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The positivity of the matter-energy density in the Universe, defined
from the energy-momentum tensor as ρ ≡ T 0

0 — one of the initial assump-
tions in the positive-energy conjecture of Arnowitt et al. — is related to
the Lorentzian signature of space-time, assumed to be spatially flat, via
the Friedmann equation, by applying the Faddeev (Newton–Wigner) prop-
agator K for the cosmological Schrödinger equation in the semi-classical
approximation, the corresponding Euclidean propagator, which allows neg-
ative ρ, decaying on the Planck time-scale. A corollary of this result is that
the masses of all elementary particles, and hence of all astrophysical bodies
and black holes, are positive semi-definite.

PACS numbers: 03.65.Sq, 03.75.Dg, 04.60.Gw, 06.30.Dr

1. Introduction

The field equations of the Einstein theory of general relativity[1, 2],

Rij − 1
2gijR = κ2Tij , (1)

admit solutions for which the source is characterised by either positive
or negative energy-density ρ (and pressure p), assuming for simplicity the
perfect-fluid form of the energy-momentum tensor,

Tij = (ρ+ p)uiuj − pgij . (2)

Here gij is the metric of a time-orientable four-space whose signature is
(+−−−), Rij is the Ricci tensor, κ2 ≡ 8πGN is the gravitational coupling,

† Temporary address.

(35)
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GN ≡ M
−1/2
P being the Newton gravitational constant and MP the Planck

mass, and ui is a time-like unit normal vector which satisfies

uiu
i = 1 . (3)

Writing the line element in the form

ds2 = dt2 − γαβdxαdxβ , (4)

where t is comoving time and γαβ is the spatial three-metric, we have

ui = (1, 0, 0, 0) , (5)

so that ρ ≡ T 0
0 , and it becomes a fundamental question why this quantity

is always observed (and therefore also assumed) to be positive semi-definite.
The pressure, however, is not subject to the same constraint, since it can be
related to ρ by the adiabatic index γ as

p = (γ − 1)ρ , (6)

where −ρ ≤ p ≤ ρ if causality is to hold, so that 0 ≤ γ ≤ 2. (We restrict
consideration to theories for which the kinetic-energy terms of scalar fields
φn are linear in (∇φn)2.)

Similarly, the Dirac equation[3] for a fermionic spinor of mass m and
spin 1

2 in flat space-time,

(iγk∂k −m)ψ = 0 , (7)

where γk are the Dirac matrices, allows the existence of particles of positive
and negative electrical charge ±q, which led to the hole theory[4] and the
prediction of the positron, named and confirmed experimentally by Ander-
son [5] from observations of cosmic-ray tracks, and implying the phenomena
of vacuum polarisation and pair creation. In the theory of nuclear matter[6],
the rôle of the infinite sea of negative-energy states remains a subject of de-
bate — they are either ignored in the no-sea approximation or taken into
account via non-linear and derivative scalar-potential terms.

The mass of an electron, say, enters linearly in Eq. (7), and therefore
its sign is chosen to be positive, but the argument leading to the prediction
of anti-particles proceeds via pre-multiplication of Eq. (7) by the conjugate
operator (iγk∂k +m) to produce the Klein–Gordon equation (see §§ 67, 73
of the fourth part of Refs. [3])

(�+m2)ψ = 0 , (8)

which likewise admits solutions of positive- and negative-energy for a particle
of momentum p,

E = ±
√

p2 +m2 . (9)
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The negative-energy solutions for an electron can be re-interpreted as
positive-energy solutions for a positron, whose existence can be understood
from the hole theory[4], in which all the negative-energy states are assumed
to be occupied, the vacation of such a state bringing the positron into being.
But the equation of motion (8) and its solution (9) are invariant under the
operatorM, defined by

m→ −m̃ , (10)
so the theory could equally well apply to particles of negative-energy, if there
were a sea of occupied positive-energy states. The question then recurs of
why all the negative-energy states are excluded, while positive and negative
electrical charges are permitted equally.

