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Recently many authors have calculated energy of the Friedman uni-
verses by using coordinate-dependent double index energy-momentum com-
plexes in Cartesian comoving coordinates (t, x, y, z) and concluded that the
flat and closed Friedman universes are energy-free. In this paper by using
Einstein canonical energy-momentum complex and by doing calculations
in conformally flat coordinates we show that such conclusion is incorrect.
The results obtained in this paper are compatible with the results of our
previous paper, see J. Garecki, Found. Phys. 37, 341 (2007), where we
have used coordinate-independent averaged energy-momentum tensors to
analyze the energy of Friedman universes.

PACS numbers: 04.20.Me, 04.30.+x

1. Introduction

A spacetime is conformally flat if there exist coordinates (τ, x, y, z) in
which the line element ds2 reads

ds2 = Ω2(τ, x, y, z)
(

dτ2 − dx2 − dy2 − dz2
)

= Ω2(τ, x, y, z)ηikdxidxk , (1)

where ηik means the Minkowski metric, i.e., ηik = diag(1,−1,−1,−1)1 .
Ω(τ, x, y, z) is a sufficiently smooth and positive-definite function called con-
formal factor.

We will call the coordinates (τ, x, y, z) the conformally flat or conformally
inertial coordinates.

1 We prefer signature (+−−−) and we will use geometrized units in which G = c = 1.

(781)



782 J. Garecki

The conformally flat coordinates are determined up to 15-parameters Lie
group of the conformal transformations. This group contains, as a subgroup,
the 10-parameters Poincare’ group [1, 2].

It is obvious that the conformally flat coordinates are geometrically and
physically distinguished, like inertial coordinates (t, x, y, z) in a Minkowski
spacetime2.

The necessary and sufficient condition for a four (or more) dimensional
spacetime to be conformally flat is that Weyl conformal curvature tensor [3]
vanishes. Physically, the Weyl tensor describes source-free, i.e., independent
of matter, gravitational field.

If a spacetime is neither flat nor asymptotically flat (at spatial or at
null infinity), but it is only conformally flat, then one should choose confor-
mally flat coordinates to analyze energy and momentum of such a spacetime
by using coordinate-dependent3 , double index energy-momentum complexes,
matter and gravitation.

In this context we would like to remark that already in the case of
a Minkowski spacetime the energy-momentum complexes can be reasonably
used only in an “affine” coordinates in which the metric components are con-
stant, e.g., in an inertial (= Lorentzian) coordinates (t, x, y, z) in which the
line element ds2 reads

ds2 = dt2 − dx2 − dy2 − dz2 . (2)

On the other hand, in an asymptotically flat spacetime one can reason-
ably use these complexes only in an asymptotically flat (= asymptotically
inertial or asymptotically Lorentzian) coordinates. So, in the case of a con-
formally flat spacetime one should use the energy-momentum complexes in
the conformally flat coordinates, i.e., in the conformally inertial coordinates.

If a spacetime is neither asymptotically flat nor conformally flat, then
one can reasonably use the energy-momentum complexes to an averaged
and covariant analyzis of the gravitational and matter fields in a normal
Riemann coordinates [8, 9].

It is commonly known that the Friedman universes are conformally flat
[4–6] so that it is natural to analyze their energetic content in conformally
flat coordinates (τ, x, y, z).

Recently many authors have calculated the energy of the Friedman and
also more general, only spatially homogeneous universes [7] mainly by using
coordinate-dependent double index energy-momentum complexes. These

2 For example, they determine the same causal structure of the spacetime as inertial
coordinates (t, x, y, z) in a Minkowski spacetime.

3 By “coordinate dependent quantity” we mean a quantity which is not a tensor (in
general–which is not a tensor valued p-form). By “coordinate independent quantity”
we mean a tensor quantity (in general — a tensor valued p-form).
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authors did not perform their calculations in the conformally flat coordinates
(τ, x, y, z), but in the so-called Cartesian comoving coordinates (t, x, y, z) in
which the line element ds2 of the Friedman universes has the form

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

[

1 + k(x2+y2+z2)
4

]2 , (3)

where a = a(t) is the scale factor, and k = 0,+− 1 is the normalized curvature
of the slices t = const, t denotes the universal time parameter called cosmic
time.

