
far from complete, we refrain from pushing the subject any further.

One thing, however, is clear: complex solutions of classical equations of
motion, imply complex action which indicates existence of some instabilities
in the system. The whole phenomenon is reminiscent of the discussion of
a “fate of a false vacuum” by Coleman with complex saddle points playing
analogous roles [18]. There is also an interesting recent attempt to under-
stand these solutions in somewhat simpler quantum mechanical model [19].

7. Summary

The effective action of Amati, Ciafaloni and Veneziano allows for quan-
titative study of a scattering of gravitating sources in the transplanckian,
Gs ≫ 1 regime. Interestingly, summing eikonal diagrams together with the
single emissions in the s-channel is sufficient to produce some signatures
characteristic of a gravitational collapse.

Recent solutions of the effective equations of motion reveal existence of
the two phases corresponding to the dispersive and collapsing behaviour. In
this paper we have discussed how the onset of the transition between the
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two regimes occurs and studied in detail singularity of the on mass shell
action and production of gravitons in the dispersive phase but close to the
criticality.

Our numerical calculations confirm that the OEM action scales in the
vicinity of a transition point with the mean field (or classical) value of the
exponent obtained analytically by ACV. That value is numerically close to
twice of the one obtained by Choptuik in his solutions of the full Einstein
equations.

The limiting distribution of the radiation, approached from the dispersive
phase, is regular. It is peaked around the horizon, (to be formed at the
other side of a transition) and displays a simple exponential dependence on
a graviton transverse momentum. The slope of that exponential does not
vanish at the critical point, suggesting that the transition may be of the first
type.

Finally, the solutions become complex in the black hole phase signaling
instabilities in the system and/or possible opening of new channels.

All results reviewed here have been obtained in collaboration with
Gabriele Veneziano. I thank him for numerous and stimulating discussions
on many issues. This work was completed while visiting the Theory Group
in the Max-Plank Institute (W. Heisenberg Institute) in Munich. I thank
them for their hospitality.
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