Now solutions to the Einstein equations (1) involving charged objects
invariably require the square of the charge, the simplest example being the
Reissner–Nordström space-time[7] for a black hole of massM and charge Q,
expressed in co-ordinates (t′, r, θ, φ),

ds2 =
(
1− 2Mr−1 +Q2r−2

)
dt

′2 −
(
1− 2Mr−1 +Q2r−2

)−1
dr2

− r2(dθ2 + sin2 θdφ2) , (11)

and are thus invariant under the charge-conjugation operator C. Therefore,
it is easy to guess that the absence of negative energy in the Universe has
something to do with the geometry, since the metric (11) is not invariant
under the operator (10). The local geometry, in turn, is determined by the
entire mass distribution in the Universe, and thus the non-linearity of the
Einstein theory leads us to seek an explanation for the positivity of mass-
energy by applying Machian precepts, some feature of the global geometry
now being postulated first — the interrelationship between geometry (that is,
gij) and matter (that is, Tij) on the global scale is discussed in pp. 241–243
of the second part of Refs. [2], where Einstein introduced what he called
“Mach’s principle”, thus generalising the requirement of Mach that inertia
be due to an interaction between bodies.

2. The Friedmann Universe

Let us, therefore, consider the Friedmann solution[8] describing the ex-
pansion of the spatially isotropicUniverse (4)with the perfect-fluid source (2).
The line element is now

ds2 = dt2 − a2(t) dx2 , (12)

where a(t) ≡ a0 exp[α(t)−α(t0)] is the radius function of the three-space of
curvature k, expressible in polar co-ordinates (r, θ, φ) as

dx2 =
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2) , (13)
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while the field equations (1) reduce to

ξ2 = 1
3κ

2ρ− k

a2
(14)

and
ξ̇ = −1

2κ
2γρ , (15)

where ξ ≡ α̇ and · ≡ d/dt. Solutions to this system of equations are discussed
by Heckmann[9], assuming that ρ ≥ 0 and allowing all three curvatures
k = 0,±1, completing the analyses of the cases k = ±1 carried out by
Friedmann[8].

For simplicity, suppose that k = 0 so that dx2 is flat — as previously
argued from quantum cosmology[10] — and ask what happens if ρ becomes
negative. As long as κ2 remains positive, Eq. (14) then becomes inconsistent,
the only possible resolution being to Wick-rotate the time into the Euclidean
sector via the operator T , defined by

t→ ±i t̃ . (16)

More generally, we find that Eqs. (14), (15) are invariant under the combined
operatorsM, T and K (which reverses the spatial curvature k) applied both
to ρ and p, that yield the transformations

ρ→ −ρ̃ ,
p→ −p̃ ,

ui → ∓iũi ,
k → −k̃ .

 (17)

They can then be written as

ξ̃2 = 1
3κ

2ρ̃− k̃/a2 (18)

and
ξ̃′ = −1

2κ
2γρ̃ , (19)

where ξ̃ = α′ and ′ ≡ d/dt̃, leading to exactly the same solution as before,
but referred to the Euclidean line element corresponding to (12) and (13),

ds2 = −dt̃ 2 − a2
(
t̃
) [ dr2

1 + k̃r2
+ r2(dθ2 + sin2 θdφ2)

]
, (20)

in which ũi = (1, 0, 0, 0), ũi = (−1, 0, 0, 0).