In the Cartesian comoving coordinates (t, x, y, z) only spatial part of the
full metric is conformally flat.

The above mentioned authors have concluded that the closed Friedman
universes have zero net global energy and that the flat Friedman universes
are energy free, locally and globally4. Of course, the results which one
obtains in comoving coordinates other than (3) are radically different (see,
e.g., [8]).

For an open Friedman universe one gets divergent global results already
in the Cartesian comoving coordinates (t, x, y, z).

It seems that the problem of the global quantities of the Friedman and
more general spatially homogeneous, universes is not a well-defined physical
problem, because one cannot measure the global energy and momentum of
the whole universe. The global energy and momentum, the global angular
momentum have their physical meaning only in the case of an asymptotically
flat spacetime (at spatial or at null infinities) where these global quantities
can be measured. So, the calculations of the global energy and momentum,
the global angular momentum of a universe have only pure mathematical
sense.

In the case of a universe the physically sensible are only the local quan-
tities (e.g., energy density and its flux) and global quantities of an isolated
part of the universe (e.g., global energy of the Solar System). If we use
a coordinate-dependent double index energy-momentum complex, then all
these quantities should be calculated in a privileged coordinates, e.g., in the
case of a Friedman universe one should use for this purpose the geometrically
and physically favored conformally flat coordinates (τ, x, y, z).

We would like to emphasize that the global result E = 0 obtained in the
Cartesian comoving coordinates (t, x, y, z) for a closed Friedman universe is
obtained if we take the limit r −→ ∞ for integration over the slice t = const,
where r =

√

x2 + y2 + z2 is the radial coordinate. But if r −→ ∞, then

4 I must admit that in my old papers I also followed this conclusion. Now I think that
it was incorrect.
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the spatial conformal factor a2(t)/[(1 + r2

4 )2] tends to zero which leads to
singularity.

To summarize, one should doubt in physical validity of the conclusion
that the closed and flat Friedman universes and spatially homogeneous Kas-
ner and Bianchi universes are energy–free.

In this context, we would like to remark that by using our coordinate
independent averaged relative energy-momentum tensors [8] or superenergy
tensors [9] one can make mathematically correct and coordinate independent
local analysis of the Friedman and more general universes. One can also
formally calculate, correctly from the mathematical point of view, the global,
integral quantities for such universes.

It is interesting that going this way one gets a positive-definite energy for
the all Friedman universes and also for Kasner and Bianchi type I universes5.
So, in our opinion, all these universes do not have to be energetic emptiness.

In this paper we present the results of the analysis of the energetic content
of the Friedman universes in the distinguished conformally flat coordinates
(τ, x, y, z). These coordinates are the most appropriate for this goal, if one
uses an energy-momentum complex. Our analysis will be done with the help
of the most important in general relativity Einstein’s canonical double index
energy-momentum complex

EK k
i :=

√

|g|
(

T k
i + Et k

i

)

=F U
[kl]

i ,l , (4)

where FU
[kl]

i = (−)FU
[lk]

i are Freud’s superpotentials, and Et k
i are the

components of the canonical Einstein’s energy-momentum pseudotensor of
the gravitational field [10–12]. T k

i are the components of the symmetric
energy-momentum tensor of matter.

As we will see, by using this energy-momentum complex in the confor-
mally flat coordinates (τ, x, y, z), one cannot conclude that the Friedman
universes have zero net energy, locally or globally.

The analogous result one can obtain by using any other reasonable double
index energy-momentum complex.

We hope that this paper and the our previous paper [8] convincingly show
that the Friedman universes are not energetic emptiness, neither locally nor
globally.

Finishing this section we would like to emphasize an important advantage
of the conformally flat coordinates (τ, x, y, z) over the Cartesian comoving
coordinates (t, x, y, z). Namely, solving the energy-momentum problem of
the Friedman universes in Cartesian comoving coordinates (t, x, y, z) one
uses only the line element (3) independently of the Einstein equations and

5 More general spatially homogeneous universes have not been considered yet.
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their solutions. On the other hand, the results obtained in conformally flat
coordinates (τ, x, y, z) explicitly depend not only on the Friedman–Lemaitre–
Robertson–Walker line element ds2 but also on the solutions of the Einstein
equations.

Without losing generality we will consider in this paper only dust the
Friedman universes.

The paper is organized as follows. In Section 2 we discuss the dust Fried-
man universes in conformally flat coordinates (τ, x, y, z), and in Section 3 we
analyze the energy and its flux for dust Friedman universes in these coordi-
nates. Our analysis will be performed with the help of the Einstein canonical
energy-momentum complex. Finally, in Section 4 we give our conclusion.

2. Dust Friedman universes in the conformally flat coordinates

(τ, x, y, z)

2.1. Closed dust Friedman universes ( k = 1)

Let us consider the Friedman–Lemaitre–Robertson–Walker (FLRW) line
element

ds2 = a2(η)
{

dη2 − dχ2 − sin2χ
(

dθ2 + sin2θdϕ2
)}

(5)

with the following ranges of the coordinates (η, χ, θ.ϕ):

0 < χ < π , 0 < θ < π , 0 < ϕ < 2π , χ − π < η < π − χ . (6)

Physically, the coordinate η is the conformal time, χ is a radial coordi-
nate, and θ, ϕ are ordinary spherical angular coordinates (see, e.g., [13]).

The bijective transformation

τ + r = tan

(

η + χ

2

)

, τ − r = tan

(

η − χ

2

)

,

θ′ = θ , ϕ′ = ϕ ,

0 < χ < π , χ − π < η < π − χ , 0 < θ < π , 0 < ϕ < 2π , (7)

with inverse

η = arctan(τ + r) + arctan(τ − r) , −∞ < τ + r < ∞ ,

χ = arctan(τ + r) − arctan(τ − r) , −∞ < τ − r < ∞ , 0 < r < ∞,

θ = θ′ , ϕ = ϕ′ , 0 < θ′ < π , 0 < ϕ′ < 2π , (8)

map this spacetime onto a conformally flat spacetime with the following line
element

ds2 =
4a2(τ, x, y, z)

[1 + (τ + r)2][1 + (τ − r)2]
ηik dxidxk

=: Ω2(τ, x, y, z) ηik dxidxk , (9)
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where

x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ ,

r =
√

x2 + y2 + z2 . (10)

This means that the transformation (7) covers the region of the spacetime
(5)–(6) with the conformally flat coordinates (τ, x, y, z). One can call these
coordinates the conformally inertial coordinates.

If we omit the angular coordinates (θ, ϕ) then this region is the triangle

0 < χ < π , χ − π < η < π − χ (11)

on the plane (η, χ).
Now let us consider the closed dust Friedman universe with the following

line element in the same coordinates (η, χ, θ, ϕ)

ds2 = a2(η)
{

dη2 − dχ2 − sin2 χ
(

dθ2 + sin2 θdϕ2
)}

, (12)

with
a(η) = a0 (1 + cos η) , t(η) = a0 (η + π + sin η) , (13)

and with the following ranges of the coordinates (η, χ, θ, ϕ)

−π < η < π , 0 < χ < π , 0 < θ < π , 0 < ϕ < 2π . (14)

The coordinates (η, χ, θ, ϕ) are comoving, i.e., the dust particles and the
fundamental observers are at rest in these coordinates.