On the Positivity of Matter Energy 39

Thus, it is now clear that negative energies in cosmology involve Eucli-
dean spaces and vice versa. “Time” is on the same footing as space and the
usual physical interpretation in terms of “evolution” and “propagation” be-
comes untenable, since all four co-ordinates have the same basic geometrical
character. From the classical viewpoint, however, the Euclidean solution
(18)–(20) is just as good as the Lorentzian solution (12)–(15), raising the
question why one is selected rather than the other. For either allows a possi-
ble mathematical description of gravity, both globally and locally. As men-
tioned by Witten[11], the Schwarzschild solution is equally valid for mass
parameters M or −M̃ , the Euclidean, zero-charge, negative-mass version of
Eq. (11) being

ds2=−
(

1 + 2M̃r−1
)
dt̃2−

(
1 + 2M̃r−1

)−1
dr2−r2(dθ2 + sin2 θdφ2) . (21)

In discussions[11, 12] of the positive-energy conjecture of Arnowitt et al.[13]
for asymptotically flat spaces, however, there is the same initial assumption
that T 0

0 ≥ 0 locally.

3. The signature of space-time

Classically, there is no way of transforming the Euclidean spaces (20)
or (21) into the Lorentzian space-times (12) or (11), respectively, and the
quantum theory is therefore necessary to justify the assumption that ρ ≥ 0,
which is the purpose of this paper. In fact, the problem of why the Lorentzian
signature is favoured over the Euclidean was analysed previously in Ref. [14],
hereafter called paper I, by deriving[15] the Wheeler–DeWitt equation[16]
for the wave function of the Friedmann Universe (12) (the mini-superspace
approximation) in the heterotic superstring theory of Gross et al.[17], from
which the Faddeev[18] (Newton–Wigner[19]) propagators K± can be ob-
tained, referring to positive- and negative-energy solutions of the Schrödinger
wave equation. In the Euclidean space (20), K+ increases exponentially on
the Planck time-scale ∼ tP ≡ M−1P ≈ 5 × 10−44s, which is physically un-
acceptable, while K− decreases exponentially on the same scale, effectively
ruling out the Euclidean signature and thus proving that space-time has to
be Lorentzian.

4. The quantum cosmological propagator

For completeness, we give an expanded version of the argument of paper I,
with further clarification, although the principal results are not affected.
The starting point is the dimensionally-reduced, effective four-action for the
bosonic sector of the heterotic string, which can be written as the power
series in the Regge slope parameter α′ [15],



40 M.D. Pollock

S =

∫
d4x
√
−g
[
− R

2κ2
+B

(
R2 −RijRij

)
+ . . .

]
, (22)

where the gravitational coupling, up to renormalisation[20, 21] (see Eq. (54)
below), is

κ2 ≈ κ20 =
α′

4
, (23)

and the coefficient of the higher-derivative terms R2 is given by

B = ArB
−2
r B̄ . (24)

The dilaton Ar and modulus Br are the real parts of the two complex
chiral superfields A, B which arise from the reduction by Witten[22] of the
ten-action Ŝ to four dimensions, the string line-element (I16) being

dŝ2 = A−1r gijdx
idxj +Brgµνdy

µdyν . (25)

At the tree level Ar ≈ g−2s , where gs is the gauge-coupling parameter,
and
√
Brα′ is the radius of the internal space gµν , which is assumed to be

isotropic. Previously, we have argued[23] that the modulus cannot be less
than the Hagedorn value[17, 24] B(H)

r = (1 + 1/
√

2)2 ≈ 2.914, and requiring
the four-theory to be supersymmetric results in the estimate[25]

Br ≈ 3.5 , (26)

using the non-linear formulation of supersymmetry due toVolkov and Akulov[26],
and assuming the three-generation Calabi–Yau manifold[27]. The constant
B̄ is given by the integral over the internal space

B̄ =
ζ(3)α

′2

128

∫
d6y
√
g RµνξoR

µνξo∫
d6y
√
g

, (27)

where ζ(3) ≈ 1.202 is the Riemann zeta function, leading to the estimate

B ≈ 1 . (28)

Consider first the Lorentzian signature. The Wheeler–DeWitt equation
can be written as1

ia−1/2
∂Ψ

∂a
≈
[
−A
ζ

∂2

∂ζ2
+ Zζ

]
Ψ , (29)