Here a(η) is the scale factor and t is the cosmic time; a0 = 4
3πρa3 = const

is the first integral of the Friedman equations. If we omit the angular coor-
dinates (θ, ϕ), then this universe is a rectangle (−)π < η < π, 0 < χ < π on
the plane of the variables η, χ. Comparing this rectangle with the previous
triangle one can easily see that the conformally flat coordinates (τ, x, y, z)
cover only a half of the closed dust Friedman universe which is determined
by the following ranges of the coordinates (χ, η, θ, ϕ)

0 < χ < π , χ − π < η < π − χ , 0 < θ < π , 0 < ϕ < 2π . (15)

It is worth emphasizing that only one slice, η = 0, of the closed dust
Friedman universe is entirely covered by the conformally flat coordinates
(τ = 0, x, y, z). Any other slice η = η0 6= 0 is only partially covered by these
coordinates.

Applying an active point of view one can say that this distinguished slice
η = 0 is mapped onto the subspace

τ = 0 , −∞ < x < ∞ , −∞ < y < ∞ , −∞ < z < ∞ (16)
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of the conformally flat spacetime (τ, x, y, z) which has the line element (9)
with

a(τ, x, y, z) = a0 {1 + cos[arctan(τ + r) + arctan(τ − r)]} . (17)

The limiting values

x =+
− ∞ , y =+

− ∞ , z =+
− ∞ (18)

are not admissible by the condition Ω(0, x, y, z) > 0.

It follows that in conformally flat coordinates it is possible to calculate
integrals only over the distinguished spatial slice η = 06. This fact is very
important, e.g., for formal calculation of the global energy and momentum
of a closed dust Friedman universe.

It is very interesting that in the conformally flat coordinates (τ, x, y, z)
the initial singularity at η = (−)π and the final singularity at η = π are
moved to τ = −∞ and to τ = ∞ respectively, i.e., we have no cosmological
singularity in this case at a finite moment of the conformal time coordinate τ .

Matter and comoving observers are not at rest in the conformally flat
coordinates (τ, x, y, z). They both move with the same 4-velocity

u0 =
1 + τ2 + r2

2a(τ, x, y, z)
, u1 =

sin θ cos ϕ · τ · r
a(τ, x, y, z)

,

u2 =
sin θ cos ϕ · τ · r

a(τ, x, y, z)
, u3 =

cos θ · τ · r
a(τ, x, y, z)

, (19)

where

a = a0 {1 + cos[arctan(τ + r) + arctan(τ − r)]} ,

sin θ =

√

x2 + y2

r
, cos θ =

z

r
, cos ϕ =

x
√

x2 + y2
,

sin ϕ =
y

√

x2 + y2
, r =

√

x2 + y2 + z2 . (20)

Only fundamental observers which lie on the distinguished slice η = 0 also
remain at rest in the conformally flat coordinates (τ, x, y, z) in the slice
τ = 0.

6 η = 0 corresponds to space τ = 0 in the conformally flat coordinates (τ, x, y, z) as it
was already mentioned.
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2.2. Open dust Friedman universes (k = −1)

Now, let us consider an open dust Friedman universe endowed with the
same comoving coordinates (η, χ, θ, ϕ) as in the closed case.

We have (see, e.g., [13])

ds2 = a2(η)
{

dη2 − dχ2 − sinh2 χ
(

dθ2 + sin2 θdϕ2
)}

,

a = a0(cosh η − 1) , t = a0(sinh η − η) , (21)

where a0 = 4
3πρa3 = const and

0 < η < ∞ , 0 < χ < ∞ , 0 < θ < π , 0 < ϕ < 2π . (22)

Then, the transformation

r =
a0

2
eη sinh χ , τ =

a0

2
eη cosh χ , τ >

a0

2
, r > 0 ,

θ′ = θ , ϕ′ = ϕ , (23)

with inverse

η = ln

(

2
√

τ2 − r2

a0

)

, τ2 − r2 >
a2

0

4
, θ = θ′ , ϕ = ϕ′ ,

tanh χ =
r

τ
−→ sinh χ =

τ2

τ2 − r2
, (24)

brings the line element (21)–(22) to the conformally flat form

ds2 =

(

1 − a0

2
√

τ2 − r2

)4

ηikdxidxk

=: Ω2(τ, x, y, z)ηik dxidxk . (25)