1 There are minor errors in Eqs. (I12), (I15), (I18), (I26) and the subsequent expres-
sions, which are corrected here in Eqs. (29), (31), (33), (40) and (41), respectively.
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where the line element (12) has been expressed, rescaling the time t, as (I13),

ds2 = a3(η)dη2 − a2(η) dx2 , (30)

and ζ = a−1da/dη. The positive constant A is defined by

A−1 = 96B =
3

4
ζ(3)ArB

−2
r α

′2

∫
d6y
√
g RµνξoR

µνξo∫
d6y
√
g

, (31)

and in the semi-classical approximation, where BR2 � R/κ2, the geomet-
rical and matter contributions to the potential in Eq. (29) (that is, the
pseudo-Hamiltonian) can be equated, so that (see (I17))

Z ≈ 6

κ2
. (32)

Introducing new co-ordinates (τ, χ), defined by

dτ = ζa1/2da , dχ = ζdζ , (33)

we rewrite Eq. (29), ignoring operator-ordering factors, as the Schrödinger
equation (I19),

i
∂Ψ

∂τ
≈
[
−A ∂2

∂χ2
+ Z

]
Ψ ≡ Hps Ψ , (34)

where Hps is the pseudo-Hamiltonian.
The derivation of the Faddeev propagator for Eq. (34), K(τ, χ; τ0, χ0) is

given in paper I and leads to the answer (I23) in the Lorentzian régime,

K(τ,χ; τ0,χ0)= lim
ε→0+

(
1

4πiA(4τ−iε)

)1/2

exp

[
Z(4τ−iε)2−(4χ)2/4A

i(4τ−iε)

]
, (35)

which is oscillatory, and hence physically allowed. Now let us perform the
Wick rotation (16) into the Euclidean space (20), which implies that

η = ± iη̃ , ζ = ∓ iζ̃ , τ = ∓ iτ̃ , χ = −χ̃ . (36)

(Note that the “spatial” co-ordinate χ undergoes a parity transformation
when the “time” τ is Wick-rotated.) For self-consistency, we have to apply
the transformations (17), taking the source into the negative-energy region,
and work from the semi-classical equations (18), (19). Expression (35) is
then transformed into the Euclidean propagator (I24), now setting ε = 0,

K̃± (τ̃ , χ̃; τ̃0, χ̃0) =

(
∓1

4πA4τ

)1/2

exp

[
±
(
Z(4τ̃)2 + (4χ̃)2/4A

4τ̃

)]
. (37)
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Choosing 4τ̃ > 0, the only physically acceptable solution is K̃−, which
decreases exponentially at least as fast (setting 4χ̃ = 0) as (I25),

K̃− ∼ exp

(
−34τ̃
4πt2P

)
, (38)

showing that the characteristic decay time-scale is ∼ tP.
More precisely, in the Euclideanized Friedmann space (20) with k = 0,

the scale factor is a(t̃) = a0(t̃/t̃0)
2/3γ if the negative energy-density −ρ̃ and

negative pressure −p̃ are related via the adiabatic index γ = 1 + p̃/ρ̃. By
continuity with the Lorentzian space-time, we then set a0 = (4π/3)1/3l(t̃0),
where l(t̃) is the Euclideanized “particle horizon”, defined by

l(t̃ ) =
3γt̃

3γ − 2
, (39)

yielding

4τ̃
t2P

= a

(
da

dt̃

)2 4t̃
t2P

=
16πγ

(3γ − 2)3

(
t̃0

t̃

)(3γ−2)/γ (
t̃

tP

)(
4t̃
tP

)
. (40)

For γ = 1 (implying ζ = constant) and t̃ = t̃0, Eq.(38) reduces to

K̃−(t̃0) ∼ exp

(
−12t̃04t̃

t2P

)
. (41)

And since 4τ̃ /t2P ∼ t̃−2(γ−1)/γ , the suppression factor is even greater at
earlier times for all γ > 1. More generally, at the Planck time, including
both signs, we have

K̃±(tP) ∼ exp

[
± 12γ

(3γ − 2)3

(
t̃0
tP

)(3γ−2)/γ 4t̃
tP

]
. (42)

The interpretation of expression (42) thus depends upon the value of γ.
When γ > 2/3, the e-folding time for K̃−(tP) is

(
4t̃
)
e

=
(3γ − 2)3

12γ

(
tP
t0

)(3γ−2)/γ
tP � tP , (43)

while K̃+(tP) increases exponentially on the same scale. As γ − 2/3 → 0+,
(4t̃ )e → 0. When 0 < γ < 2/3, the rôles of K+ and K− are interchanged,
with the same limit

(
4t̃
)
e
→ 0 as γ − 2/3→ 0−. The limiting case γ = 0,
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corresponding to Euclidean anti-de Sitter space, requires a separate treat-
ment, since a = a0 exp(ξ̃t̃) and expression (40) is replaced by

4τ̃
t2P

= a3ξ̃2
4t̃
t2P

, (44)

so that

K̃±(t̃) ∼ exp

[
±3a3(t̃)ξ̃24t̃

4πt2P

]
. (45)

Since a(t̃) > tP ∀ t̃, the e-folding time for K−(t̃) is

(4t̃ )e =
4πt2P

3a3(t̃ )ξ̃2
. (46)

In the situations of interest, however, we shall have a3(t̃ )ξ̃2 & tP, and again
find that (4t̃ )e . tP, allowing us to rule out both the cases ± by the same
reasoning as above.

Thus, only the Lorentzian signature is physically allowed.
For the metric coefficient g00 is not a dynamical variable, as emphasised

by Ellis et al.[28], being the square of the lapse function N (when g0α = 0)
which occurs as a Lagrange multiplier in the Hamiltonian formulation of
general relativity, although it becomes dynamical when higher-derivative
terms R2 are included — see the footnote on p. 314 of Ref. [29]. Ignoring
R2, we can still evolve the space-time from one signature to another if the
total energy-density ρt ≡ ρ − 3k/κ2a2 changes sign at some point, and
consequently the examples of such spaces constructed in Ref. [28] all require
k = +1, so that the curvature contribution to ρt is negative. But the change-
over cannot occur unless ρt = 0, which is usually interpreted to mean that
the Friedmann expansion has ceased, to be succeeded by a contracting phase,
ρt remaining positive semi-definite throughout. In this case, the curvature
density ρc ≡ −3k/κ2a2 becomes significant far from the Planck era (where it
is ignorable), but grows faster than ρ ≈ 4/3γ2κ2t2, since a ∼ t2/3γ , assuming
that γ > 2/3.

5. Discussion

We have seen that the cosmological Faddeev propagator K can be ap-
plied to explain why space-time is Lorentzian rather than Euclidean. The
proof, starting from the action (22), assumes the semi-classical approxima-
tion B|R2| � |R|/2κ2, so that higher-derivative terms can be ignored in the
Friedmann equation, although their presence is essential to the derivation of
the Schrödinger equation (34). From the estimate (28) that B ≈ 1, it follows
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that this inequality is satisfied except at the Planck era, where decompact-
ification effects become important, and consequently a more exact analysis
taking the term R2 into account in the classical equation of motion would
not significantly affect our result. Nor shall we discuss the curved spaces
k = ±1 further, since, in addition to the quantum cosmological argument
of Ref. [10], the measurements of the anisotropy of the cosmic microwave
background radiation on sub-degree angular scales by the BOOMERANG
and MAXIMA-I balloon experiments[30] suggest that k = 0, the first peak
in the angular power spectrum being at multipole l ≈ 200.