Here the conformal factor Ω =
(

1 − a0

2
√

τ2−r2

)2
, and τ2 − r2 > a0

2 .

r =
√

x2 + y2 + z2, x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ.
From an active point of view the transformation (23) maps the open dust

Friedman universe (21)–(22) onto interior of the future light cone τ2 − x2 −
y2 − z2 = 0 of a Minkowskian spacetime which line element in an inertial
coordinates reads

ds2 = ηikdxidxk . (26)

Under this mapping, a slice 0 < η = η0 of the open dust Friedman universe

is mapped onto a hyperboloid τ2 − r2 = B2, B2 :=
a2

0
e2η0

4 in the spacetime
with the line element (26).
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In the conformally flat coordinates (τ, x, y, z) the dust matter filling the
open Friedman universe and comoving fundamental observers also are not
at rest. Namely, they have the following 4-velocity in these coordinates

u0 =
τ

a
, u1 =

x

a
, u2 =

y

a
, u3 =

z

a
, (27)

where

a = a0

(

τ2 − r2 + a2
0/4

a0

√
τ2 − r2

− 1

)

, r2 = x2 + y2 + z2 . (28)

2.3. Flat dust Friedman universes (k = 0)

Finally, let us consider a flat Friedman universe filled with dust matter
in the Cartesian comoving coordinates (t, x, y, z).

We have (see, e.g., [13])

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

, (29)

where

a(t) = At2/3 , A = (6πρa3)1/3 = const > 0 , 0 < t < ∞ . (30)

The parameter t is the cosmic time and a(t) denotes as usual the scale factor.
In order to pass to the conformally flat coordinates (τ, x, y, z) it is suffi-

cient in the case only to change the time coordinate t onto conformal time
τ following the scheme

dτ =
dt

a(t)
. (31)

From (30)–(31) it follows that

τ =
3

A
t1/3 ≡ t =

A3

27
τ3 , (32)

and

a(τ) := a[t(τ)] =
A3

9
τ2 , 0 < τ < ∞ . (33)

Now the line element (29) is

ds2 = a2(τ)
(

dτ2 − dx2 − dy2 − dz2
)

, (34)

i.e., we get the line element (29)–(30) in the conformally flat form with the
conformal factor

Ω = Ω(τ) = a(τ) =
A3

9
τ2 , 0 < τ < ∞. (35)
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From geometrical point of view the flat dust Friedman universe in con-
formally flat coordinates (τ, x, y, z) is identical with the upper half (τ > 0)
of the conformally flat spacetime which has the following line element

ds2 = a2(τ)
(

dτ2 − dx2 − dy2 − dz2
)

. (36)

It is interesting that in this case the conformally flat coordinates (τ, x, y, z)
are also comoving coordinates, like the initial Cartesian coordinates (t, x, y, z).

A 4-velocity of a particle in the flat Friedman universe (identical with
the 4-velocity of a fundamental observer) in the conformally flat coordinates
(τ, x, y, z) is

ui =
δi
0

a(τ)
≡ ui = a(τ)ηio . (37)

It results that the dust and the fundamental observers both are at rest in
these coordinates, like as in the Cartesian comoving coordinates (t, x, y, z).

3. Energy of the Friedman universes in the conformally flat

coordinates (τ, x, y, z)

In this section we will consider the energetic content of the Friedman
universes in the physically and geometrically distinguished conformally flat
coordinates (τ, x, y, z). In our analysis we will use the double index Einstein’s
canonical energy-momentum complex of matter and gravitation,

EK k
i :=

√

|g|
(

T k
i + Et k

i

)

, (38)

where T k
i are the components of the symmetric energy-momentum tensor of

matter and Et k
i mean the components of the Einstein gravitational energy-

momentum pseudotensor (see, e.g., [10–13]).
It is known that

√

|g|
(

T k
i + Et k

i

)