It is nevertheless of interest that the energy-density of geometrical origin
fromR2 is not necessarily positive definite, even though the scalar and tensor
masses are both real for the heterotic superstring theory, which is thus free
of space-time tachyons. The modified field equations (1) read, setting µ = 1
in Eq. (22) of Ref.[31],

Rij −
1

2
gijR = κ2

{
Tij +B

[
−
(
R2 −RklRkl

)
gij

+ 4
(
RRij−RklR k l

i j

)
+3�Rgij−2�Rij−2R;ij

]}
, (47)

and in the Friedmann space-time (12) the geometrical contribution to the
energy-density and pressure are given by expressions (26) and (28) of
Ref.[31], respectively,

ρR2 = 24B
(
α̈2 − 2α̇

...
α − 6α̇2α̈

)
(48)

and
pR2 = 8B

(
9α̈2 + 12α̇

...
α + 18α̇2α̈+ 2

....
α
)
. (49)

The term in B on the right-hand side of Eq. (47), deriving from R2, vanishes
not only in Minkowski space, but also in de Sitter space or anti-de Sitter
space, defined by

Rijkl =
1

3
∧ (gilgjk − gikgjl) , (50)

the maximally symmetric space with cosmological constant ∧ positive or
negative, respectively, that constitutes the natural cosmological vacuum[32]
from which the gravitational energy can be defined[33].

As long as B|R2| � |R|/2κ2, however, it follows from the analysis of
Section 2 that the cosmological energy-density ρ must be positive definite
everywhere for the Friedmann space-time (which can be imposed as a sym-
metry), so that ρ = ρ(t) > 0. (More precisely, this inequality refers to ρt,
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but we are assuming that k = 0.) Since this matter is made up of ele-
mentary particles of various types, it is reasonable to assume that they all
have positive semi-definite rest-mass and energy — one might call this the
positive-mass hypothesis, since it underlies the positive-energy conjecture.
These are the particles which go into the formation of astrophysical bod-
ies and black holes, explaining why only the positive-mass Schwarzschild
solution is relevant in the Universe in which we live.

This result is important in quantum cosmology for defining the vac-
uum wave-function of the Universe Ψ0. The positive semi-definiteness of
the matter energy-density ρ implies, via the Friedmann equation, that the
semi-classical potential V ∝ +(ρa3)1/2 in the Schrödinger equation (29) —
which is rescaled to the (positive) constant Z in Eq. (34) — is also pos-
itive semi-definite. This allows a global vacuum state V0 = 0, which is
Minkowski space, associated with non-vanishing probability density Ψ0Ψ∗0 ,
and as a corollary, we can argue that the cosmological constant has to
be set to zero[34]. The existence of this vacuum state is a necessary pre-
requisite for the interpretation[35] of the neutron-diffraction experiment of
Colella et al.[36] as evidence for the correctness of the quantisation proce-
dure leading to the cosmological Wheeler–DeWitt equation in the form of
the Schrödinger equation (8) of Ref. [35],

i
∂Ψ

∂t
≈ HpsΨ . (51)

The local matter Schrödinger-equation, Eq. (13) of Ref. [35],

i
∂Ψ1
∂t

= H1Ψ1 , (52)

is then obtained by factorisation of the wave function, Ψ = ΨgΨ1, where
the suffix g refers to the background gravitational component and Hps =
Hg +H1.

We have assumed throughout that the gravitational coupling κ2 is posi-
tive, in agreement with present-day experiment, but which requires theoret-
ical justification. For the bare value obtained after reduction of the initial
ten-dimensional Einstein–Hilbert term R̂/2κ̂2, given by the formula

κ20 =
κ̂2∫
d6y
√
g
, (53)

is renormalised by contributions originating from the higher-derivative terms
α

′3R̂4, yielding the formula[21]

κ2 = κ20

[
1− 15ζ(3)χ

16λB3
r

− g2sχ

384π2

]−1
. (54)
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Here χ is the Euler characteristic of the Ricci-flat internal space gµν , whose
volume V 6 is parametrised in terms of that of the unit six-sphere by λ,

V 6 =

∫
d6y
√
g =

16π3λα
′3

15
, (55)

and g2s ≈ 1/Ar ≈ 1/2 at tree level. The second and third terms in the
bracket on the right-hand side of Eq. (54) derive from the tree-level[37] and
one-loop[38] corrections, respectively.