= FU
[kl]

i ,l , (39)

where FU
[kl]

i = (−)FU
[lk]

i are Freud’s superpotentials which in a coordinate
basis read

FU
[kl]

i = α

{

gia
√

|g|

[

(−g)
(

gkaglb − glagkb
)]

,b

}

, α =
1

16π
, (40)

and that the equations (39) represent special form of the Einstein equations

(in a mixed form and multiplied by
√

|g|).
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Owing to antisymmetry of the Freud’s superpotentials from (39) one can
easily obtain the local energy-momentum conservation laws, for matter and
gravitation

EK k
i ,k = 0 . (41)

By using Stokes theorem one can obtain from (41) meaningful integral
conservation laws for a closed system in an asymptotically flat coordinates.

Of course, in GR one can consider many other energy-momentum com-
plexes. However, the Einstein expressions seems to be the best of all variety
of the energy-momentum complexes (see, e.g., [11]). In consequence, in this
paper we restrict ourselves, like in our previous papers, only to this double
index energy-momentum complex7.

For a conformally flat spacetime with

gik = Ω2ηik ≡ gik = Ω−2ηik , Ω = Ω(τ, x, y, z) ,
√

|g| = Ω4 , (42)

from (39)–(40) one obtains

EK k
i = 4α

(

δk
i ηlb − δl

iη
kb
)

(Ω,lΩ,b + ΩΩ,bl) . (43)

As a trivial conclusion from (43) we get

EK 0
0 = 0 (44)

if Ω = Ω(x0) ≡ Ω(τ).
It is exactly what happens in the case of a flat Friedman universe.
Note that in this case the component EK 0

0 has physical meaning of
the total “energy density” of matter and gravitation for comoving observers
which have 4-velocities ui = δi

0/a(τ).
In general, the simple calculations performed by using of (43) and ear-

lier given forms of the conformal factor Ω(τ, x, y, z) for the considered dust
Friedman universes lead to the following results:

1. In the case of a flat, dust Friedman universe only the components

EK 1
1 = EK 2

2 = EK 3
3 = 4α

(

ȧ2 + aä
)

(45)

of the canonical energy-momentum complex EK k
i are different from

zero in the conformally flat coordinates (τ, x, y, z). Here ȧ := da/dτ ,

7 But using of another reasonable double index energy-momentum complex will lead
to analogous results.
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ä := d2a/dτ2. Thus, in this case, not all the components of the complex

EK k
i vanish.

In consequence, there exist observers with 4-velocities

ui =

(

1

a
√

1 − v2
,

vx

a
√

1 − v2
,

vy

a
√

1 − v2
,

vz

a
√

1 − v2

)

,

vx =
dx

dτ
, vy =

dy

dτ
, vz =

dz

dτ
, v2 = v2

x + v2
y + v2

z , (46)

for which the “energy density” ǫ := EK k
i uiuk and its flux (= Poynt-

ing’s vector)

P i =
(

δi
k − uiuk

)

E
K k

l ul (47)

are different from zero.

For such observers we have

ǫ =
(−)8

27
αA6τ2 v2

(1 − v2)
< 0 ,

P 0 =
4α(ȧ2 + aä)v2

a(τ)(1 − v2)3/2
, P β =

4α(ȧ2 + aä)vβ

a(τ)(1 − v2)3/2
, (48)

where

a(τ) =
A3

9
τ2 > 0 , ȧ =

2A3

9
τ > 0 , ä =

2A3

9
> 0 , β = 1, 2, 3,

(49)
and the integral

E =

∫

τ=const

ǫ dxdydz (50)

is divergent to minus infinity.

We would like to remark that the spatial velocity v2 = v2
x + v2

y + v2
z of

these observers can be infinitesimally small, i.e., these observers can
infinitesimally differ from comoving observers.

Only for comoving observers which have their 4-velocity of the form
ui = δi

0/a we have

ǫ = EK 0
0 = 0 −→ E = 0 . (51)

So, the physical situation in this case is qualitatively and quantitatively
different from the case of a Minkowski spacetime endowed with inertial
coordinates (t, x, y, z). Namely, in Minkowski spacetime covered by in-
ertial coordinates (t, x, y, z), the canonical energy-momentum complex
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EK k
i (and other energy-momentum complexes too) vanishes identi-

cally and for any observers we have: ǫ = 0, P i = 0.

Thus, by using double index energy-momentum complexes, one cannot
conclude that the flat Friedman universes are energetic emptiness, like
in a Minkowski spacetime. In the case all depends on the family of the
used observers.

2. An open dust Friedman universe.

In this case all the components of the canonical energy-momentum
complex EK k

i are different from zero in the conformally flat coordi-
nates (τ, x, y, z). So, an open dust Friedman universe surely is not an
energetic emptiness.

If one calculates the “total energy density” ǫ = EK k
i uiuk, matter

and gravitation, for family of the observers which are at rest in the
conformally flat coordinates (τ, x, y, z) (i.e., for observers which have
their 4-velocities of the form ui = δi

0/Ω in these coordinates), then one
gets

ǫ = EK 0
0 = (−)

3

2
αa2

0

(

2
√

τ2 − r2 − a0

)2

(τ2 − r2)

×
[

r2

(τ2 − r2)3
− τ2(a0 − 2

√
τ2 − r2)

a0(τ2 − r2)3

]

. (52)

This expression is negative-definite and the integral

E =

∫

τ2−r2=B2

EK 0
0 d3S (53)

over hypersurface τ2−r2 = B2, B := a0

2 eη0 > a0

2 is divergent to minus

infinity8.

The integral (53) has mathematical meaning of the global energy, mat-
ter and gravitation, contained on the hypersurface τ2−r2 =B2, B> a0

2
[for observers which are at rest in the conformally flat coordinates
(τ, x, y, x) in which the line element ds2 is given by (25)].

8 The hypersurface τ 2
−r2 = B2 is a map in the conformally flat coordinates (τ, x, y, z)

of the spatial slice η = η0 of the Friedman universe in the initial coordinates
(η, χ, θ, ϕ).
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3. A closed dust Friedman universe.

In this case also all the components of the canonical energy-momentum
complex EK k

i are different from zero in the conformally flat coordi-
nates (τ, x, y, z). Thus, this universe, like an open Friedman universe,
has non-zero “energy density” for an arbitrary set of observers, i.e.,
a closed dust Friedman universe is not an energetic emptiness.

Concerning global energy of a closed dust Friedman universe we must
remember that this notion has only some mathematical meaning, and
that the conformally flat coordinates (τ, x, y, z) cover entirely only one
distinguished slice η = 0 of a closed dust Friedman universe.

In conformally flat coordinates (τ, x, y, z) this slice is given by

τ = 0 , −∞ < x < ∞ , −∞ < y < ∞ , −∞ < z < ∞ . (54)

At the moment τ = 0, the fundamental observers which were at rest
in the initial coordinates (η, χ, θ, ϕ) are also at rest in the conformally
flat coordinates (τ, x, y, z). It is easily seen from the formulas (19)–(20)
of the Section 2A. So, for these observers the component EK 0

0 (τ =
0, x, y, z) represents the total “energy density” of matter and gravitation
at the moment τ = 0.

By a simple calculation one can easily get that this component is

EK 0
0 =

(−)384αa2
0(r

2 − 1)

(r2 + 1)4
. (55)

Formal calculation of the energy contained inside of the distinguished
slice τ = 0 in the conformally flat coordinates (τ, x, y, z) gives

E =

∫

τ=0

EK 0
0 dxdydz = (−)1536παa2

0

A
∫

0

(r4 − r2)

(r2 + 1)4
dr

=
512παa2

0A
3

(1 + A2)3
> 0 . (56)

Apparently, A can be arbitrary big, but it always should be finite,
because A −→ ∞ would lead to Ω −→ 0, i.e., in the limit it would
lead to a singularity. Despite that, if we take the formal limit A −→ ∞,
then we will get E = 0.