The only known, three-generation Calabi–Yau manifold[27] is charac-
terised by χ = ±6 (taking into account the mirror manifold), so that these
corrections are proportionately

δκ2

κ2

∣∣∣∣
tree-level

≈ ±6.76

λB3
r

,
δκ2

κ2

∣∣∣∣
1-loop

≈ ±8× 10−4 , (56)

in the first of which we have to substitute the result (26) for Br, and which
now depends upon the compactification volume. The simplest approxima-
tion [22] in reducing the ten-action to the standard four-dimensional super-
gravity form is the six-torus, for which V 6 = 64π6α

′3, so that λ = 60π3, in
which case the tree-level and one-loop corrections to κ20 are approximately

δκ2

κ2

∣∣∣∣
tree-level

≈ ±1.35×10−4
(

3

Br

)3

,
δκ2

κ2

∣∣∣∣
1-loop

≈ ±7.92×10−4
(

2

Ar

)
,

(57)
both being of the same sign as that of χ and of the same order of magnitude.
Thus, the sign of κ20 remains unchanged by the renormalisation, as it should,
since the positivity of the gravitational constant is linked to the Lorentzian
signature of space-time[39], and hence to the positivity of matter energy in
the Universe.

Finally, it is illuminating to relate the phenomenon of metric-signature
change to the theory of quantum tunnelling, applied by Gamow[40], for ex-
ample, to explain the emission of alpha particles from atomic nuclei of energy
less than the height of the Coulomb barrier. Thus, consider, for simplicity,
the time-independent problem of a particle of mass m, momentum p and
energy E in a one-dimensional region of flat space-time where the potential
is V (x). Upon quantisation via the operator replacement p → −id/dx, the
non-relativistic equation for the conservation of energy

p2

2m
+ V = E (58)

yields the Schrödinger equation for the wave function ψ,

1

2m

d2ψ

dx2
+ (E − V )ψ = 0 . (59)



On the Positivity of Matter Energy 47

In the classically-allowed region E ≥ V , the solutions to Eq. (59) are
oscillatory

ψ = ψ0 exp
{
±i [2m(E − V )]1/2 x

}
, (60)

where V is constant, while in the classically-forbidden region under the po-
tential barrier, E < V , the physical solution is

ψ = ψ0 exp
{
− [2m(V − E)]1/2 x

}
, (61)

which describes tunnelling through the barrier if this is of finite width.
Eq. (58) is the Hamiltonian constraint H = 0, the cosmological version

of which in the Friedmann space-time (12) is Eq. (14). The analogues of the
one-dimensional energy and potential are the terms κ2ρ/3 and k/a2, respec-
tively, the classically-allowed and -forbidden regions being ξ2 ≥ 0 and ξ2 < 0.
There is an alternative interpretation, however, for the classically-forbidden
region becomes classically allowed if we Wick-rotate the time coordinate
according to Eq. (16), changing the metric signature from (+ − −−) to
(−−−−). If we set k = 0 and V = 0, the two regions are defined by E ≥ 0
and E < 0, respectively, while the operators d2/dx2 in Eq. (58) and ∂2/∂χ2

in Eq. (34) remain invariant under the signature change. Thus, the decaying
propagator (38) for the negative-energy solution can be regarded either as
classically forbidden in Lorentzian space-time or classically allowed in Eu-
clidean space. From either standpoint, the occurrence of negative energies
is restricted by the indeterminacy principle to the Planck era.

This paper was written at the University of Cambridge, Cambridge,
England.
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