But one cannot conclude from this result that the closed dust Friedman
universe really has zero net global energy.
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The reasons are as follows. At first, one cannot calculate analogous
global integral over any other spatial slice η = η0 = const 6= 0, − π <
η0 < π of the closed dust Friedman universe because other slices
are not entirely covered by the conformally flat coordinates (τ, x, y, z).
We have already mentioned about this important fact in Section 2A.
Secondly, we have no global conservation laws in the relativistic cos-
mology, i.e., vanishing global energy at τ = 0 does not result in E = 0
at τ 6= 0.

Thirdly, if we use another set of observers, e.g., the set of observers
which have their 4-velocities

u0 =
1

Ω
√

1 − v2
, u1 =

v

Ω
√

1 − v2
, u2 = u3 = 0 , (57)

at τ = 0, where v =
√

(dx
dτ )2, then for such observers we will obtain

(for simplicity we put v = const > 0)

ǫ = EK k
i uiuk = (−)

384αa2
0

(1 − v2)

[

r2(1 − v2) + 2v2x2 − 1

(r2 + 1)4

]

. (58)

It follows from the above expression that for these observers the “global
energy” E contained in the subspace τ = 0 reads

E = (−)
384αa2

0

(1 − v2)

∞
∫

0

π
∫

0

2π
∫

0

[(1 − v2)r2 + 2v2x2 − 1]

(1 + r2)4
r2 sin θdrdθdϕ

=
16π2αa2

0v
2

(1 − v2)
> 0 , (59)

i.e., it is positive-definite even for infinitesimally small v.

Thus, the “global energetic content” in the subspace τ = 0 depends on
the used set of the observers which evolve in the closed dust Friedman
universe.

Once more we met a situation which is qualitatively and quantitatively
different from the situation in Minkowski spacetime endowed with in-
ertial coordinates (t, x, y, z).
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4. Conclusion

Our conclusion is that the Friedman universes are not energetic empti-
ness even if we analyze these universes only with the help of a double index
energy-momentum complex. Because these universes are not asymptotically
flat, such analysis should be performed in the geometrically and physically
distinguished conformally flat coordinates (τ, x, y, z).

We hope that we have convincingly justified this conclusion in the paper.

Our conclusion is in full agreement with our previous analysis of the
Friedman (and also more general) universes with the help of the averaged
relative energy-momentum tensors [8].

Of course, our conclusion contradicts the recently very popular opinion
that the Friedman universes are energy-free. Such opinion originated from
incomplete analysis of these universes performed in the Cartesian comov-
ing coordinates (t, x, y, z) in which only the spatial part of the FLRW line
element is conformally flat.

By incomplete analysis we mean the fact of using only the comoving
observers to analyze the energetic content of the Friedman (and also more
general) universes. As we have seen, using different set of the observers gives
different, non-zero local and global results for flat Friedman universes and
non-zero global results for a closed Friedman universe.

In fact, only by using the non-comoving observers one is able to show that
the flat Friedman universes are not energetic nonentity emptiness neither
locally nor globally and that the closed Friedman universes are not global
energetic emptiness.

Restricting to the comoving observers only is not justified physically, e.g.,
an Earth’s observer is not a comoving observer in the real Universe.

We think that the conformally flat coordinates (τ, x, y, z) have much
more profound geometrical and physical meaning than the Cartesian comov-
ing coordinates. Thus, in order to correctly analyze the energy and mo-
mentum of the Friedman universes with the help of a coordinate-dependent
energy-momentum complex, one should work in these coordinates. We have
done this in the present paper for the energy.

We hope that this paper and our previous paper [8] will conclude the
discussion about energetic content of the Friedman universes.

This paper was partially supported by the Polish Ministry of Science and
Higher Education Grant No 1P03B 04329 (years 2005–2007). The author
would like to thank Dr Mariusz P. Dąbrowski for his help in improving the
English version of the paper.
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